
International Journal of Research in Engineering, Science and Management  

Volume 4, Issue 6, June 2021 

https://www.ijresm.com | ISSN (Online): 2581-5792 
 

 

*Corresponding author: rakhi.parashar@accenture.com 

 

 

271 

 

Abstract: Continuous Integration and Continuous Deployment 

is two very important practices in DevOps. Continuous 

Integration (CI) is a key player during Agile Development and 

DevOps processes. Here, Dedicated User stories is assigned, and 

respective builds developed by different developers (under a 

regular development environment) and tasks of other teams are 

delivered commonly to a team build server. All the individual 

work is then integrated in a common build area to form an 

integration single build. The process then moves across higher 

environment build server and then applied system-wide or 

application-wide i.e. in Production Environment. This way the 

continuous integrations are done, and builds happen, making the 

Continuous Integration pipeline implemented. Continuous 

Integration (CI) is considered as a key practice in SDLC (Software 

Development Life Cycle’s), where software changes (CRs/user 

stories/tasks) are implemented in isolation, tested immediately and 

reported when they are added to a larger code base. The objective 

of CI is to ensure timely detection of errors/bugs/defects reported 

during the product lifecycle, address them and provide feedback 

to correct the same. Thus, DevOps lifts deployment more 

frequently and provides more opportunities to re-assess the 

delivery process, via automation, effective testing and monitoring 

strategy. DevOps CICD practices provide valuable data for CI 

(Continuous Improvement) around monitoring and metrics. 

Ideally CI must be a part of every DevOps process, irrespective of 

organizational scale or size, and should certainly be driven by a 

solid Quality Assurance (QA) strategy. Moving on to Continuous 

Delivery (CD), DevOps relation with the CD pipeline spins around 

the new features that developers work with and those released to 

customers, in a timely manner. All the builds that pass-through 

QA need not go into production. Only those with functional 

stability can be moved to production environment and will then 

become ‘production-ready’ before staging. This Best practice of 

regular delivery of applications (under development environment) 

to QA and Operations for validation, and potential release to 

clients is known as a Continuous Delivery (CD).  

 

Keywords: Continuous Integration and Continuous Deployment 

(CICD), DevOps, SDLC, Agile. 

1. Introduction 

We are in Digital World and Speed always wins in Digital 

Revolution, each and every enterprise needs to move faster and 

more flexibly in application development, testing and QA to 

keep up with the Client’s demand and expectation and be 

competitive in the market. Hence this requires integrating the 

tasks done by their development and QA teams and reducing 

manual processes wherever possible and automate most of 

them. This new way of working can effectively improve 

Employee’s productivity, bring new revenue networks and  

 

customer satisfaction. Continuous Integration (CI) and 

Continuous Delivery (CD) are discipline and implemented as a 

practice by agile organizations to speed their development and 

test processes to meet the new business demands. The benefits 

of this approach include reduced time, risk, and expense of 

software delivery. This paper looks at the benefits of CI and CD 

together and the requirements for effectively deploying these 

practices in IT organization. 

2. Literature Review 

A. Continuous Integration and Delivery (CI/CD) 

Continuous Integration (CI) is a development practice that 

requires developers to integrate i.e. merge their code changes 

into a shared version controlling repository several times a day. 

Each check-in done by developer is then verified by an 

automated build, allowing teams to detect problems 

early.CI/CD is a set of software practices and techniques that 

enable the frequent releases of small sets of feature changes, the 

process is visible to everyone and also traceable. It involves the 

making of a largely automated pipeline that orchestrates the 

build, test and deployment of software across staged 

environments, ultimately leading to deployment in production. 

Traditionally, developers used to build the application 

features in silos and submitted them separately. This new CI 

way has completely changed how developers work and share 

their code changes with the master branch. With CI, the 

developers frequently integrate the code changes into a central 

version controlling repository several times a day. As a result, 

merging the different code changes becomes easier and is also 

less time-consuming. Integration bugs can be detected and 

resolved early. 

Continuous delivery (CD) is about incremental delivery of 

updates/software changes to production. It serves as an 

extension to CI; CD enables automation our entire software 

release process. It widens our horizon and allows you to look 

beyond just the unit tests and perform other tests such as 

integration tests, functional tests, performance tests, security 

tests, UI tests, etc... This upshot the developers to perform a 

more complete validation on updates to ensure bug-free 

deployment. With CD implemented we can have frequent 

releases of new features, which boosts the customer feedback, 

and also will have healthier customer involvement. Hence, 

CI/CD serve as cornerstones to any DevOps pipeline. 

 

Path to Success with CICD Pipeline Delivery 

Rakhi Parashar* 

Tech Arch Delivery Team Lead, LKM Intelligent Platforms Delivery, Accenture, Mumbai, India 



R. Parashar et al.                                                       International Journal of Research in Engineering, Science and Management, VOL. 4, NO. 6, JUNE 2021 272 

 
Fig. 1.  CICD Pipeline 

3. Benefits of CI/CD 

CI/CD offers many significant benefits across SDCL in the 

IT organizations as below: 

 Rapid identification and resolution of defects. 

 Reduced overhead costs. 

 Improved quality assurance. 

 Assumptions can be reduced. 

 Speed to market. 

 Software health can be tracked. 

 Better project process visibility. 

 Core to Business Agility. 

A. CI/CD Tool Landscape 

There are excess of tools that can add value to your CI/CD 

pipeline but selecting the right tool and getting them integrated 

and working together requires time, good planning, and 

specialized expertise. 

4. Continuous Delivery Impacts Entire SDLC – Leads to 

New Role Requirements and Ownerships 

CI/CD impacts across the entire software development 

lifecycle i.e. to all the stages of SDLC. Following this approach 

in IT organization has created new Job Role (CICD Engineer, 

DevOps Engineer, DevOps Architect/DevOps Lead Engineer, 

etc...) compared to traditional roles we had earlier e.g. 

developer/tester/QA. As a result, it is very important to define 

roles and responsibilities clearly to avoid misunderstanding and 

accountability gaps. 

5. CI/CD Design Principles 

Assurance to success is CI/CD Best design practices and 

tools. Selection of right tool weather it for Build phase, testing, 

deployment/infrastructure/Monitoring phase of SDLC, it is key 

step to accelerate the CICD process. Below are the design 

principles for CICD: 

CI/CD Design Principles: 

 Self Service - Speed to adoption 

 Best-practice - One Standard 

 Configurable Technology Integration - Separation of 

concern 

Table 1 
DevOps Tools RoadMap 

Requirement 

Gathering 

Plan/ 

Analyze/ 

Design 

Development/Coding/ 

Implementation 
Build 

Artifacts 

Management 

Repos 

Testing 
Create Environment/ 

Deployment 

Support/ 

Maintenance/ 

Monitoring 

JIRA Microsoft 

SCM Tools: Git, SVN, CVS, 

Mercurial, Bazaar, Bitkeeper, 

etc. 

Maven Nexus Junit Shell Scripts 

AWS Services 

like Cloud 

Watch, SNS 

TFS Draw.io  Gradle 
JFrog 

Artifactory 
Jmeter 

Mutable Type of Infra:  
Chef, Ansible, Puppet, 

Saltstack, opscode, 

Terraform, etc.. 

ELK, EFK 

HP ALM  

Cloud/Server/Host based 

Repository: Github, 

Bitbucket, Gerrit, Gitlab,  
Code Commit service of 

AWS, etc.. 

Ant Gemfury TestNG 

Immutable Type of 
Infra: Docker 

Containers, OpenShift, 

Kubernetes,etc.. 

Grafana, 

Prometheus and 
cAdvisor 

Rally   MSBuild archiva Selenium  AppDynamics 

Pivotal Tracker   Make  
Load 
Runner 

 Splunk 

ColabNet     Cucumber   

 

Continuous Integration Tool/Orchestration: Jenkins, Bamboo, Teamcity, Gitlab, Bamboo, Continuum, etc.. 

 
Table 2 

CICD Roles and Required Skillsets 

CI/CD Roles Required Skillsets 

 No automated builds or automated tests in place, we 
have work with Engineering and QA to define them.  

 Help IT setup, CICD pipeline setup and plan, design 

and execute application and server 
maintenance/monitoring.  

 Writing pipeline as code i.e. jenkinsfile. Groovy e jenkinsfile, Groovy 
scripting. VM Configurations. Understanding of software execution 

workflow configurations and dependency managements. 

 Jenkins associated plug-ins and their usages. Different types of testing 
automations. 

 Learn how to write .YML files which help in write configurations Gitlab i.e. 

.gitlab-ci.yml. 

 



R. Parashar et al.                                                       International Journal of Research in Engineering, Science and Management, VOL. 4, NO. 6, JUNE 2021 273 

 Flexible Process - Separation of concern, Continuity 

 Extensible - Best-of-breed, Inclusion, Innovation 

 Cloud Ready/Elastic 

 HA/DR – Fidelity 

6. Conclusion 

In this research path of CICD we are highlighting popular CI 

tools like Jenkins, Bamboo, Teamcity, Gitlab. Jenkins and 

Gitlab are open source tools whereas we need to buy license for 

Bamboo and Teamcity. To implement CICD pipelines in 

Jenkins, you can configure Jobs manually first for Build, Test 

and Deploy and then create a pipeline from those Jobs. To 

eradicate this manual effort, we can write Pipeline as code using 

Jenkinsfile which can contain Pipeline Flow script for all the 

stages of you SDLC. This will help in managing and running 

jobs or pipeline for multiples source repositories and multi-

branch also. Jenkins offer 3 ways to automate this process: 1. 

Declarative Pipline 2. Scripted Pipline 3. Pipeline via 

Jenkinsfile script. Groovy language knowledge helps in writing 

these Pipeline as Code. Alternate to Jenkins we have another 

tool as Gitlab. Gitlab offers many features like: 1. Synchronize 

collaborations with Plan i.e. Jira like features for tracing all 

Issues/CRs/User Stories. 2. Build better code and branch 

powerfully with Create i.e. It has Web IDE to write the code 

and file synching to web terminal which helps test code changes 

in a preconfigured terminal environment and Design 

Management.3. Build and share packages in Package 

Managers. 4. Continous delivery in simpler with Release i.e. 

CICD Pipeline via writing the code in .gitlab-ci.yml, Auto 

DevOps. 5. Support for multiple Kubernetes clusters i.e. Easily 

deploy your applications to different environments like 

Dev,Test,Staging,QA and Production to different Kubernetes 

clusters.6. Network policies for container network security. 

Gitlab is a one stop solution for all tools as mentioned above in 

DevOps Tools Roadmap. Gitlab is limitless and is a treat for all 

users as a single application for entire DevOps lifecycle.  

References 

[1] https://www.infostretch.com/resources/white-papers/continuous-
integration-and-delivery/  

[2] https://www.veritis.com/wp-content/uploads/2016/09/devops-a-success-

ful-path-to-continuous-integration-and-continuous-delivery-white-
paper.pdf 

[3] https://www.plutora.com/devops-at-scale/pipeline 

[4] https://www.linkedin.com/pulse/15-ultimate-devops-quotes-digital-
transformation-pavan-belagatti/ 

[5] https://www3.dbmaestro.com/blog/18-great-devops-quotes.  
[6] https://about.gitlab.com/blog/2020/03/30/new-features-to-core/ 

[7] https://medium.com/faun/most-popular-ci-cd-pipelines-and-tools-

ccfdce429867

 

 

 


