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Abstract: In this paper, a real time ML based system was built 

for the Sign Language Detection using images that have been 

captured with the help of a PC camera. The main purpose of this 

project is to design a system for the differently abled people to 

communicate with others with ease. This model is one of the first 

models to detect signs irrespective of their sign language standards 

(i.e., the American Standard or the Indian Standard). The existing 

digital translators are very slow since every alphabet has to be 

gestured out and the amount of time it would take to just form a 

simple sentence would be a lot. This model, which was trained 

using the SSD ML Algorithm, overcomes the above problem by 

directly recognizing the signs as words instead of alphabets. This 

model was trained using a set of 20 images for a particular sign in 

different conditions such as different lighting, different skin tones, 

backgrounds, etc., in order to increase the accuracy of detecting 

the gesture. The system displayed a high accuracy for all the 

datasets when new test data, which had not been used in the 

training, were introduced. The results have shown a high accuracy 

of 85% for the sign detection.  

 

Keywords: Deep Learning SSD ML algorithm, LabelImg 

software, real time, TensorFlow object detection module. 

1. Introduction 

A very few people know how to communicate using sign 

language as it is not a mandatory language to learn. This makes 

it difficult for differently abled people to communicate with 

others.  

The most common means to communicate with them is with 

the help of human interpreters, which is again very expensive 

and not many can afford it. There are many different sign 

languages in the world. There are around 200 sign languages in 

the world including Chinese, Spanish, Irish, American Sign 

Language and Indian Sign Language, which are the most 

commonly used sign languages. 

The ML based Sign Language Detection system aims at 

communicating with differently abled people without the help 

of any expensive human interpreter. This model translates the 

signs/gestures captured into text so that the user can simply read 

and know what the person is trying to convey irrespective of 

whether the user has knowledge about the sign language or not.  

2. Literature Survey 

The first approach in relation to sign language recognition 

was by Bergh in 2011 [1]. Haar wavelets and database  

 

searching were employed to build a hand gesture recognition 

system. Although this system gives good results, it only 

considers six classes of gestures. 

In a study by Balbin et al. [2], the system only recognized 

five Filipino words and used colored gloves for hand position 

recognition; our model can be trained for different gestures and 

can be recognized without any colored gloves and using only 

bare hands.  

In our model the images are captured using a PC Cam and 

were able to get an accuracy of 75% at an average. In other 

models these were captured using motion sensors, such as 

electromyography (EMG) sensors [3], RGB cameras [4], 

Kinect sensors [5] and their combinations. Although the 

accuracy of detecting the signs is high, they also have 

limitations; first is their cost, as they require large-size datasets 

with diverse sign motion they go toned a high-end computer 

with powerful specifications; whereas in our model this can be 

achieved with minimum specifications.  

The SSD model was also adopted for hand detection. The 

proposed model was evaluated based on the IsoGD dataset, 

which achieved 4.25% accuracy [6]. 

In 2016, with the aim of real-time object detection in testing 

images, two novel algorithms came out, namely, YOLO and 

SSD [7], [8]. YOLO uses CNN to reduce the spatial dimension 

detection box. It performs a linear regression to make boundary 

box predictions. In the case of SSD, the size of the detecting 

box is usually fixed and used for simultaneous size detection. 

Therefore, the purported advantage of SSD is known to be the 

simultaneous detection of objects with various sizes.   

In comparison to other systems which only recognized ASL 

alphabets, our model is mainly for recognizing gestures, 

making it more useful and effective. In the literature [9]-[12], 

the systems only recognized ASL alphabets. 

3. Methodology 

A. System Architecture 

In this project, a real time sign recognition ML model was 

built with the help of LabelImg software and TensorFlow 

Object Detection API, using real coloring images. This system 

was divided into three main phases; Initially we wrote some 

code to automate the picture taking process, once the pictures 

were taken, we used the LabelImg software to segregate these 
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images into the appropriate labels. These labels are named in 

such a way that they express the meaning of the gesture made. 

Once the labelling of the images was done, we have two sets of 

files for each image taken, one which has the actual image in it 

and the other being an XML file which contains information of 

where the model should be looking in the image during the 

training process. Once these files are generated, the training 

process begins, where the Machine is going to use a Deep 

Learning SSD ML algorithm to extract features from the 

desired image. Finally, after the model has been trained, it 

allows for the Sign Language Detection part to begin. To 

achieve the detection, we are using the TensorFlow Object 

Detection API where the extracted features from the images 

taken are passed onto the TensorFlow module which is going to 

make comparisons with the real time video present in the frame. 

On detection of any of these features it is going to generate a 

bounding box around the gesture and make the prediction. The 

prediction is going to be the same as the label of the image, 

hence it is very important to understand the gesture made so as 

to name the label correctly, a wrongly named label could result 

in a wrong prediction. 

 

 
Fig. 1.  System architecture 

B. Dataset Creation 

The LabelImg software is used for graphically labelling the 

images that is further used when recognizing the images. We 

have to keep in mind that labelling has to be done correctly i.e, 

the gesture should be labelled with a right label so that we get 

the gestures recognized correctly later with the right label. Once 

the images are labelled and saved an XML file is created for 

that image. This XML file contains the information about where 

the model should be looking in the image during the training 

process. 

This model is trained for 5 different gestures hence 5 

different labels were used for labelling them. For each gesture 

20 images were used that are clicked in different angles. A code 

is used to take the images automatically and save them in a 

particular folder. 

The labelling is done by drawing a box around the gesture 

made. This box is called the Ground Truth which means a set 

of measurements that is known to be much more accurate than 

measurements from the system you are testing. The below 

figure (i.e., Fig. 2) demonstrates how the images are labelled 

using LabelImg software. 

The XML file associated with a labelled image showing 

where the model has to search for the gesture while training the 

ML model is shown in the below figure (i.e., Fig. 3). 

 
Fig. 2.  Labelling the gestures using LabelImg 

 

 
Fig. 3.  XML file of a labelled image 

C. Training and Testing 

Out of the 20 images collected along with the generated 

XML files for each image, 5 were used for testing and the 

remaining 15 were used for training the model. The ML model 

was trained using the Deep Learning SSD ML Algorithm and 

tested using the TensorFlow Object Detection API. 

SSD (Single Shot Detection) algorithm is designed for object 

detection in real-time. Faster R-CNN uses a region proposal 

network to create boundary boxes and utilizes those boxes to 

classify objects. While it is considered state-of-the-art in 

accuracy, the whole process runs at 7 frames per second. Far 

below what real-time processing needs. SSD speeds up the 

process by eliminating the need for the region proposal 

network. To recover the drop in accuracy, SSD applies a few 

improvements including multi-scale features and default boxes. 

These improvements allow SSD to match the Faster R-CNN’s 

accuracy using lower resolution images, which further pushes 

the speed higher. 

The SSD architecture is a single convolution network that 

learns to predict bounding box locations and classify these 

locations in one pass. Hence, SSD can be trained end-to-end. 

The SSD network consists of base architecture (MobileNet in 

this case) followed by several convolution layers. 

TensorFlow is an open-source library for numerical 

computation and large-scale machine learning that eases 

Google Brain TensorFlow, the process of acquiring data, 

training models, serving predictions, and refining future results. 
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The TensorFlow Object Detection API is an open-source 

framework built on top of TensorFlow that makes it easy to 

construct, train and deploy object detection models. There are 

already pre-trained models in their framework which are 

referred to as Model Zoo. It includes a collection of pre-trained 

models trained on various datasets such as the COCO (Common 

Objects in Context) dataset, the KITTI dataset, and the Open 

Images Dataset. The TensorFlow object detection API is the 

framework for creating a deep learning network that solves 

object detection problems. 

 

 
Fig. 4.  SSD network architecture 

 

TensorFlow bundles together Machine Learning and Deep 

Learning models and algorithms. It uses Python as a convenient 

front-end and runs it efficiently in optimized C++. TensorFlow 

allows developers to create a graph of computations to perform. 

Each node in the graph represents a mathematical operation and 

each connection represents data. Hence, instead of dealing with 

low-details like figuring out proper ways to hitch the output of 

one function to the input of another, the developer can focus on 

the overall logic of the application. 

We use ‘Checkpoints’ that are save points which a model 

generates to keep track of how much it has trained itself. In case 

the training process is interrupted, it would simply start itself 

again from the checkpoint. Since the training process can be 

very time consuming, this mechanism allows the model to save 

itself from system failures. The learning rate of our model when 

used 10000 steps for training is shown below in Fig. 5. 

 

 
Fig. 5.  Learning rate of 10000 steps training model 

 

A loss function is used to optimize the machine learning 

algorithm. The loss is calculated on training and testing, and its 

interpretation is based on how well the model is doing in these 

two sets. It is the sum of errors made for each example in 

training or testing sets. Loss value implies how poorly or well a 

model behaves after each iteration of optimization. The loss at 

each iteration of our machine learning model has been 

decreasing which indicates a better accuracy of model for 

detection. The loss of our model is shown in the below Fig. 6. 

 

 
Fig. 6.  Loss of the Machine Learning model 

 

The localization loss is the mismatch between the ground 

truth box and the predicted boundary box. SSD only penalizes 

predictions from positive matches. Only the predictions from 

the positive matches to get closer to the ground truth is required. 

Negative matches can be ignored. Ground truth box is the box 

that is created in the LabelImg software while creating the 

labels and the predicted boundary box is the box that is 

predicted by the model while testing the images. The 

localization loss for our model is 0.05 as shown in Fig. 9. 

 

 
Fig. 7.  Formula for calculating localization loss 

 

The confidence loss is the loss of making a class prediction. 

For every positive match prediction, the loss is penalized 

according to the confidence score of the corresponding class. 

For negative match predictions, the loss is penalized according 

to the confidence score of the class “0”: class “0” classifies no 

object is detected. The confidence loss for our model is 0.19 as 

shown in Fig. 9. 

 

 
Fig. 8.  Formula for calculating confidence loss 

 

The below image (i.e., Fig. 9.) represents the evaluation 

results and evaluation metrics for a 10000-step machine 

learning model. An evaluation metric consists of the average 

precision and average recall. For each precision and recall an 

IOU is calculated. IOU stands for Intersection Over Union 
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which determines the ratio of area of intersection between the 

Ground Truth and predicted box to the area of union between 

the Ground Truth and Predicted box (as shown in Fig. 10) 

 

 
Fig. 9.  Evaluation results and evaluation metrics 

 
Fig. 10.  Intersection over Union (IoU) 

 

 
Fig. 11.  Loss at each iteration 

A loss function is a mathematical formula used to produce 

loss values during training time. During training, the 

performance of a model is measured by the loss (L) that the 

model produces for each sample or batch of samples. The loss 

essentially measures how “far” the predicted values (y) are from 

the expected value (y). If y is far away (very different) from y, 

then the loss will be high. However, if y is close to y then the 

loss is low. The model uses the loss as an “indicator” to update 

its parameters so that it can produce very small losses in future 

predictions. That means producing y that are very close to y. 

The figure (i.e., Fig. 11.) shows the loss incurred at each step 

while training the model. The lowest loss recorded is 0.133 at 

step 9400 and at step 9700. 

4. Results and Discussions 

A real-time Sign Language Detection with a SSD algorithm 

using real coloring images from a PC camera was introduced. 

In this paper, signs are translated into text statements to help the 

differently abled people to communicate with others with ease. 

This system showed good results by taking advantage of deep 

learning techniques. This section discusses the results obtained 

by the system. 

Fig. 12. shows an accuracy of 90% for the recognition of the 

sign ‘No’ by the system. 

 

 
Fig. 12.  Gesture recognition for No 

 

 
Fig. 13.  Gesture recognition for ILoveYou and Hello 
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Two gestures can also be recognized simultaneously using 

our system. The accuracy has shown to be the same irrespective 

of two gestures being made simultaneously. In Fig. 13. we can 

see that both the gestures are being recognized without any 

difficulty.  

Apart from the gestures recognized above, there are two 

more gestures that we used for training the model. Total five 

gestures were used to train the machine learning model by 

taking 20 images for each model in different angles, 

backgrounds, skin tones, lighting and other various situations. 

Out of the 20 images collected, 15 were used for training and 5 

were for testing. All the images were converted into gray scale 

images as shown in Fig. 14., for training the ML model. The 

results have shown up to an average accuracy of 85%. 

 

 
Fig. 14.  Images for training in grayscale 

5. Conclusion 

In this paper, a real-time ML based Sign Language 

Recognition system was built using real coloring images that 

were taken with the help of a PC camera. New datasets were 

built to contain a wider variety of features for example different 

lightings, different skin tones, different backgrounds, and a 

wide variety of hand gestures. The system achieved a maximal 

accuracy of about 75% for training and 85% for the validation 

set. In addition, the system showed a high accuracy with the 

introduction of new test data that had not been used in the 

training. There is a lot of scope for this project, since we have 

the ability to label these images, we can label the gestures in 

any language required, allowing the user to communicate with 

others irrespective of the language boundaries.  
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