

HAZOP Study of Mounded LPG Tank

Sachin Surawase^{1*}, Jaykant Gupta²

¹Student, Department of Mechanical Engineering, Bhilai Institute of Technology, Raipur, India ²Associate Professor, Department of Mechanical Engineering, Bhilai Institute of Technology, Raipur, India

Abstract: Hazard and Operability Analysis (HAZOP) is a structured and systematic technique for system examination and risk management. In particular, HAZOP is often used as a technique for identifying potential hazards in a system and identifying operability problems likely to lead to nonconforming products. HAZOP is based on a theory that assumes risk events are caused by deviations from design or operating intentions. Identification of such deviations is facilitated by using sets of "guide words" as a systematic list of deviation perspectives. This approach is a unique feature of the HAZOP methodology that helps stimulate the imagination of team members when exploring potential deviations.

Keywords: hazard and operability analysis, refinery, hazard identification and risk analysis, code of practice.

1. Introduction

In refinery as well as in petrochemical industry safety of the plants primarily relies on the application of various codes of practice or design, which are based upon the wide experience and knowledge of professional experts and specialists in the industry. This will be also supported by the experience of local plant managers, engineers and operators who have direct experience in the relevant plant operation. In all new projects, and in some cases modifications to existing plants, embody some element of change and the degree of change is often considerable.

Hazard and Operability Study (HAZOP) defined as: A hazard is any object or operation that could possibly cause an accident or accidental release of toxic, flammable or explosive chemicals that may injure humans or cause a loss of properties. Operability is the functionality that could possibly otherwise lead to a violation of environmental, health or safety regulations or negatively impact profitability if something went wrong.

In HAZOP studies Multi-disciplinary team using a structured approach systematically examines all relevant parts of a design. Throughout this examination procedure a full description of the process, analytically questions of every part is to be discover and decides whether these deviations can give rise to hazards or operational/maintenance problems.

Number of questions are formulated around the guidewords/deviations. The guidewords/deviations are used to confirm that the questions will discover ways in which the process could deviate from the design intent. In this study some

of the causes of a deviation may be unrealistic and derived consequences irrelevant, which are not to be considered further. There may be a deviation with both possible causes and potentially hazardous consequences. This HAZOP study identifies problem areas and does not seek engineering solutions.

2. Methodology

The methodology for the HAZOP was as adopted internationally as per guidelines of ICI, UK and CCPS, AICHE. Hazard and operability (HAZOP) study was undertaken by the application of a formal, systematic, and critical examination of the process and engineering intentions of process design. The potential for hazard was thus assessed and malfunctions of the individual items of equipment and the consequences for a whole system were identified. The examination of the design was structured around a specific set of guidewords, which ensure complete coverage of all possible problems while allowing sufficient flexibility for an imaginative approach.

Table 1				
Guide Word/Deviation used for HAZOP				
	Guide Word Code	No.		
	More Flow	01		
	Less / No Flow	02		
	Reverse Flow	03		
	Other Than Flow	04		
	High Pressure	05		
	Low Pressure	06		
	High Temperature	07		
	Low Temperature	08		
	High Level	09		
	Low Level	10		
	Composition	11		
	Startup / Shut down	12		
	Maintenance	13		
	Leakage/Rupture	14		
	Sampling	15		
	Corrosion / Erosion	16		
	Drawing Error	17		

The overall aims that a HAZOP study addresses are:

- i. To identify all deviations from the way the design is expected to work, their causes and all the hazards and operability problems associated with these deviations.
- ii. To decide whether action is required to control the

^{*}Corresponding author: sachinshiv205@gmail.com

hazard or the operability problem and if so to identify the ways in which the problems can be solved.

iii. To identify cases where a decision cannot be made immediately and to decide on what information or action is required.

3. General Recommendations

- 1. Need to conduct scheduled inspection and testing of Pressure Gauge, Safety Relief Valve (SRV) of compressor, of mounded tank to be carried out.
- 2. Need to conduct inspection and maintenance schedule for EFCVs and ROVs which is to be strictly followed.
- 3. Need periodic maintenance of Roto gauge to be carried out

 Table 2

 Summary of significant elements of the HAZOP study

Unit	Causes	Hazard	Consequences
Bullet	Overfilling	Release of	Jet fire / Flash
(Mounded	Pressure increase	pressurized LPG	fire
storage	in bullet	into atmosphere	
vessel)	Instrumentation		
	failure		
	Operator error		
	External fire		
	Corrosion		
Vapour &	Rupture of hose	Release of	Flashfire/
Liquid	Gasket failure	pressurized	Dispersion
Pipelines	Leak at flanges	LPG into	
	Wrong line-up	atmosphere	
	Non adherence to		
	SOP for sampling		

4. Conclusion

This paper presented an overview on HAZOP study of mounded LPG tank.

References

- [1] Hazard Identification and Risk Analysis-Code of Practice: IS 15656:2006
- [2] HAZOP Guide to Best Practice by EPSC
- [3] P&IDs of mounded LPG tank.