Application Based Model for End User Detection of Brain Tumor Detection

Authors

  • Arnab Sarkar Department of Computer Science and Engineering, BP Poddar Institute of Management & Technology, Kolkata, India
  • Sayan Ghosh Department of Information Technology, BP Poddar Institute of Management & Technology, Kolkata, India

Keywords:

segmentation, MRI scan, supervised learning, pixels, image segmentation, thresholding, clustering, features extraction, feature selection

Abstract

Image segmentation is widely used to detect tumor in MRI scan, if we consider the rich literature in this field we will find that from primitive methods to recent hybrid methods and model. All the model are consider as state of the art models. All techniques are vivid and deals with an extensive dataset. In this paper we are studying the basic segmentation process and the use of those process in field of brain segmentation on MRI scans. This paper not only deals with the basic techniques of image segmentation but also the modified ways and uses of those techniques to get a better view of the knowledge in hand. The study are mostly comparative thus making the study more precise In this paper we also discus about a theoretical hybrid model which incorporate the optimal techniques already present in this field. The paper is also trying to bring the benchmarked algorithm under one roof to compare them with each other and find the best possible model to achieve a higher accuracy. We will find the major points of benchmarked algorithms to formulate an algorithm to remove the short comings.

Downloads

Download data is not yet available.

Downloads

Published

02-09-2021

Issue

Section

Articles

How to Cite

[1]
A. Sarkar and S. Ghosh, “Application Based Model for End User Detection of Brain Tumor Detection”, IJRESM, vol. 4, no. 8, pp. 323–326, Sep. 2021, Accessed: Jan. 22, 2025. [Online]. Available: https://journal.ijresm.com/index.php/ijresm/article/view/1271