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Abstract: This paper illustrates a comprehensive approach to 

provide step by step explanation of the structure of a linear system, 

Cramer’s rule and the application of determinant technique 

towards elimination of the unknown variables in a homogeneous 

linear system.  
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1. Introduction 

It is often required to eliminate unknown variables from a 

system of linear equations. Although it is not a major issue, if 

number of unknown is two when Classical Algebra is used. 

However, in this method, significant calculation load is 

observed when the number of unknown is three or more. So 

there was a need to develop a shortcut to faster the process of 

elimination. We are going to use Linear Algebra to achieve the 

same.  

 

2.  Development 

For better understanding let’s start with a linear system of order 

22  and then upgrade to a higher order system i.e., 33  or 

more. 

 

System of linear equations with two variables x and y: 

 

111 cybxa  …………(1) 

222 cybxa  ………..(2) 

  

Using Linear Algebra, (1) and (2) together can be written as 
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B  are three matrices. 

 

Note that (3) is a matrix equation. Very interestingly 
12X  is the 

only unknown matrix. Whereas 22A  and 12B  are known 

matrices. When we try to solve this linear system, in fact, we 

attempt to solve the matrix 12X .  

 

The determinant of the matrix 22A is given by 
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Multiplying (4) by x, we get 
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Further multiplying (5) by y, we get 
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Applying Column Transformation, we get 
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Similarly multiplying (4) by y, we get 
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Further multiplying (8) by x, we get 
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Applying Column Transformation, we get 
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Combining (7) and (10), we get 




 xx , 


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y
y ………..(11) 

Result (11) gives the solution of a 22  linear system. It is 

called Cramer’s Rule. 

 

Note:  

(i) If 01 c  and 02 c  , then the system is called a 22  

homogeneous system. 

 

(ii) A 22  homogeneous system is expressed as   
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(iii) Homogeneous system must have at least one solution. If 

satisfied by (0,0) only and nothing else, the system is said 

to have a trivial solution. Whereas if satisfied by infinitely 

many solutions including (0,0), the system is said to have 

non-trivial solutions. 

 

(iv) For non-trivial solutions, 0 yx . 

 

(v) If the linear system has infinitely many solutions, that 

means there exist infinite number of ordered pairs of real 

numbers (x, y)  satisfying the linear system.  

 

(vi) For a homogeneous system,  
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       So the system will have a trivial solution i.e., satisfied by    

   (0,0) only, if 0 . Whereas the solutions are non-trivial,    

   if 0 . 

 

Application:  

Eliminate x and y from the following system. 
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Sol. 

It is a 22  homogeneous system. Therefore we can eliminate 

x and y from the given linear system if and only if there exist 

solutions other than (0,0). Then the system should have non-

trivial solutions. Then 0 . 
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System of linear equations with three variables x , y and z: 

 

1111 dzcybxa  ………(12) 

2222 dzcybxa  ……….(13) 

3333 dzcybxa  ………..(14) 

 

Using Linear Algebra, (12), (13)  and (14) together can be 

written as 
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131333 .   BXA ………..(15) 
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Note that (15) is a matrix equation. Very interestingly 
13X  is 

the only unknown matrix. Whereas 
33A  and 

13B  are known 

matrices. When we try to solve this linear system, in fact, you 

attempt to solve the matrix 
13X .  

 

The determinant of the matrix 33A is given by 
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Multiplying (16) by x, we get 
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Further multiplying (17) by yz, we get 
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Applying Column Transformation, we get 
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Similarly multiplying (16) by y, we get 
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Further multiplying (20) by zx, we get 
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Applying Column Transformation, we get
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Similarly multiplying (16) by z, we get 
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Further multiplying (23) by xy, we get 
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Applying Column Transformation, we get 
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Combining (19), (22) and (25), we get 
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Result (26) gives the solution of a 33  linear system. It is 

called Cramer’s Rule. 

Note:  

(i) If 01 c , 02 c  and 03 c  , then the system is called 

a 33  homogeneous system. 

 

(ii) A 33  homogeneous system is expressed as   
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(iii) Homogeneous system must have at least one solution. If 

satisfied by (0,0,0) only and nothing else, the system is said 

to have a trivial solution. Whereas if satisfied by infinitely 

many solutions including (0,0,0), the system is said to have 

non-trivial solutions. 

 

(iv) For non-trivial solutions, 0 zyx
. 

 

(v) If the linear system has infinitely many solutions, that 

means there exist infinite number of ordered triplets of real 

numbers (x, y, z) satisfying the linear system.  

 

(vi) For a homogeneous system,  
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       So the system will have a trivial solution i.e., satisfied by    

   (0,0,0) only, if 0 . Whereas the solutions are non- 

   trivial, if 0 . 

 

Application: 

Eliminate x, y and z from the following system. 
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Sol. 

It is a 33  homogeneous system. Therefore, we can eliminate 

x, y and z from the given linear system if and only if there exist 

solutions other than (0,0,0). Then the system should have non-

trivial solutions. Then 0 . 



K. Roy et al.                                                             International Journal of Research in Engineering, Science and Management, VOL. 4, NO. 7, JULY 2021 9 

0

333

222

111



cba

cba

cba

. 

 

 

System of linear equations with n number of variables 

1321 .......,,,, nxxxx  and nx : 

 

11313212111 .........  nnxaxaxaxa  

22323222121 .........  nnxaxaxaxa  

33333232131 .........  nnxaxaxaxa  

.....................................  

nnnnnnn xaxaxaxa  .........332211  

 

This system is homogeneous when 01  , 02  , 03  , 

………. and 0n . Like a 22  or a 33  homogeneous 

systems, an nn  homogeneous system will also have a trivial 

solution i.e., satisfied by (0,0,0,………,0) only and nothing 

else, if  0 . Whereas the solutions are non-trivial, if 0  
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Application: 

Eliminate 1321 .......,,,, nxxxx  and  nx  from the following 

system. 

0......... 1313212111  nn xaxaxaxa  

0......... 2323222121  nn xaxaxaxa

0......... 3333232131  nn xaxaxaxa  

.....................................  

0.........332211  nnnnnn xaxaxaxa  

 

Sol. 

It is a nn  homogeneous system. Therefore we can eliminate 

1321 .......,,,, nxxxx  and  nx  from the given linear system if 

and only if there exist solutions other than (0,0,0,….,0). Then 

the system should have non-trivial solutions. Then 0 . 
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