
International Journal of Research in Engineering, Science and Management

Volume 4, Issue 7, July 2021

https://www.ijresm.com | ISSN (Online): 2581-5792

*Corresponding author: shwetameshram056@gmail.com

83

Abstract: Web services are the modern enhanced forms of the

web applications that are typically based on web APIs that are

accessed through Hyper Text Transfer Protocol (HTTP) to execute

on a far off system hosting [1]. Web services that are the RPCs

over the www have a brief history of events that eventually gave

rise to the world of these services. The paper presents an overview

of RESTful Web API development, design and explores its full

capabilities in developing these APIs. It aims to summarize

modern APIs and the rising of REST and JSON from the

previously built web services using XML over HTTP. Later, the

paper manifolds the RESTful service mandates, giving a brief

explanation of each of these constraints. To express the purpose of

the measure of being RESTful or not by an architecture, the

Richardson Maturity Model (RMM) is addressed. They specify the

various design rules in the RESTful API creation process.

Keywords: HTTP, JSON, OAuth 2.0, REST, RMM, RPC, SOA,

URI, Web API, XML.

1. Introduction

Even before the adoption of REST services, the internet just

started to arise and was becoming popular. That was when

Yahoo and Hotmail were some popular mail and social

messaging apps, and the integration with web applications was

difficult. APIs are the pragmatic access to the data and systems.

It is an interface defined by the user to data and system that is

consumed by the applications [3]. The web services that was

the RPC over the internet or world wide web. In 2000, in the

Architectural Styles and the Design of Network-Based

Software Architectures by Roy Fielding [4], he came up with

the concept of REST. The building of web services using XML

over HTTP (plain old XML) were some earlier concepts.

In the REST makes the work easy on top of HTTP, which

enables it to be used all over the web and in internal networks.

It is basically an architectural style and not a programming

language or technology. It also provides guidelines for

distributed systems to communicate directly using the existing

principles. The protocols to create web services and APIs, with

no need for SOAP or others is used to integrate the business

logic around operating systems and servers.

The API value chain comprises assets, API, application

development, applications and ultimately the end users that are

the customers. It is the three types of value chains- customer,

partner and company. Internet of Things also commonly called

as IoT solutions also fall within this group of APIs. By creating

internal API catalogs, organizations have a leverage of

documenting applications and service interface leading to better

API consumption and API integration [5].

The motivation of this paper is to study the modern

architecture, development and design of the RESTful APIs. To

expose their assets to their partners and/ or the public domain

developers by building internal applications for either a web

server or a web browser. There are many categories of APIs-

SOAP, XML-RPC, JSON-RPC, REST and so on. The paper

discusses the designing of the REST API. It explores more on

the design rulebook and the formatting and versioning. API is

the basis of all the development of multi-platform applications

that run over the web. Prior research questions the study of

REST and its evolution since the time being. The goal of this

research paper is to develop and analyze web services using the

RESTful architectural style.

2. Evolution of REST/JSON API

The service oriented architectural style is a set of principles,

methods and procedures, not a technology or a programming

language. Its principal aim is to develop a software application

[2]. The architecture comprises service broker, service provider

and service requester which are arranged in a cyclic format. The

Web Service Description Language (WSDL) is the language

that connects in between the service broker and service

provider. It is written in XML and used in describing the web

services. These descriptions thereby include location of

services and its methodologies. The Universal Description,

Discovery, and Integration or UDDI is used for specification

for a distributed registry of web services. UDDI is a platform

for independent language and an open framework. It can also

communicates through various protocols like CORBA, SOAP,

Java RMI Protocol, etc. UDDI uses WSDL to describe

interfaces to web services [5].

Fig. 1. Web API [2]

The RPC developed in 1991 used Common Object Broker

Architecture (CORBA), and the mechanism supported multi

Evolution of Modern Web Services – REST API

with its Architecture and Design

Shweta Uttam Meshram*

Application Developer, EAI, IBM, Pune, India

S. U. Meshram et al. International Journal of Research in Engineering, Science and Management, VOL. 4, NO. 7, JULY 2021 84

languages. They were used for class applications and not for the

Internet. Later in 1998, the Simple Object Access Protocol

(SOAP) strengthened, which only used XML. It was very

complex protocol and difficult to use. It heavily depended on

message standard formats.

The Simple Object Access Protocol (SOAP) is based on the

Service Oriented Architecture. It supports the XML format,

while the protocol used here is SOAP/HTTP or SOAP/JMS. For

every operation here, a separate name is used. It is heavily

weighted and has a complicated setup. It uses both types of

communications-asynchronous and synchronous.

Asynchronous messaging is the callback without

acknowledgement. SOAP can be any of these two- stateful or

stateless. But mostly they are SOAP web services. Stateful are

the services in which server stores the data from the client side

and uses over a series of requests. Stateless is all about self-

contained state that does not depend on any external frame of

reference.

Fig. 2. Relationship of Web Services and SOA [6]

API are available on the client side and the server side as

well. At the client-side, they exposed the interfaces as browser

plugins or JavaScript. While at server-side, they exposed the

interfaces through the web as JSON or XML. In 2000, Jason

developed APIs and they standardized it in the year 2013. Soon

it became the first choice for formatting among API developers

that. They used mostly JSON. But they can use overall XML

and JSON. They used these for either a web server or for a web

browser [2].

HTTP REST follows restful design patterns. The architecture

style of REST allows any server to communicate with any other

server over the network. It simplified communication and made

integration easier. They made REST to work on top of HTTP,

which enabled it to be used all over the web and in internal

networks [5].

eBay was the organization first to bring out REST-based

APIs. Later, it introduced it with the selected partners in around

November 2000. Then, Amazon, Delicious and Flickr provided

REST-based APIs.

After that, social media platforms like Facebook, Twitter,

Google, and others started using it. Now, you will hardly find

any web application which is not developed using a REST API,

they are widely used in mobile applications and software

services.

3. RESTful Service Mandates

Given below is the figure showing the basic building blocks

of Resource Oriented Architecture (ROA) like resource,

resource provider, URI and much more.

Fig. 3. Resource Oriented Architecture [5]

The Representational State Transfer also called as is based

upon Resource Oriented Architecture. It supports many formats

like- XML, JSON, CSV, Plain, YMAL, etc. and follows a

simple set of design rules. It can use single URL for multiple

operations. The HTTP and URL collectively form a REST

service, but it is not the only way to make a service RESTful. It

is light weighted and easy to setup. It uses synchronous

communication and is stateless [7]. The architectural properties

of REST are as given: Testability, Modifiability, Performance,

Portability, Reliability, Simplicity, Visibility and Scalability

[10].

The question arises- What makes an API restful? As the

founder of the REST style, Roy enforced some REST

constraints that must be mandatory for any web service to be

exemplified as RESTful. These mandatory constraints are as

follows:

Client- server: The separation of concerns is the core theme

of the Web’s client-server constraints. The Web is nothing but

a client- server based system. The RESTful web services using

any language or technology, can be implemented and deployed

independently so that they can be conformed to the Web’s

uniform interface.

Statelessness: The interaction between the client and the

server side is stateless. No information is stored in the server.

This restriction is being stateless.

Cache: Caching is one in every of net architecture’s

maximum vital constraints. The cache constraints teach the

internet server of every reaction’s information. Caching

reaction information can assist to lessen client-perceived

latency, boom the general availability and reliability of an

application, and manage an internet server’s load. In a word,

caching reduces the general value of the Web.

Interface/uniform contract: Uniform Interface is the most

important constraint of all. It ensures that the internal

implementation details in the server for managing the resources

should not be visible to the clients. These must be hidden from

them.

Layered system: This constraint states that- without letting

the client know about it, the architecture of the server can be

layered. The server only interacts with client having deployed

S. U. Meshram et al. International Journal of Research in Engineering, Science and Management, VOL. 4, NO. 7, JULY 2021 85

only APIs on it. So, basically the client has no idea regarding

the storage, or its manipulation and authentication of the data.

This is used necessarily for the purpose of balancing the load.

Fig. 4. Layering [8]

Code on demand: This constraint is optional-- It is mostly on

you, whether to or not apply it or not. A REST constraint that

optionally allows a web server to exchange executable

packages to its clients on an as-needed foundation is known as

the code on demand.

The combination of an URL and HTTP method can be

RESTful or not, but it is always REST like. If these above rules

follow, then the web service is an HTTP REST API.

4. Richardson Maturity Model

The Richardson maturity model usually known as RMM is a

used as a measure of RESTful ness of architecture.

A score is assigned among zero and three. An API that

follows the rest constraints is at level 3, while the ones that

don’t are at level 0.

According to these 4 levels, level 0 use RPC. It is also known

as the swamps of POX. The API makes use of XML and HTTP,

however mostly HTTP GET method.

Level 1 comprises of only resources and URL, while it

represents the real-world objects.

Level 2 incorporates of a larger picture, together with

resources, URL and HTTP verbs or methods like GET, PUT,

POST, PATCH, etc. These methods are known as the CRUD

operations.

Lastly, level 3 comprises of the hypermedia control and

makes use of concept of HATEOAS [2].

The REST specification does now, no longer put in force a

excessive degree of restrict in phrases of ways developers and

designers build and design REST APIs. Speaking at Q Con in

2008, Leonard Richardson supplied his studies of reviewing

many REST APIs. Martin Fowler additionally included

Leonard Richardson’s adulthood version on his blog. The

version offers degrees of adoption that groups observe to

constructing APIs.

Hypermedia as the engine of Application State having an

acronym of HATEOAS, is one of the constraints within side the

REST API which maintains the fashion of the structure specific

from the opposite architectures of the community applications.

The 'H' in the HATEOAS denotes Hypermedia, may be any

content material that hyperlinks to the outside kinds of media

which include text, pictures, movies, etc.

Fig. 5. RMM [9]

While we attempt to visit any of the website, we are often

greeted by good enough variety of severe links that guides us to

dynamically discover exquisite moves and get proper access to

the links. Because of that, it makes easy for clients to now no

longer crack the hard code that the URI structures for these

resources. Thus, HATEOAS make the API interplay feasible

without tons of issues or any additional complications.

5. REST API Designing

The REST APIs are widely spread and are much popular, but

many of them follow a fixed design technique. This is due to

the fact that- these web services rival with competition and so

much of attention. For the sake of following the best practices,

these rules were proposed. There are certain rules to design

these API web services. Along with these rules for URI design,

there are guidelines provided for certain representational forms

too. These are made, keeping in consideration some web

standards. Mark Masse created a framework for these

implementations of REST APIs, which he called it as Web

Modeling Language, also called as WRML [2].

Implementing these designs is not as easy as the way it

seems. The tools and frameworks are continuously developing

and there is always a scope of improvement. It was suggested

that the frameworks for the APIs work in the similar fashion as

the web applications. Therefore, these could be casted from the

similar molds.

Firstly, we should not keep the base of the URL very

complex. The API endpoint here is the URL that comprise of

the base URL along with the grouping name i.e., package,

version, rest resource, and the resource id. Versions can be one

or multiple. They can also be switched and can be used on our

own accord.

We should not use the Web URL. The API, developer are the

ones that are commonly used for that.

Example 1: https://domain/product/version/resource/{id}

Where root URL - https://domain/product/version

Practices for resource name, actions, associations: The

resource names should be nouns and plurals are mostly

suggested. The actions can be given verbs [2].

Several HTTP operations that can be used for the RESTful

S. U. Meshram et al. International Journal of Research in Engineering, Science and Management, VOL. 4, NO. 7, JULY 2021 86

APIs. We must use the right method of HTTP operations.

Create, Retrieve, Update, Delete also called as CRUD practices,

are followed. The POST operation is used for Create, GET for

Retrieve, PUT for Update and DELETE is used for Delete in

CRUD.

API Data format: The format of the data should be anything

like-JSON, CSV or XML. It has the ability to support multi

formats, they mostly use query parameters, HTTP headers

and/or resource format suffix. It is a common misconception

that only JSON data format should be used, because today we

use it. But in future, other formats will also be used [10].

Use of proper HTTP codes:

The Internet Assigned Numbers Authority is the organization

that maintains the official registry of HTTP status codes.

Contract and Http status code: The 3-digit standard status

codes denote: 1xx – informational, 2xx –success, 3xx –

redirection, 4xx – client error and 5xx – Server error.

The status codes are categorized into five classes. The first

digit of the three numbered code defines the class of response.

The last two digits can be any number. It does not have any

categorizing role.

Fig. 6. HTTP status codes [12]

Versioning: Versioning is a crucial part in the development

web services. Organizations develop different versions after a

certain interval of time. These are named like-

One of the examples is- /v1/products; /v2/products, and so

on. Also, versioning can be done by using dots such as, v2.3,

v4.5, etc.

URIs: The Uniform Resource Identifiers (URIs) are used by

the REST APIs to address resources. It is unique set of

sequences of characters used by the various web technologies.

It is basically a means of identifying a resource. URI designs

can be the masterpieces that communicates with the API’s

resource model like:

http://api.example.restapi.org/India/Agra/Taj-Mahal/Shah-

Jahan

Then people who understand like:

http://api.example.restapi.org/6578h-g6j6-j8i8-7h3g-

7h7789e3245

The URI has a fixed format often called as the URI Format.

The generic URI syntax defined by RFC 3986[19] as shown

below:

URI = scheme"://"authority"/" path["?" query]["#"fragment]

Thus, a URI identifies a resource, impartial of the model of

its representational shape and state. REST APIs must preserve

a steady mapping of its URIs to its conceptually steady

resources. A REST API must introduce a brand, new URI best

if it intends to reveal a new concept [7].

6. Conclusion

Although the implementation REST API designs is harder,

there is still room for improvement. Many developers use the

REST API development frameworks that were originally

created for building web applications. The selection of a

particular APIs is solely personal or organizational preference

depending upon the programming language and platform.

Unfortunately, many current REST API frameworks lack

direct support for-- Natural separation of the resource model,

Uniform, cross-format hypermedia structures, HATEOAS,

schema validation and versioning, Integration and much more.

The RESTful services are very useful because you do not tie

your API to the client-side technology. It can be used over

nearly any protocol, thus making it more portable and flexible.

References

[1] Pawan Kumar Bhat and Rajnish Kansal, “Development of RESTful

WebAPI using Token based OAuth 2.0 Authorization”.
[2] Harihara Subramanian and Pethuru Raj Harihara, “Hands-On RESTful

API Design Patterns and Best Practices.”

[3] James Gough, Daniel Bryant and Matthew Auburn, “Mastering API
Architecture” in O'Reilly Media, Inc., 2022

[4] “https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm)”

[5] Sourabh Sharma, “Modern API Development with Spring and Spring
Bootby”.

[6] PPT - Web Services and Their Protocol Stack PowerPoint Presentation,

free download - ID:409440 (slideserve.com)
[7] Leonard Richardson co-authored the milestone book, “RESTful Web

Services (O’Reilly)”.
[8] Aloi, “REST APIs Overview (for a non-technical and novice users) “
[9] PPT - Is your web API truly RESTful? Josef Hammer CERN PowerPoint

Presentation - ID:2480632 (slideserve.com)
[10] Fernando Doglio, “REST API Development with Node: Manage and

Understand the Full Capabilities of Successful REST Development.”
[11] http://www.json.org

[12] HTTP status codes with explanation, Job and Interview Preparation
(careerguroo.blogspot.com).

https://learning.oreilly.com/search/?query=author%3A%22Harihara%20Subramanian%22&sort=relevance&highlight=true
https://learning.oreilly.com/search/?query=author%3A%22Pethuru%20Raj%22&sort=relevance&highlight=true
https://learning.oreilly.com/library/view/mastering-api-architecture/9781492090625/
https://learning.oreilly.com/library/view/mastering-api-architecture/9781492090625/
https://learning.oreilly.com/library/publisher/oreilly-media-inc/
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://learning.oreilly.com/library/view/modern-api-development/9781800562479/
https://learning.oreilly.com/library/view/modern-api-development/9781800562479/
https://www.slideserve.com/paco/web-services-and-their-protocol-stack
https://www.slideserve.com/paco/web-services-and-their-protocol-stack
http://oreilly.com/catalog/9780596529260
http://oreilly.com/catalog/9780596529260
https://www.aloi.io/api/rest/
https://www.slideserve.com/alaric/is-your-web-api-truly-restful-and-does-it-matter-josef-hammer-cern
https://www.slideserve.com/alaric/is-your-web-api-truly-restful-and-does-it-matter-josef-hammer-cern
https://learning.oreilly.com/search/?query=author%3A%22Fernando%20Doglio%22&sort=relevance&highlight=true
http://www.json.org/
https://careerguroo.blogspot.com/2015/10/http-status-codes-with-explanation.html
https://careerguroo.blogspot.com/2015/10/http-status-codes-with-explanation.html

