Breast Tumor Detection in Automated Breast Ultrasound Using 3-D CNN and 3TP U-Net Deep Convolutional Neural Network
Keywords:
Convolutional Neural Network (CNN), Artificial Neural Networks (ANN)Abstract
Breast cancer affects one out of eight females worldwide. It is diagnosed by detecting the malignancy of the cells of breast tissue. Modern medical image processing techniques work on histopathology images captured by a microscope, and then analyze them by using different algorithms and methods. Machine learning algorithms are now being used for processing medical imagery and pathological tools. Manual detection of a cancer cell is a tiresome task and involves human error, and hence computer-aided mechanisms are applied to obtain better results as compared with manual pathological detection systems. In deep learning, this is generally done by extracting features through a convolutional neural network (CNN) and then classifying using a fully connected network. Deep learning is extensively utilized in the medical imaging field, as it does not require prior expertise in a related field. In this paper, we have trained a convolutional neural network and obtained a prediction accuracy of up to 99.86%.
Downloads
Downloads
Published
Issue
Section
License
Copyright (c) 2020 A. N. Srikanth, H. S. Arvinda
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.