On a Semi-Symmetric Metric Connection in Trans-Sasakian Manifold

Savita Verma*
Associate Professor, Department of Mathematics, Pt. L. M. S. Govt. P. G. College, Rishikesh, India
*Corresponding author: savitaverma19sep@gmail.com

Abstract

Oubina, J. A. [1] defined and initiated the study of Trans-Sasakian manifolds. Blair [2], Prasad and Ojha [3], Hasan Shahid [4] and some other authors have studied different properties of C-R-Sub -manifolds of Trans-Sasakian manifolds. Golab, S. [5] studied the properties of semi-symmetric and Quarter symmetric connections in Riemannian manifold. Yano, K. [6] has defined contact conformal connection and studied some of its properties in a Sasakian manifold. Mishra and Pandey [7] have studied the properties in Quarter symmetric metric Fconnections in an almost Grayan manifold.

In this paper we have studied the properties of a TransSasakian manifold equipped with a semi-symmetric metric connection.

Keywords: Almost-Grayan manifold, C-R-Sub manifolds of Trans-sasakian manifold, Riemannian curvature tensor, Semisymmetric and quarter symmetric connections in Riemannian manifold, Trans-Sasakian manifold.

1. Introduction

Let $\mathrm{M}_{\mathrm{n}}(\mathrm{n}=2 \mathrm{~m}+1)$ be an almost contact metric manifold endowed with a (1,1)-type structure tensor F , a contravariant vector field T , a -1 form A associated with T and a metric tensor ' g ' satisfying:
(1.1)(a) $\mathrm{F}^{2} \mathrm{X}=-\mathrm{X}+\mathrm{A}(\mathrm{X}) \mathrm{T}$
(1.1)(b) $\mathrm{FT}=0$
(1.1)(c) $\mathrm{A}(\mathrm{FX})=0$
$(1.1)(\mathrm{d}) \mathrm{A}(\mathrm{T})=1$
And
(1.2)(a) $\mathrm{g}(\bar{X}, \bar{Y})=\mathrm{g}(\mathrm{X}, \mathrm{Y})-\mathrm{A}(\mathrm{X}) \mathrm{A}(\mathrm{Y})$

Where
(1.2)(b) $\bar{X} \stackrel{\text { def }}{=} \mathrm{FX}$

And
(1.2)(c) $g(T, X) \stackrel{\text { def }}{=} A(X)$

For all C^{∞} - vector fields X, Y in M_{n} also, a fundamental 2form ' F in M_{n} is defined as
(1.3) ${ }^{‘} \mathrm{~F}(\mathrm{X}, \mathrm{Y})=\mathrm{g}(\bar{X}, \mathrm{Y})=-\mathrm{g}(\mathrm{X}, \bar{Y})=-‘ \mathrm{~F}(\mathrm{Y}, \mathrm{X})$

Then, we call the structure bundle $\{\mathrm{F}, \mathrm{T}, \mathrm{A}, \mathrm{g}\}$ an almost contact-metric structure [1]

An almost contact metric structure is called normal [1], if
(1.4)(a) $(\mathrm{dA})(\mathrm{X}, \mathrm{Y}) \mathrm{T}+\mathrm{N}(\mathrm{X}, \mathrm{Y})=0$

Where
$(1.4)(\mathrm{b})(\mathrm{dA})(\mathrm{X}, \mathrm{Y})=\left(\mathrm{D}_{\mathrm{X}} \mathrm{A}\right)(\mathrm{Y})-\left(\mathrm{D}_{\mathrm{Y}} \mathrm{A}\right)(\mathrm{X}), \mathrm{D}$ is the Riemannian connection in M_{n}.

And
$\underline{(1.5)} \mathrm{N}(\mathrm{X}, \mathrm{Y})=\left(\begin{array}{ll}D_{X}^{-} & \mathrm{F})(\mathrm{Y})-\left(\begin{array}{ll}D_{Y}^{-} & \mathrm{F}\end{array}\right)(\mathrm{X})-\overline{\left(D_{X} F\right)(Y)}\end{array}\right.$
$+\overline{\left(D_{Y} F\right)(X)}$
is Nijenhenus tensor in M_{n}.
An almost contact metric manifold M_{n} with structure bundle $\{\mathrm{F}, \mathrm{T}, \mathrm{A}, \mathrm{g}\}$ is called a Trans-Sasakian manifold [3]\&[1], if
(1.6) $\left(\mathrm{D}_{\mathrm{X}} \mathrm{F}\right)(\mathrm{Y})=\alpha\{\mathrm{g}(\mathrm{X}, \mathrm{Y}) \mathrm{T}-\mathrm{A}(\mathrm{Y}) \mathrm{X}\}+\beta\left\{{ }^{〔} \mathrm{~F}(\mathrm{X}, \mathrm{Y}) \mathrm{T}-\right.$ $\mathrm{A}(\mathrm{Y}) \bar{X}\}$

Where, β are non -zero constants.
It can be easily seen that a Trans-Sasakian manifold is normal. In view of (1.6) one can easily obtain in M_{n}, the relations
(1.7) $\mathrm{N}(\mathrm{X}, \mathrm{Y})=2 \alpha^{`} \mathrm{~F}(\mathrm{X}, \mathrm{Y}) \mathrm{T}$
(1.8) $(\mathrm{dA})(\mathrm{X}, \mathrm{Y})=-2 \alpha^{`} \mathrm{~F}(\mathrm{X}, \mathrm{Y})$
(1.9) $\left(\mathrm{D}_{\mathrm{X}} \mathrm{A}\right)(\mathrm{Y})+\left(\mathrm{D}_{\mathrm{Y}} \mathrm{A}\right)(\mathrm{X})=2 \beta\{\mathrm{~g}(\mathrm{X}, \mathrm{Y})-\mathrm{A}(\mathrm{Y}) \mathrm{A}(\mathrm{X})\}$
(1.10) $\left(\mathrm{D}_{\mathrm{X}}{ }^{`} \mathrm{~F}\right)(\mathrm{Y}, \mathrm{Z})+\left(\mathrm{D}_{\mathrm{Y}}{ }^{`} \mathrm{~F}\right)(\mathrm{Z}, \mathrm{X})+\left(\mathrm{D}_{\mathrm{Z}}{ }^{`} \mathrm{~F}\right)(\mathrm{X}, \mathrm{Y})$ $=2 \beta\left[\mathrm{~A}(\mathrm{Z})^{`} \mathrm{~F}(\mathrm{X}, \mathrm{Y})+\mathrm{A}(\mathrm{X})^{`} \mathrm{~F}(\mathrm{Y}, \mathrm{Z})+\mathrm{A}(\mathrm{Y})^{‘} \mathrm{~F}(\mathrm{Z}, \mathrm{X})\right]$
$(1.11)(\mathrm{a})\left(\mathrm{D}_{\mathrm{X}} \mathrm{A}\right)(\mathrm{Y})=-\alpha^{\prime} \mathrm{F}(\mathrm{X}, \mathrm{Y})+\beta\{\mathrm{g}(\mathrm{X}, \mathrm{Y})-\mathrm{A}(\mathrm{X}) \mathrm{A}(\mathrm{Y})\}$
$(1.11)(\mathrm{b})\left(\mathrm{D}_{\mathrm{X}} \mathrm{T}\right)=-\alpha \bar{X}+\beta\{\mathrm{X}-\mathrm{A}(\mathrm{X}) \mathrm{T}\}$

Remark (1.1): In the above and in what follows, the letters $X, Y, Z \ldots$..etc. an C^{∞} - vector fields in M_{n}.

IJRESM

journals.resaim.com/ijresm | ISSN (Online): 2581-5792

2. On a Semi-Symmetric Metric Connection in TransSasakian Manifold

We consider a semi-symmetric metric connection B given by [8]
(2.1) $\mathrm{B}_{\mathrm{X}} \mathrm{Y}=\mathrm{D}_{\mathrm{X}} \mathrm{Y}+\mathrm{A}(\mathrm{X}) \mathrm{Y}-\mathrm{g}(\mathrm{X}, \mathrm{Y}) \mathrm{T}$

Whose torsion tensor is given by

$$
\text { (2.2) } \mathrm{S}(\mathrm{X}, \mathrm{Y})=\mathrm{A}(\mathrm{Y}) \mathrm{X}-\mathrm{A}(\mathrm{X}) \mathrm{Y}
$$

The curvature tensor with respect to B, say $R(X, Y, Z)$ is given by
(2.3) $\mathrm{R}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\mathrm{B}_{\mathrm{X}} \mathrm{B}_{\mathrm{Y}} \mathrm{Z}-\mathrm{B}_{\mathrm{Y}} \mathrm{B}_{\mathrm{X}} \mathrm{Z}-\mathrm{B}_{[\mathrm{X}, \mathrm{Y}]} \mathrm{Z}$

Using (2.1) in it, we get

$$
\begin{aligned}
& \text { (2.4) } \mathrm{R}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\mathrm{K}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})+\left(\mathrm{D}_{\mathrm{X}} \mathrm{~A}\right)(\mathrm{Z}) \mathrm{Y}-\left(\mathrm{D}_{\mathrm{Y}} \mathrm{~A}\right)(\mathrm{Z}) \mathrm{X} \\
& -\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{D}_{\mathrm{X}} \mathrm{~T}+\mathrm{g}(\mathrm{X}, \mathrm{Z}) \mathrm{D}_{\mathrm{Y} T}+\mathrm{A}(\mathrm{Z}) \mathrm{A}(\mathrm{Y}) \mathrm{X}-\mathrm{A}(\mathrm{Z}) \mathrm{A}(\mathrm{X}) \mathrm{Y} \\
& +\mathrm{X}, \mathrm{Y}-\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{X}-\mathrm{A}(\mathrm{X}) \mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{T}-\mathrm{A}(\mathrm{Y}) \mathrm{g}(\mathrm{X}, \mathrm{Z}) \mathrm{T}
\end{aligned}
$$

Again, using (1.11)(b) in (2.4), we obtained (2.5)R(X,Y,Z)=K(X,Y,Z)+ α \{'F(Y,Z)X-‘F(X,Z)Y $+\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \bar{X}-\mathrm{g}(\mathrm{X}, \mathrm{Z}) \bar{Y}\}+(2 \beta+1)\{\mathrm{g}(\mathrm{X}, \mathrm{Z}) \mathrm{Y}-\mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{X}\}$
$-(\beta+1)\{\mathrm{A}(\mathrm{Y}) \mathrm{g}(\mathrm{X}, \mathrm{Z}) \mathrm{T}-\mathrm{A}(\mathrm{X}) \mathrm{g}(\mathrm{Y}, \mathrm{Z}) \mathrm{T}+\mathrm{A}(\mathrm{X}) \mathrm{A}(\mathrm{Z}) \mathrm{T}-$ $\mathrm{A}(\mathrm{Y}) \mathrm{A}(\mathrm{Z}) \mathrm{X}\}$

Contracting (2.5) with respect to X , we get

$$
\begin{aligned}
(2.6)(\mathrm{a}) \mathrm{R}(\mathrm{Y}, \mathrm{Z}) & =\operatorname{Ric}(\mathrm{Y}, \mathrm{Z})+\alpha(\mathrm{n}-2) ‘ \mathrm{~F}(\mathrm{Y}, \mathrm{Z})-\{(2 \mathrm{n}-3) \beta \\
& +(\mathrm{n}-2)\} \mathrm{g}(\mathrm{Y}, \mathrm{Z})+(\beta+1)(\mathrm{n}-2) \mathrm{A}(\mathrm{Y}) \mathrm{A}(\mathrm{Z})
\end{aligned}
$$

Or
(2.6)(b) $\mathrm{R}(\mathrm{Y})=\mathrm{K}(\mathrm{Y})+\alpha(\mathrm{n}-2) \bar{Y}+\{(2 \mathrm{n}-3) \beta+(\mathrm{n}-2)\} \mathrm{Y}$

$$
+(\beta+1)(\mathrm{n}-2) \mathrm{A}(\mathrm{Y}) \mathrm{T}
$$

Contracting which with respect to Y , we get
(2.6)(c) $\mathrm{r}=\mathrm{k}-2 \beta(\mathrm{n}-1)^{2}-(\mathrm{n}-1)(\mathrm{n}-2)$

Where $R(Y, Z)$, r are Ricci tensor and scalar curvature with respect to B and Ricci and k are respectively the same with respect to Riemannian connection D.

Now, suppose the curvature tensor with respect to B vanishes, i.e. $R(X, Y, Z)=0$ then from (2.6)(c), we see that the manifold M_{n} is of constant scalar curvature k and is given by

$$
\text { (2.7) } \quad \beta=\frac{k}{2(n-1)^{2}}+\frac{(n-2)}{2(n-1)}
$$

Also the equation (2.6)(a), in view of the above fact and (2.7) becomes

$$
\text { (2.8) } \begin{aligned}
\operatorname{Ric}(Y, Z)= & -\alpha(n-2) \cdot \mathrm{F}(\mathrm{Y}, \mathrm{Z})+\frac{k}{2(n-1)^{2}}[(2 \mathrm{n}-3) \mathrm{g}(\mathrm{Y}, \mathrm{Z}) \\
& -(\mathrm{n}-2) \mathrm{A}(\mathrm{Y}) \mathrm{A}(\mathrm{Z})]+\frac{(n-2)}{2(n-1)}[(4 \mathrm{n}-5) \mathrm{g}(\mathrm{Y}, \mathrm{Z})-
\end{aligned}
$$

(3n-4)A(Y)A(Z)]
Barring Y in (2.8), we have

$$
\text { (2.9)(a) } \operatorname{Ric}(\bar{Y}, \mathrm{Z})=\alpha(\mathrm{n}-2) \mathrm{g}(\bar{Y}, \bar{Z})+\frac{(2 n-3)}{2(n-1)^{2}} \mathrm{k} \cdot \mathrm{~F}(\mathrm{Y}, \mathrm{Z})+
$$

$\frac{(n-2)(4 n-5)}{2(n-1)} \cdot \mathrm{F}(\mathrm{Y}, \mathrm{Z})$
Further, barring Z in (2.8), we obtained
(2.9)(b) $\operatorname{Ric}(\mathrm{Y}, \bar{Z})=-\alpha(\mathrm{n}-2) \mathrm{g}(\bar{Y}, \bar{Z})+\frac{(2 n-3)}{2(n-1)^{2}} \mathrm{k} \cdot \mathrm{F}(\mathrm{Z}, \mathrm{Y})+$ $\frac{(n-2)(4 n-5)}{2(n-1)} \cdot \mathrm{F}(\mathrm{Z}, \mathrm{Y})$

Adding (2.9)(a) and (2.9)(b), we get
(2.10) $\operatorname{Ric}(\bar{Y}, \mathrm{Z})+\operatorname{Ric}(\mathrm{Y}, \bar{Z})=0$

Thus, we have
Theorem (2.1): Let M_{n} be a Trans-Sasakian manifold admitting a semi -symmetric metric connection B by (2.1)

Let the curvature tensor with respect to B vanish, then M_{n} is of constant scalar curvature and
$\operatorname{Ric}(\bar{Y}, Z)+\operatorname{Ric}(Y, \bar{Z})=0$
Holds good in M_{n}.
Now, from (2.9)(a) and (2.9)(b), we have
(2.11) $\mathrm{K}(\bar{Y})=\overline{K(Y)}=\alpha(\mathrm{n}-2)\{\mathrm{Y}-\mathrm{A}(\mathrm{Y}) \mathrm{T}\}+\frac{(2 n-3)}{2(n-1)^{2}} \mathrm{k} \bar{Y}+$ $\frac{(n-2)(4 n-5)}{2(n-1)} \bar{Y}$

Contracting which with respect to Y , we have
$\alpha(\mathrm{n}-1)(\mathrm{n}-2)=0$
which gives $\alpha=0$, for $n>2$
then, we have
Theorem (2.2): A Trans-Sasakian manifold $M_{n}, n \geq 3$, equipped with a semi-symmetric metric connection B given by (2.1) becomes a $(0, \beta)$ type Trans Sasakian manifold if the curvature tensor with respect to B vanishes.

3. Conclusion

If in a Trans-Sasakian manifold admitting a semi -symmetric metric connection B , and if curvature tensor with respect to B vanish, then M_{n} is of constant scalar curvature and $\operatorname{Ric}(\bar{Y}, \mathrm{Z})+$ $\operatorname{Ric}(\mathrm{Y}, \bar{Z})=0$,Holds good in M_{n}. Again A Trans-Sasakian manifold $\mathrm{M}_{\mathrm{n}}, \mathrm{n} \geq 3$, equipped with a semi-symmetric metric connection B becomes a $(0, \beta)$ type Trans Sasakian manifold if the curvature tensor with respect to B vanishes.

References

[1] Obina, J. A.: New classes of almost contact metric structure publ. Math.32(1985), pp 187-193.
[2] Blair, D.E.: Contact manifold in Riemannian geometric lecture note in Math. Vol.509, Springer Verlag, N.4(1978).
[3] Prasad, S. and Ojha, R.H.: C. R. submanifolds of Trans - Sasakian manifold, Indian Journal of pure and Applied Math.24(1993) (7 and 8), pp.427-434.
[4] Hasan Shahid, M" C R sub manifolds of Trans Sasakian manifold, Indian Journal of pure and Applied Math. Vol. 22 (1991), pp.1007-1012.
[5] Golab, S.: On semi-symmetric and quarter symmetric linear connections; Tensor, N. S; 29(1975).
[6] Yano, K.: On contact conformal connection; Kodia Math. Rep., 28(1976), pp.90-103.
[7] Mishra, R. S. and Pandey, S.N.: On quarter symmetric metric Fconnections; Tensor, N. S. Vol. 31, (1978), pp. 1-7.
[8] Pandey, S. N.: Some contribution to Differential Geometry of differentiable manifolds, Thesis (1979), B. H. U. Varanasi (India).

