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Abstract: In most experimental investigations, the 

accelerometer mass effect is neglected since the accelerometer 

mass is small in comparison to the mass of the test construction. 

When a lightweight construction is examined, however, this 

impact is noticeable. The goal of this research is to see how mass 

affects thin plate vibration. The characteristics of interest were the 

natural frequency and its associated mode shape. Using finite 

element analysis, the thin plate simply supported boundary 

condition was studied. The mass was added to the plate and 

distinct sites were chosen for mounting. The mass has a 

considerable influence on certain of the structure's modes, while it 

has no effect on others, according to the findings. The mass, which 

was placed at the plate's highest deflection point, revealed 

significant variations in natural frequencies and their associated 

mode shapes. For the mass mounted at the nodal line of the specific 

mode, there are no notable changes in natural frequency or mode 

shapes. The influence of mass is found to be dependent on the 

position of the mass, the vibration mode, and the magnitude of the 

mass. 

 

Keywords: ANSYS, mode shape, natural frequency, finite 

element method. 

1. Introduction 

Machineries nowadays are considerably larger and better 

than in the past, allowing for quicker and broader performances, 

which emphasizes the necessity of analyzing vibrations 

generated by these machines. A machine on a large floor 

functions in the same way as a concentrated point mass on a 

plate does. Furthermore, the machinery must be mounted on a 

plate for a variety of practical reasons. Because of the quantity 

of single concentrated point mass, its location, or numerous 

concentrated point masses and their positions, these natural 

frequencies of a plate might alter depending on the boundary 

circumstances. These frequency changes in different modes are 

now crucial to know for engineering design in order to avoid 

plate resonance. Lighter structures are ones that use significant 

deflection to increase the load bearing capacity of the 

components, allowing the load to be carried largely in tension. 

The form of the structure is dictated by the applied load, which 

is calculated by an optimization procedure. Cable, membrane,  

 

shell, thin plate, and folded structures are examples of 

lightweight structures. Because the extra mass puts an 

additional load to the structure, transducer effects on a structure 

are also known as "mass loading." Several authors [1]-[4] 

Addressed and examined several approaches for analyzing 

linear and nonlinear vibrations of plates with various geometry 

and boundary conditions. The free vibrations of a plate with a 

single lumped mass attachment were studied by Cha et al. [5]. 

They assumed that the structure was linear elastic and that the 

boundary conditions were simply supported. The frequencies of 

a plate stiffened by any number of arbitrarily dimensioned and 

directed rectangular beams were studied by Xu et al. in [6]. 

Using various approaches such as the precise solution [7-8], 

some studies investigated the free vibration of rectangular 

plates with an elastic or rigid single concentrated mass 

connected to the plate. The aim of this paper is to find out the 

effects on natural frequencies of a mass attachment at an 

arbitrary location in a thin aluminum alloy simply supported 

plate. For the investigation of dynamic characteristics, a 

numerical approach is considered and ANSYS Workbench 

software is used. 

2. Finite Element Analysis Using ANSYS 

Finite element techniques are currently widely utilized in 

engineering analysis, and their use is expected to grow 

considerably in the next years. Finite element methods are used 

widely in the study of solids and structures, as well as heat 

transport and fluids, and are helpful in nearly every aspect of 

engineering analysis. A three-dimensional model of a thin 

aluminum alloy plate (Fig. 1) having dimensions 

2000×1000×10 mm is developed in a design modular ANSYS 

workbench.  

The plate is made up of aluminum alloy having density of 

2770 Kg/m3 and Young's modulus 71GPa. The mass of the plate 

is 55.4 Kg and an additional point mass of 5 Kg is attached to 

the plate at arbitrary locations to find out the effects on natural 

frequencies. Now the model is meshed with Hex20 type 

element and meshed model is shown in (Fig. 2). The total 
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number of nodes and elements are 23003 and 3200 respectively. 

The simply supported boundary conditions are applied to the 

plate and 5 Kg of additional point mass attached at desired 

locations. Finally, the natural frequencies of plates are obtained 

in Hz. 

 

 
Fig. 1.  3D plate model 

 

 
 Fig. 2.  Mesh model 

3. Results and Discussion  

Case I: The natural frequencies of plate without adding mass 

for five different modes are shown in Table 1. Mode shapes of 

plate are shown in (Fig. 3, 4, 5).  

 
Table 1 

Natural frequencies of plate without adding mass 

MODE SHAPE FREQUENCY (Hz) 

1 30.337 

2 48.481 

3 78.799 

4 103.220 

5 121.270 

 

 
Fig. 3.  Mode 1 

 

 
Fig. 4.  Mode 2 

 

 
Fig. 5.  Mode 3    

 

 Case II: The natural frequencies of plate after adding 5 Kg 

mass at plate midpoint (500, 1000) mm for five different modes 

are shown in Table 2. Mode shapes of plate after adding mass 

are shown in (Fig. 6, 7, 8).  

 
Table 2 

Natural frequencies of plate after adding mass at midpoint. 

MODE SHAPE FREQUENCY (Hz) 

1 25.746 

2 48.479 

3 69.249 

4 103.210 

5 121.250 

 

 
Fig. 6.  Mode 1       

                                            

 
Fig. 7.  Mode 2 
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Fig. 8.  Mode 3  

 

 Case III: The natural frequencies of plate after adding 5 Kg 

mass at point (250, 500) mm on the plate for five different 

modes are shown in Table 3. Mode shapes of plate after adding 

mass are shown in (Fig. 9, 10, 11).  

 
Table 3 

Natural frequencies of plate after adding mass at point (250, 500) 

MODE SHAPE FREQUENCY (Hz) 

1 28.784 

2 44.720 

3 74.442 

4 92.547 

5 111.690 

 

 
Fig. 9.  Mode 1 

 

 
Fig. 10.  Mode 2 

 

  
Fig. 11.  Mode 3 

 

Case IV: The natural frequencies of plate after adding 5 Kg 

mass at point (750, 1500) mm on the plate for five different 

modes are shown in Table 4. Mode shapes of plate after adding 

mass are shown in (Fig. 12, 13, 14).  
 

Table 4 

Natural frequencies of plate after adding mass at point (750, 1500) 

MODE SHAPE FREQUENCY (Hz) 

1 28.784 

2 44.720 

3 74.442 

4 92.547 

5 111.690 

 

 
Fig. 12.  Mode 1 

 

 
                                              Fig. 13.  Mode 2       

 

  
Fig. 14.  Mode 3 

 

 Case V: The natural frequencies of plate after adding 5 Kg 

mass at point (1000, 2000) mm on the plate for five different 

modes are shown in Table 5. Mode shapes of plate after adding 

mass are shown in (Fig. 15, 16, 17).  

 
Table 5 

Natural frequencies of plate after adding mass at point (1000, 2000) 

MODE SHAPE FREQUENCY (Hz) 

1 30.337 

2 48.481 

3 78.799 

4 103.220 

5 121.270 
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            Fig. 15.  Mode 1       

                                              

 
Fig. 16.  Mode 2 

 

 
Fig. 17.  Mode 3 

4. Conclusion 

The goal of this research was to look at the influence of mass 

on thin plate vibration, using natural frequencies and their 

corresponding mode shapes as the main variables. The findings 

showed that the mass affects certain of a structure's modes 

while leaving others unaffected. The natural frequency varies 

more when a mass is connected near the antinode. As a result, 

the mode forms for that mode have changed significantly. 

However, numerical findings indicated that when a mass is 

mounted near a nodal line of a particular mode of the structure, 

the natural frequencies of the mode stay constant. As a result, 

there are no major changes in mode form at this mode. 
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