
International Journal of Research in Engineering, Science and Management

Volume 4, Issue 7, July 2021

https://www.ijresm.com | ISSN (Online): 2581-5792

*Corresponding author: bhavanasuryas@gmail.com

125

Abstract: The development of VLSI technology makes it

possible to combine millions of transistors on a single chip to form

a SOC. The main disadvantage confronted here is to verify correct

and loss-less communication between the IP cores within the SOC.

This can be achieved using standard communication protocols like

the Advanced Microcontroller Bus Architecture (AMBA). The

Advanced High-Performance Bus (AHB) is an integral part of the

AMBA protocol series. It is designed for high-performance system

modules. In the proposed paper, the AMBA AHB system is

designed and implemented using Verilog HDL. The design is

simulated using Xilinx ISE 14.6.

Keywords: AHB, AMBA, SOC.

1. Introduction

Owing to the progress of the semiconductor industry, it has

become possible to integrate an oversized range of functional

or IP blocks equivalent to processor cores, GPUs, and wireless

communication models on one chip. To achieve economical

information transmission and reliableness between SOC blocks

and bus protocols that accommodates specific commonplaces

are used. The AMBA bus protocol was introduced by ARM in

the year 1996. AMBA is an open standard that describes how

various components or blocks in the SOC are connected and

controlled [2]. It has become the factual standard for front-end

components in SOC. AMBA has an Advanced High-

Performance Bus (AHB) as the standard backbone for high-

performance synthesizable devices with high clock speeds.

2. Advanced High-Performance Bus (AHB)

AHB is a new generation of AMBA bus which is intended to

address the requirements of high-performance synthesizable

designs [1]. It is a high-performance system bus that supports

multiple bus masters and provides high-bandwidth operation

[1]. AMBA AHB implements the features required for high-

performance, high clock frequency systems including: burst

transfers, split transactions, single-cycle bus master handover,

single clock edge operations, non-tristate implementation,

wider data bus configurations (64/128 bits) [1].

3. Architecture of AMBA AHB

Fig. 1. AMBA AHB architecture

The architecture of the AMBA AHB is shown in Fig. 1. The

AHB system uses a central multiplexer interconnection scheme

to establish the connection between the master and the slave.

The same architecture is implemented that consists of three

masters and four slaves.

AHB is divided into three parts: master, slave, and control.

The control part consists of an arbiter, a write multiplexer, a

read multiplexer, an address control multiplexer, and an address

decoder.

Considering an example where Master-2 is making an

attempt to communicate with Slave-3 to perform read and write

operations. For this, the Master must first send a signal to

request the Arbiter to use the bus. At this time, the Master will

begin the AHB transmission. The Master sends out address and

control signals. These signals in the main provide address

information, transmission direction, and burst type and it

conjointly sends the information to be written.

With the help of the address transferred by the Master, the

slave will be selected by the decoder

The slave that receives the address and control information

will send a response signal to the master, and the master

Design and Implementation of Multiple-master,

Multiple-slave Interface in AMBA AHB Protocol

S. Bhavana Surya1*, C. Hema2, M. Shruthi Priya3, U. Devikarani4, Ashwini S. Rathod5

1,3,4,5Student, Department of Electronics and Communication Engineering, East West Institute of Technology,

Bangalore, India
2Assistant Professor, Department of Electronics and Communication Engineering, East West Institute of

Technology, Bangalore, India

S. B. Surya et al. International Journal of Research in Engineering, Science and Management, VOL. 4, NO. 7, JULY 2021 126

samples the response signal.

This means, that the primary write operation and read

operation between the master and slave is completed. Verilog

code is written for master, slave, arbiter, decoder, address

control multiplexer, write data multiplexer, and read data

multiplexer.

4. Design Implementation

Fig. 2. FSM for AMBA AHB

AMBA AHB is designed using FSM, as shown in Fig.2. FSM

includes a total of 8 states, namely state_idle, state_request,

state_grant, state_write, state_trans_write, state_trans_end,

state_read, and state_trans_read.

The working of FSM is as follows:

A. Idle State

The AHB FSM starts from the idle state, which is the default

state in the state machine. If the master has no transaction to

perform or it has simply completed one, it will stay in this state.

If the Master desires to execute any other transaction, it will

enter the request_state to request the bus from the arbiter. Since

master is the controlling module in the design few users

described signals are used. For example, the Ureq signal is used

to control the selection of Master.

B. Req State

 Here, the master can set the HBUSREQ signal high

indicating to the arbiter that it needs to own access to the bus.

C. Grant State

The master will remain in the same state until it gets access

to the bus. Through the utilization of some arbitration

mechanisms, the arbiter grants access to the bus. The arbitration

mechanism used with inside the design of AMBA AHB is the

highest priority. Wherein, Master-1 is given the highest priority

among the three masters followed by Master-2 and Master-3.

Once the selected master has access to the bus, it will move to

state_write for write transfer or state_read for reading

operations relying upon HWRITE signal.

D. Write State

 This state is a non-sequential write state. Here HREADY

signal is monitored to test whether or not it is asserted high due

to the fact HREADY = 1 is an indication that there aren't any

formerly pending transfers. Beat_counter is used to count the

number of beats to be transferred at some stage in the 4, 8, or

16 beat burst operation. It is in this state, the first data of the

burst is transferred.

E. Trans_Write

This state is a sequential write state i.e., the second one or

subsequent data of a burst is transferred. Once all the data are

transferred, beat_counter would be zero, and the master moves

directly to the trans_end_state. If beat_counter isn't zero it will

continue to be withinside the same state due to the fact

beat_counter!=0 is a sign that all data aren't transferred yet.

F. Trans_End State

In this state, it is checked whether or not HREADY is 1 and

the response from the slave is OKAY. These signals are

monitored because of the very fact HREADY = 1 and HRESP

= OKAY shows the transaction has finished with success at the

bus after which the master moves on to the idle_state.

G. Read State

This state is a non-sequential read state here HREADY signal

is monitored to test whether or not it is asserted high due to the

fact HREADY=1 is a sign that there aren't any formerly

pending transfers. Beat_counter is used to count the number of

beats to be received at some stage in the 4, 8, or 16 beat burst

operation. It is in this state, the first data of the burst is received.

H. Trans_Read State

This state is a sequential read state i.e., the second one or

subsequent data of a burst is obtained. Once all of the data are

obtained, beat_counter would be zero, and the master moves

directly to the trans_end_state. If beat_counter is not 0 it will

continue to be withinside the same state due to the fact

beat_counter != 0 is a sign that all data aren't received yet.

5. Results

As multiple Masters, multiple Slaves are involved in the

design of AHB, incremental burst operation is implemented

between a random combination of Masters and Slaves.

Fig. 3. Simulation result for 4-beat Incremental Burst Transfer Between

Master-3 And Slave-1

Here 0-5 states are used during a write operation in which 0

is state_idle(where all signals are initialized to zero), 1 is

state_request(where HBUSREQ_M3 is made high), 2 is

state_grant(where HGRANT_3 is asserted high along with

HAMSTER_3), 3 is a non-sequential state and 4 is the

S. B. Surya et al. International Journal of Research in Engineering, Science and Management, VOL. 4, NO. 7, JULY 2021 127

sequential state. During this state, HADDR_3 is given with

inside the test bench after which via add and control mux, the

address is placed on HADDR. 160 is the beginning address and

since a 4-beat burst transfer is carried out, 160 along with 3

more subsequent addresses are transferred. Since Slave-1 is

involved in the transfer HSEL_1 is made high. Once all this is

done, HWRITE_1 is made high for a write operation and later

made low for read operation. HWDATA_3 is given in the test

bench and via write data mux the 4 consecutive data are written

into the memory. After trans_end state, the following state is

the idle state, and all over again signals are initialized to 0 to

begin the read operation. Once HWRITE_1 is made low, 4 data

are read from the memory via read_data mux using

HRDATA_1 and then placed on HRDATA. For every write and

read operation HREADY_2 and HRESP_2 is made high.

Fig. 4. Simulation result for 8-beat Incremental Burst Transfer Between

Master-1 And Slave-2

In this simulation result, Master-1 and Slave-2 are interacting

and an 8-beat incremental burst operation is carried out. So, 8

addresses are routed out and 8 data are written into the memory

and read from the memory.

Fig. 5. Simulation Result for 16-beat write Incremental Burst Transfer

Between Master-2 and Slave-3

Fig. 6. Simulation result for 16-beat read Incremental Burst Transfer Between

Master-2 And Slave-3

In this simulation result, Master-2 and Slave-3 are interacting

and 16-beat incremental burst operation is carried out. So, 16

addresses are routed out and 16 datas are written into the

memory and read from the memory.

Fig. 7. Simulation Result for Single Transfer Between Master-1 and

Slave-4

In this simulation result, Master-1 and Slave-4 are interacting

and single burst operation is carried out.

6. Conclusion

The AMBA AHB multi-master and multi-slave

communication protocol have been successfully developed and

implemented. The AHB communication protocol is designed to

improve system performance by implementing incremental

burst read/write transfers. The simulation results show that the

communication between the master and the slave through the

AHB protocol proceeds as expected.

7. Future scope

In the present work, the AHB system is designed which

supports 3 - Masters and 4- Slaves. Developing the system that

can support 16 – Master and 16 – Slaves for both incremental

and wrapping burst is the future scope of this project. Future

extension of the project also includes split transaction

compatible AHB system.

References

[1] AMBA Specification Rev 2.0. ARM Ltd., 1999

[2] funzen.net.https://www.funzen.net/2020/12/07/the-advanced-

microcontroller-bus-architecture-an-introduction.
[3] AHB Example AMBA System Technical Reference Manual. ARM Ltd.,

1999.

[4] Deeksha. L and Shivakumar B R, “Effective Design and Implementation
of AMBA AHB Bus Protocol using Verilog”, in ICISS, 2019.

[5] Permalla Giridhar and Dr Priyanka Choudhury, “Design and Verification

of AMBA AHB”, in 1st ICATIECE, 19-20 March 2019.
[6] K Manikanta Sai Kishore and M Naresh Kumar, “Design and

Implementation of Efficient FSM for AHB Master and Arbiter”, in

International Journal and Magazine of Engineering, Technology,

Management and Research, vol. 2, no. 3, March, 2015.

[7] J S C Varma Nagaraju and N. H. N. S. Srinivasa Murthy, “Design of

Multiple Master/Slave Memory Controllers with AMBA Bus
Architecture”, in International Journal of VLSI System Design and

Communication Systems, vol. 3, no. 10, pp.1563-1567, December 2015.

[8] Shraddha Divekar and Archana Tiwari, “Interconnect Matrix for
Multichannel AMBA AHB with Multiple Arbitration Technique,” in

ICGCCEE, 6-8 March 2014.

[9] Bhaumik Vaidya and Anupam Devani, “Design of an Efficient finite state
machine for the implementation of AMBA AHB master”, in Journal of

Information, Knowledge and Research in Electronics and

Communication Engineering, vol. 2, no. 2, 2013.

