Object Detection Using Deep Learning
Keywords:
Activation function, Bounding Box, Convolution, Deep Learning, Feature map, Object detection, Pooling, Softmax, Testing, TrainingAbstract
This paper proposes an efficient and an accurate object detection system using Deep Learning [3]. Compared to the existing systems, it makes sure it deduces the drawbacks and provides a better solution. In a certain image as an input, the system divides the image into bounding boxes [7] and associates the class probabilities. In one evaluation, a single neural network predicts the bounding boxes and its probabilities. These systems use classifier for a specific object in an image and evaluate it at every location, corner of the image. Once the classification is done, it makes sure there are no duplicate detections and labels the objects with its accuracy score. Since our system uses deep learning, it makes use of Convolutional Neural Network algorithm to compute the images in a more perfect manner. Our architecture is less complicated and thus makes it fast to process.
Downloads
Downloads
Published
Issue
Section
License
Copyright (c) 2020 H. Harshita Kumar, Harshitha Manjunath, Chandana Shivanna, Mangala Manjunath
This work is licensed under a Creative Commons Attribution 4.0 International License.