
International Journal of Research in Engineering, Science and Management

Volume 4, Issue 6, June 2021

https://www.ijresm.com | ISSN (Online): 2581-5792

*Corresponding author: kume.kazuhiko@gmail.com

200

Abstract: Human sleep is divided into rapid eye movement

(REM) sleep and non-REM (NREM) sleep, and sleep cycles

consisting of NREM sleep followed by REM sleep are a

fundamental unit of one-night sleep. Although sleep cycle

characteristics may have clinical significance, even qualitative

analysis, needless to say quantitative analysis is rarely performed

in routine polysomnography (PSG) examination. This is partly

because the actual hypnograms have many irregular transitions

between stages and appear different from the typical pattern. In

order to make the hypnogram simple and the visual judgement of

sleep cycle easy, we designed filters to process raw hypnogram

data into a simplified schematic one. One group of filters are

designed for smoothing the data, converting short intervening

protruding epochs into flat continuous stages. The other group of

filters bind two similar stages, namely NREM stage1 and 2, and

NREM stage3 and 4 into one category, respectively. With these

filters, the actual hypnograms are transformed into simplified

form, and it became easy for clinicians and patients to perceive the

sleep cycle properties. We applied the filters to publicly available

sleep stage data and confirmed their validity and efficiency.

Keywords: filter, polysomnography, python, sleep cycle, sleep

stage.

1. Introduction

Human sleep consists of rapid eye movement (REM) sleep

and non-REM (NREM) sleep, which was established in 1950’s

[1, 2]. Typical one-night sleep starts with NREM sleep followed

by REM sleep, and this sleep cycle repeats 4 to 5 times during

one night [3, 4]. One sleep cycle generally spans 70 - 100 min

for the first and 90 - 120 min for the second and subsequent

cycles [5].

The sleep cycle analysis has been regarded clinically

significant, but ordinary polysomnography (PSG) report does

not usually contain a sleep cycle analysis but shows only the

actual hypnogram. Therefore, clinicians and patients should

judge the properties of the sleep cycle only by its visual

appearance and do not usually quantitate the length of each

cycle.

However, the sleep cycle judgement from the hypnograms,

is sometimes tricky, especially for those patients with sleep

disorders such as sleep apnea syndrome. The hypnograms

sometimes contain the features such as frequent transitions

between different stages by short intervening epochs of

different stage from surrounding epochs, and short and

intermittent REM stage between the sleep cycles. Although

these features are important indicators of the quality of a

patient’s sleep, they may hinder the visual perception of sleep

cycles.

In this manuscript, we designed several filters to process the

raw sleep stage data into simple stage transition data, which

visually represents the underlining sleep cycle.

2. Methods

A. Dataset

Sleep-EDF Database Expanded [6], available online on

PhysioNet [7] was used for the analysis. The staging

hypnogram files data was exported by software Polyman to csv

files for further study. This research used only the Sleep

Cassette Study section, which contains 153 files from healthy

subjects.

B. Hardware and software environment

Computer: Windows 10 PC (i7 9700K/GeForce RTX2070

super/64 GB) with Anaconda Python 3.7.

3. Results

A. Smoothing filters

As a first step to process the sleep stage transition data, we

developed stepwise smoothing filters, as shown in Figure 1.

These filters detect a short intervening different stage during

prolonged stage. GetOnePoint filter detects 5 continuous

epochs, of which only one epoch at the center is different stage

from the rest of the other 4 epochs, and change it into the same

stage. This produces 5 continuous epochs of the same stage.

GetTwoPoint and GetThreePoint filters similarly detect, 6 and

7 epochs, of which only two and three epochs at the center are

different from the other 4 epochs and change them into the same

stage. Using these three filters stepwise, short stages spanning

only for 1 to 3 epochs are removed, and the transition number

significantly decreases.

Another two filters, GetOnePoint_f and GetTwoPoints_f, are

created also remove short stages between two different stages.

They detect one or two epochs different from both the preceding

and following stages. The filter name “_f” refers to those

Quantitative Analysis of the Human Sleep Cycle

Using Automatic Smoothing Filters

Tian Xiang Gao1, Yuka Nagao2, Kazuhiko Kume3*

1,2,3Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University,

Nagoya, Japan

T. X. Gao et al. International Journal of Research in Engineering, Science and Management, VOL. 4, NO. 6, JUNE 2021 201

epochs are changed and merged with the preceding (former)

stage.

Fig. 1. Smoothing filters

Each block represents an epoch of 30 s. The different colors

of the blocks represent the different sleep stages. The number

inside represents the sequential order of time of the epoch.

A. GetOnePoint filter, converts one different epoch into

the same stage surrounding it within 5 consecutive

epochs containing four epochs of one same stage.

B. GetTwoPoints filter, converts 2 different epochs into

the same stage surrounding them within 6 consecutive

epochs containing four epochs of one same stage.

C. GetThreePoints filter, converts 3 different epochs into

the same stage surrounding them within 7 consecutive

epochs containing four epochs of one same stage.

D. GetOnePoint_f filter, converts one different epoch into

the same stage preceding it within 4 consecutive epochs

containing 2 epochs of one same stage.

E. GetTwoPoints_f filter, converts two different epochs

into the same stage preceding them within 5

consecutive epochs containing 2 epochs of one same

stage.

B. Simplifying filters

The second step shown in figure 2, is just for the purpose of

simplifying the hypnogram. Four2Three filter converts NREM

stage4 into NREM stage3, so all the stage 3 and 4 are combined

into stage 3, which is regarded as deep sleep. This filter also

makes the data compatible with the contemporary sleep stage

classification, which abolished NREM stage 4. Two2One

changes NREM stage2 into NREM stage1, so all the stage 1 and

2 are combined into stage 1, which is regarded as shallow sleep.

With these filters, sleep stages are now only 4, namely wake,

REM, NREM stage 1 and 3. The final filter OneInThree

changes NREM stage1, which is found among NREM stage3

into NREM stage3. These filters enhance the separation of

shallow sleep (N1 to N2) and deep sleep (N3 to N4).

Fig. 2. Simplifying filters

Each circle represents epochs (one or more) of the designated

stage.

A. Four2Three filter, converts all NREM stage4

epochs into NREM stage 3.

B. Two2One filter, converts all NREM stage 2 into

NREM stage 1.

C. OneInThree filter, converts NREM stage 1 epochs

surrounded by NREM stage 3 epochs into NREM

stage 3.

C. Application of the filters to the actual sleep stage data

In order to confirm whether these filters work practically, we

used publicly available Sleep-EDF Database Expanded [6].

Figure 3 shows the actual transformation of the hypnogram

from the original to processed one by filters. At the first step,

we apply the Get_6 filter, which converts the movement times

into wake times to the original data (row1), so that all the

epochs are labelled as wake, NREM stage1 to 4 and REM

(row2). These two rows retain original sleep stage information

and shown in black lines. Then we applied the 5 smoothing

filters, GetOnePoint, GetTwoPoints, GetThreePoints,

T. X. Gao et al. International Journal of Research in Engineering, Science and Management, VOL. 4, NO. 6, JUNE 2021 202

GetOnePoint_f and GetTwoPoints_f, stepwisely, and the

results are shown in row3 to row 7 as blue lines. We then

applied 2 simplifying filters, Four2Three and Two2One filter,

to completely split the NREM to deep NREM sleep and light

NREM sleep. These two rows were represented in red. At the

last step, we applied the OneInThree filter and the previously

used filters, GetOnePoint, GetTwoPoints, GetThreePoints,

GetOnePoint_f and GetTwoPoints_f again to normalize the

transition pattern between deep NREM and shallow NREM

sleep. This row was just be processed by a combination of all

filters, so we represented it in purple. All the modified

hypnogram shown by the purple line is extremely simple. With

the help of modified hypnograms, we can easily figure out the

number of sleep cycles visually and the length of the cycle time.

Fig. 3. Application of the filters to EDF sleep dataset

A. Representative transformation process of a raw hypnogram

by the stepwise application of the filters. The data displayed

here is true_stageSC4071EC. The black hypnogram (row1

～2) is the raw data about the sleep stage. The blue

hypnogram(row3～7) are processed by smoothing filters

and the blue hypnograms (row8～9) are processed by

simplifying filters. The last purple hypnogram (row10) is

based on row9, but is processed by smoothing filters again.

B. A list of used filters for each row. One circle maker in one

cell indicates the filter is used once, and the double circles

maker means the filter was used twice.

D. Validation of filter function

Since the filters artificially change the sleep stage data, if the

degree of change is too big, they may induce erroneous

information to the original data. Therefore, we measured the

percentage of the changes to the original data by these filters,

by adding counter programs at each filter. Because the

simplifying filters are stage-specific, we excluded them from

this validation. The results are shown in Figure 4. The

combinations of the filter usage are the same as the table, which

is shown in Figure 3, row 2 to row 7. The counter recorded how

many times the filters were used. The upper panel in Figure 4A

shows the average, and the bottom plot shows the individual

subject data. Every line means a different subject, but they

exhibit the same trend with the filters processing. The effect is

most significant for the GetOnePoint filter, which changes only

one epoch among 5 same stage epoch. On average, the filters

changed less than 2 % of all data and thus reserves most of the

important information in the original data. Although the

individual differences are large, the overall trend is consistently

increasing and leveling off.

Fig. 4. Percentage of conversion by the filters

A. Average percentage of the number of epochs which were

converted into the different stage from the original

nomination.

B. Individual data of above. Each line represents one subject

data.

E. Sleep cycle analysis

In order to test our filters could help analyze the sleep cycle,

we developed a filter-based cycle detector program. This

program detects the start time of the whole night sleep, then

searches for the first REM stage and calculate the length of the

first sleep cycle. Next, it continues to search the next REM stage

and repeat the calculation of the length until it reaches the end

T. X. Gao et al. International Journal of Research in Engineering, Science and Management, VOL. 4, NO. 6, JUNE 2021 203

of the data. Figure 5 shows the calculated results of the average

lengths of each sleep cycle of all the subjects in the database.

Fig. 5. Sleep cycle length analysis

The average period length from cycle 1 to cycle 5 were

calculated based on filtered data. The values shown in the

histogram indicate the number of subjects used for each cycle.

4. Discussion

The filters we produced makes the hypnogram very simple

and make the sleep cycles easily visually perceptible. The

resulting transformed hypnogram still retains the important

information of sleep stages in the original data. The filters can

be used separately, therefore the users can use only part of them.

Since the simplifying filters remove the intermediate stage, i.e.

NREM stage2, it will sometimes be better to use only

smoothing filters. Actually, using only smoothing filters

resulted in the simple data sufficient enough to the visual

perception of sleep cycle (see row 7 of Figure 3).

We must point out that those features removed by the filters,

are significantly important, and they should not be ignored.

Therefore, the processed hypnograms using our filters will not

substitute the original hypnograms, but they should always be

used together with the originals. However, simplified version

not only facilitates the perception of sleep cycle, but also induce

interest in sleep cycle length itself.

Our purpose is to make the complex hypnogram as simply as

possible. The simple one can be used for further cycle analysis

or just make the people understand their sleep cycle pattern

clearly. Although the sleep cycle is known almost from the

beginning of contemporary sleep research, staging-specific

analysis is rare except for the initial studies. But with the

progress in the understanding of the nature of sleep through

recent advances in molecular biological research, more

quantitative analysis of sleep cycle may bring more insights into

our understating of the sleep itself.

PSG data are usually taken at the laboratory in the hospital

only for one or two nights, which limits the large-scale analysis

and the information about the difference both among individual

and within one individual is limited. With the growing

popularity of wearable devices, especially brainwave

measurement devices, it is reasonable to believe that people will

have many continuous hypnograms data in the near future. So,

at that time the shifting pattern in sleep cycle will be taken more

seriously than the abnormalities points in one-night sleep. We

believe our program provides an advantage for sleep cycle

analysis and help the accumulation of knowledge.

Author Contribution and Acknowledgement

TXG, YN, KK planned the project, collected and analyzed

data, TXG, KK wrote the manuscript. This work was performed

according to the standard research ethical consideration. The

authors declare no conflict of interest for this work. We are

grateful to the members of Kume lab for their valuable

comments and encouragements. This work was supported in

part by KAKENHI (JP18H02481) from Japan Society for the

Promotion of Science (JSPS).

References

[1] E. Aserinsky and N. Kleitman, “Regularly occurring periods of eye

motility, and concomitant phenomena, during sleep.,” Science. vol. 118,
no. 3062, pp. 273–4, 1953.

[2] W. Dement and N. Kleitman, “The relation of eye movements during

sleep to dream activity: an objective method for the study of dreaming.,”
J. Exp. Psychol. vol. 53, no. 5, pp. 339–46, 1957.

[3] H.P. Roffwarg, J.N. Muzio, and W.C. Dement, “Ontogenetic
development of the human sleep-dream cycle.,” Science. vol. 152, no.

3722, pp. 604–19, 1966.

[4] E. Hartmann, “The 90-minute sleep-dream cycle.,” Arch. Gen.
Psychiatry. vol. 18, no. 3, pp. 280–6, 1968.

[5] M.A. Carskadon and W.C. Dement, “Normal Human Sleep: An

Overview.,” In: M.H. Kryger, T. Roth, and W.C. Dement, Eds. Principles
and practice of sleep medicine (5th ed.), pp. 16–26, 2011.

[6] B. Kemp, A.H. Zwinderman, B. Tuk, H.A. Kamphuisen, and J.J. Oberyé,

“Analysis of a sleep-dependent neuronal feedback loop: the slow-wave
microcontinuity of the EEG.,” IEEE Trans. Biomed. Eng. vol. 47, no. 9,

pp. 1185–94, 2000.

[7] A. L. Goldberger, L.A. Amaral, L. Glass, et al., “PhysioBank,
PhysioToolkit, and PhysioNet: components of a new research resource for

complex physiologic signals.,” Circulation. vol. 101, no. 23, pp. E215-20,

2000.

Supplement: Python Program Codes of this Paper

This program file contains all the filters for the hypnogram

processing and sleep cycle detection and calculation functions.

All the inputs of these eleven functions are in list format of

python for further development. In addition to the filters

introduced in this article, we also designed a special function to

draw hypnograms. In the original Sleep-EDF Database

Expanded dataset, the number of 0,1,2,3,4,5 represents the

Wake, NREM stage1, NREM stage2, NREM stage3, NREM

stage4, REM respectively. However, in the conventional clinic

style of hypnogram, the vertical coordinates from top to bottom

are Wake, REM, NREM stage1, NREM stage2, NREM stage3,

and NREM stage4. For plotting convenience, the function

hypno_fix is created to adjust the upper and lower position of

each stage. Some basic python libraries need to be installed, like

NumPy, Pandas and Matplotlib. To facilitate development, all

calculated result data is stored in python dictionary format.

A. Python code: filter_gtx.py

 # -*- coding: utf-8 -*-

#1

def get_6(raw):

 l = len(raw)

 for k in range(1,int(l-4),1):

 if raw[k] == 6:

 raw[k]= raw[k-1]

T. X. Gao et al. International Journal of Research in Engineering, Science and Management, VOL. 4, NO. 6, JUNE 2021 204

 return raw

#2

def GetOnePoint(raw):

 l = len(raw)

 for k in range(1,int(l-4),1):

 if raw[k-1] == raw[k+1] and raw[k-2] == raw[k+2]:

 raw[k]= raw[k-1]

 return raw

#3

def GetTwoPoints(raw):

 l = len(raw)

 for k in range(1,int(l-4),1):

 if raw[k-3] == raw[k+2] and raw[k-2] == raw[k+1]:

 if raw[k] == raw[k-1] and raw[k] != raw[k+2]:

 raw[k] = raw[k+2]

 raw[k-1] =raw[k+2]

 return raw

#4

def GetThreePoints(raw):

 l = len(raw)

 for k in range(1,int(l-4),1):

 if raw[k-3] == raw[k+2] and raw[k-2] == raw[k+3]:

 if raw[k-1] == raw[k] and raw[k]==raw[k+1]:

 if raw[k] != raw[k+2]:

 raw[k] = raw[k+2]

 raw[k-1] =raw[k+2]

 raw[k+1] =raw[k+2]

 return raw

#5

def GetOnePoint_f(raw):

 l = len(raw)

 for k in range(1,int(l-4),1):

 if raw[k-2] == raw[k-1] and raw[k-1] != raw[k]:

 if abs(raw[k]-raw[k-1]) > 2 and raw[k] != raw[k+1]:

 raw[k] = raw[k-1]

 return raw

#6

def GetTwoPoint_f(raw):

 l = len(raw)

 for k in range(1,int(l-4),1):

 if raw[k-2] == raw[k-1] and raw[k] == raw[k+1]:

 if abs(raw[k]-raw[k-1]) > 2 and raw[k] != raw[k+2]:

 raw[k] = raw[k-1]

 raw[k+1] = raw[k-1]

 return raw

#7

def Four2Three(raw):

 l = len(raw)

 for k in range(1,int(l-4),1):

 if raw[k] == 4:

 raw[k]=3

 return raw

#8

def Two2One(raw):

 l = len(raw)

 for k in range(1,int(l-4),1):

 if raw[k] == 2:

 raw[k]=1

 return raw

#9

def OneInThree(raw):

 l = len(raw)

 for k in range(1,int(l-4),1):

 if raw[k-1] == raw[k+1] and raw[k-1] != raw[k] :

 raw[k] =raw[k-1]

 return raw

#10

def DetectCycleByRem(raw_sim):

 cylce_list = []

 l = len(raw_sim)

 for n in range(4,int(l-5),1):

 if raw_sim[n] == 5 and raw_sim[n-1] == 5:

 #if raw[n-2] and raw[n-3]== 5:

 if raw_sim[n-2] ==5:

 if raw_sim[n+1] <= 1 :

 #if raw_sim[n+1] <= 1 and raw_sim[n+1] <=1:

 #if raw[n+3] ==1 and raw[n+4] ==1:

 print(n)

 cylce_list.append(n)

 return cylce_list

#11

def RemDelta(cylce_list):

 l = len(cylce_list)

 delta = []

 for i in range(0,l-1,1):

 print(i)

 print(l)

 print(cylce_list)

 d = cylce_list[i+1] - cylce_list[i]

 delta.append(d)

 print(delta)

 return delta

#12

def CauculteRem(cycle_list):

 l = len(cycle_list)

 unique_list = []

 for m in range(1,int(l),1):

 if cycle_list[m] - cycle_list[m-1] < 40:

 cycle_list[m-1] = cycle_list[m]

 [unique_list.append(x) for x in cycle_list if x not in

unique_list]

return unique_list

#13

def CauculteOneSet(raw):

 oneset_list= []

 l = len(raw)

 for m in range(4,int(l-5),1):

 if raw[m-1] == 0 and raw[m] == 0:

T. X. Gao et al. International Journal of Research in Engineering, Science and Management, VOL. 4, NO. 6, JUNE 2021 205

 if raw[m+1] == 1 and raw[m+2] == 1:

 #if (raw[m+3] > 0 and raw[m+4] > 0) and

(raw[m+4] >0 and raw[m+4] >0) :

 if raw[m+3] +raw[m+4] +

raw[m+5]+raw[m+6]+raw[m+7] > 3:

 print(m+1)

 return m+1

 #oneset_list.append(m+1)

#14

def Caucultewake(raw):

 wake_list=[]

 l = len(raw)

 for m in range(4,int(l-20),1):

 if raw[m] +raw[m+1] +raw[m+2] +raw[m+3] +raw[m+4]

+raw[m+5] +raw[m+6] +raw[m+7] +raw[m+8]+raw[m+9]

+raw[m+10] +raw[m+11]+raw[m+12]+ raw[m+13] +

raw[m+14] +raw[m+15] +raw[m+16] +raw[m+17]

+raw[m+18] ==0:

 if raw[m-1] > 0:

 #if (raw[m+3] > 0 and raw[m+4] > 0) and

(raw[m+4] >0 and raw[m+4] >0) :

 if raw[m-3] +raw[m-4] + raw[m-5]+raw[m-

6]+raw[m-7] > 2:

 wake = m

 print(m)

 wake_list.append(m)

 print(wake_list)

 if m == int(l-21) and (wake_list ==[] or wake_list[-1]<500):

 wake_list.append(l)

 print(wake_list)

 return wake_list[-1]

#15

def CountsDi(list1,list2):

 l1 = len(list1)

 l2 = len(list2)

 count = 0

 if l1 != l2:

 print('tow lists have not the same length!')

 else:

 for m in range(0,int(l1),1):

 if list1[m] != list2[m]:

 count = count+1

 print(m)

 print(count)

 return count

#16

def hypno_fix(list):

 l = len(list)

 for g in range(0,l,1):

 if list[g] <5 and list[g] >0 :

 list[g] = -list[g]

 elif list[g]==0:

 list[g] = 1

 elif list[g]==5:

 list[g] = 0

 return list

#17

def hishi(list):

 l = len(list)

 for g in range(0,l,1):

 list[g] = list[g]/2880

 return list

B. Python code: analysis_sheet_edf_hypnogramfix.py

-*- coding: utf-8 -*-

Library Import

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

import matplotlib as mpl

import os

import filter_gtx

Reading stage information from CSV

Addition of all data to dictionary

folder = 'G:/paper_filter/true_stage/'

save_folder= 'G:/paper_filter/#/'

n = 153

list = os.listdir(folder)

stage_dict = {}

for i in range(0,n,1):

 dfi = pd.read_csv(folder + list[i],header = None).iloc[1:,1]

 listi = dfi.values.tolist()

 #filter_gtx.SimplyHy_6(listi)

 stage_dict[list[i]] = listi

stage_dict_fixed = {}

counts_list = []

counts_dic= {}

stage_dictstage_dict_fixed = {}

Process by filters

for i in range(0,n,1):

 dfi = pd.read_csv(folder + list[i],header = None).iloc[1:,1]

 listi = dfi.values.tolist()[0]

 list_row = stage_dict[list[i]]

 list1 = list_row.copy()

 list2 = list_row.copy()

 fig=plt.figure(figsize=(20,15))

 ax1=fig.add_subplot(10,1,1)

 list1 = filter_gtx.hypno_fix(list1)

T. X. Gao et al. International Journal of Research in Engineering, Science and Management, VOL. 4, NO. 6, JUNE 2021 206

 ax1.plot(list1[800:2000],linewidth = 2.0,color= 'black')

 ax1.set_ylim(-5, 2)

 ax2=fig.add_subplot(10,1,2)

 list2 = filter_gtx.get_6(list2)

 list2 =filter_gtx.get_big(list2)

 list2_h = list2.copy()

 list2_h = filter_gtx.hypno_fix(list2_h)

 ax2.plot(list2_h[800:2000],linewidth = 2.0,color= 'black')

 ax2.set_ylim(-5, 2)

 ax3=fig.add_subplot(10,1,3)

 list3 = list2.copy()

 list3 =filter_gtx.GetOnePoint(list3)

 list3_h = list3.copy()

 list3_h = filter_gtx.hypno_fix(list3_h)

 ax3.plot(list3_h[800:2000],linewidth = 2.0,color= 'blue')

 ax3.set_ylim(-5, 2)

 ax4=fig.add_subplot(10,1,4)

 list4 = list3.copy()

 list4 =filter_gtx.GetTwoPoints(list4)

 list4_h = list4.copy()

 list4_h = filter_gtx.hypno_fix(list4_h)

 ax4.plot(list4_h[800:2000],linewidth = 2.0,color= 'blue')

 ax4.set_ylim(-5, 2)

 ax5=fig.add_subplot(10,1,5)

 list5 = list4.copy()

 list5 =filter_gtx.GetThreePoints(list5)

 list5_h = list5.copy()

 list5_h = filter_gtx.hypno_fix(list5_h)

 ax5.plot(list5_h[800:2000],linewidth = 2.0,color= 'blue')

 ax5.set_ylim(-5, 2)

 ax6=fig.add_subplot(10,1,6)

 list6 = list5.copy()

 list6 =filter_gtx.GetOnePoint_f(list6)

 list6_h = list6.copy()

 list6_h = filter_gtx.hypno_fix(list6_h)

 ax6.plot(list6_h[800:2000],linewidth = 2.0,color= 'blue')

 ax6.set_ylim(-5, 2)

 ax7=fig.add_subplot(10,1,7)

 list7 = list6.copy()

 list7 =filter_gtx.GetTwoPoint_f(list7)

 list7_h = list7.copy()

 list7_h = filter_gtx.hypno_fix(list7_h)

 ax7.plot(list7_h[800:2000],linewidth = 2.0,color= 'blue')

 ax7.set_ylim(-5, 2)

 ax8=fig.add_subplot(10,1,8)

 list8 = list7.copy()

 list8 =filter_gtx.Four2Three(list8)

 list8_h = list8.copy()

 list8_h = filter_gtx.hypno_fix(list8_h)

 ax8.plot(list8_h[800:2000],linewidth = 2.0,color= 'red')

 ax8.set_ylim(-5, 2)

 ax9=fig.add_subplot(10,1,9)

 list9 = list8.copy()

 list9 =filter_gtx.Two2One(list9)

 list9_h = list9.copy()

 list9_h = filter_gtx.hypno_fix(list9_h)

 ax9.plot(list9_h[800:2000],linewidth = 2.0,color= 'red')

 ax9.set_ylim(-4, 2)

 ax10=fig.add_subplot(10,1,10)

 list10 = list9.copy()

 list10 =filter_gtx.Two2One(list10)

 list10 =filter_gtx.GetOnePoint(list10)

 list10 =filter_gtx.GetTwoPoints(list10)

 list10 =filter_gtx.GetThreePoints(list10)

 list10 =filter_gtx.GetOnePoint_f(list10)

 list10 =filter_gtx.GetTwoPoint_f(list10)

 list10 =filter_gtx.OneInThree(list10)

 list10_h = list10.copy()

 list10_h = filter_gtx.hypno_fix(list10_h)

 ax10.plot(list10_h[800:2000],linewidth = 5.0,color=

'purple')

 ax10.set_ylim(-4, 2)

 plt.savefig(save_folder + list[i]+'.png')

 stage_dict_fixed[list[i]] = list3

Sleep cycle analysis

import filter_gtx

min_val = 30

cycle_dict = {}

rem_dict = {}

oneset_dict= {}

wake_dict = {}

for i in range(0,n,1):

 #stage = stage_dict[list[i]]

 #print(list[i])

 dfi = pd.read_csv(folder + list[i],header = None).iloc[1:,1]

 listi = dfi.values.tolist()[0]

 cylce_list =

filter_gtx.DetectCycleByRem(stage_dict_fixed[list[i]])

 print(cylce_list)

 cylce_list1=filter_gtx.RemDelta(cylce_list)

 cycle_dict[list[i]] = cylce_list1

 rem_list= filter_gtx.CauculteRem(cylce_list)

 rem_dict[list[i]] = rem_list

 oneset = filter_gtx.CauculteOneSet(stage_dict_fixed[list[i]])

 oneset_dict[list[i]] = oneset

 wake = filter_gtx.Caucultewake(stage_dict_fixed[list[i]])

 wake_dict[list[i]] = wake

Each_cycle = {}

T. X. Gao et al. International Journal of Research in Engineering, Science and Management, VOL. 4, NO. 6, JUNE 2021 207

Each_cycle_all={}

for i in range(0,n,1):

 dfi = pd.read_csv(folder + list[i],header = None).iloc[1:,1]

 listi = dfi.values.tolist()[0]

 print(rem_dict[list[i]])

 print(wake_dict[list[i]])

 print(oneset_dict[list[i]])

 list_sub1 = rem_dict[list[i]].copy()

 list_sub1.insert(0,oneset_dict[list[i]])

 list_sub2 = rem_dict[list[i]].copy()

 list_sub2.append(wake_dict[list[i]])

 list_sub3 = rem_dict[list[i]].copy()

 list_sub3.insert(0,oneset_dict[list[i]])

 list_sub3.append(wake_dict[list[i]])

 print(list_sub1)

 print(list_sub2)

 print(list_sub3)

 np1 = np.array(list_sub1)

 np2 = np.array(list_sub2)

 np_cycle = np2-np1

 print(np_cycle)

 np_cycle = np_cycle.tolist()

 Each_cycle[list[i]] = np_cycle

 Each_cycle_all[list[i]] = list_sub3

Each_cycle_fix = {}

import statistics

from statistics import mean

for i in range(0,n,1):

 dfi = pd.read_csv(folder + list[i],header = None).iloc[1:,1]

 listi = dfi.values.tolist()[0]

 print(Each_cycle[list[i]])

 cycle_fix = Each_cycle[list[i]].copy()

 length_cycle = len(cycle_fix)

 unique_list = []

 for j in range(0,int(length_cycle),1):

 print(j)

 if cycle_fix[j] < min_val:

 print(j)

 cycle_fix[j] = cycle_fix[j-1]

 [unique_list.append(x) for x in cycle_fix if x not in

unique_list]

 print(unique_list)

 Each_cycle_fix[list[i]] = unique_list

Sleep cycle calculation

cycle_1th = []

for i in range(0,n,1):

 dfi = pd.read_csv(folder + list[i],header = None).iloc[1:,1]

 listi = dfi.values.tolist()[0]

 cycle_1_element = Each_cycle_fix[list[i]][0]

 cycle_1th.append(cycle_1_element)

cycle_1th_mean = mean(cycle_1th)

cycle_2th = []

for i in range(0,n,1):

 dfi = pd.read_csv(folder + list[i],header = None).iloc[1:,1]

 listi = dfi.values.tolist()[0]

 each_list = Each_cycle_fix[list[i]]

 l = len(each_list)

 if l<=1:

 pass

 else:

 cycle_2_element = Each_cycle_fix[list[i]][1]

 cycle_2th.append(cycle_2_element)

cycle_2th_mean = mean(cycle_2th)

cycle_3th = []

for i in range(0,n,1):

 dfi = pd.read_csv(folder + list[i],header = None).iloc[1:,1]

 listi = dfi.values.tolist()[0]

 each_list = Each_cycle_fix[list[i]]

 l = len(each_list)

 if l<=2:

 pass

 else:

 cycle_3_element = Each_cycle_fix[list[i]][2]

 cycle_3th.append(cycle_3_element)

cycle_3th_mean = mean(cycle_3th)

cycle_4th = []

for i in range(0,n,1):

 dfi = pd.read_csv(folder + list[i],header = None).iloc[1:,1]

 listi = dfi.values.tolist()[0]

 each_list = Each_cycle_fix[list[i]]

 l = len(each_list)

 if l<=3:

 pass

 else:

 cycle_4_element = Each_cycle_fix[list[i]][3]

 cycle_4th.append(cycle_4_element)

cycle_4th_mean = mean(cycle_4th)

cycle_5th = []

for i in range(0,n,1):

 dfi = pd.read_csv(folder + list[i],header = None).iloc[1:,1]

 listi = dfi.values.tolist()[0]

 each_list = Each_cycle_fix[list[i]]

T. X. Gao et al. International Journal of Research in Engineering, Science and Management, VOL. 4, NO. 6, JUNE 2021 208

 l = len(each_list)

 if l<=4:

 pass

 else:

 cycle_5_element = Each_cycle_fix[list[i]][4]

 cycle_5th.append(cycle_5_element)

cycle_5th_mean = mean(cycle_5th)

plt.plot([cycle_1th_mean,cycle_2th_mean ,cycle_3th_mean

,cycle_4th_mean ,cycle_5th_mean ,cycle_6th_mean

,cycle_7th_mean])

print([cycle_1th_mean/2,cycle_2th_mean/2 ,cycle_3th_mean

/2,cycle_4th_mean/2 ,cycle_5th_mean /2,cycle_6th_mean/2

,cycle_7th_mean/2])

cycle_1th_mean= mean(cycle_1th)

cycle_2th_mean= mean(cycle_2th)

cycle_3th_mean= mean(cycle_3th)

cycle_4th_mean= mean(cycle_4th)

cycle_5th_mean= mean(cycle_5th)

cycle_1th_stdev = statistics.stdev(cycle_1th)

cycle_2th_stdev = statistics.stdev(cycle_2th)

cycle_3th_stdev = statistics.stdev(cycle_3th)

cycle_4th_stdev = statistics.stdev(cycle_4th)

cycle_5th_stdev = statistics.stdev(cycle_5th)

len_cycle_1th = len(cycle_1th)

len_cycle_2th = len(cycle_2th)

len_cycle_3th = len(cycle_3th)

len_cycle_4th = len(cycle_4th)

len_cycle_5th = len(cycle_5th)

print([cycle_1th_mean/2,cycle_2th_mean/2 ,cycle_3th_mean

/2,cycle_4th_mean/2 ,cycle_5th_mean /2])

print([cycle_1th_stdev/2,cycle_2th_stdev/2 ,cycle_3th_stdev

/2,cycle_4th_stdev/2 ,cycle_5th_stdev /2])

