
International Journal of Research in Engineering, Science and Management

Volume 4, Issue 6, June 2021

https://www.ijresm.com | ISSN (Online): 2581-5792

*Corresponding author: lalithanjanakollipara@gmail.com

137

Abstract: In this paper, a real time ML based system was built

for the Sign Language Detection using images that have been

captured with the help of a PC camera. The main purpose of this

project is to design a system for the differently abled people to

communicate with others with ease. This model is one of the first

models to detect signs irrespective of their sign language standards

(i.e., the American Standard or the Indian Standard). The existing

digital translators are very slow since every alphabet has to be

gestured out and the amount of time it would take to just form a

simple sentence would be a lot. This model, which was trained

using the SSD ML Algorithm, overcomes the above problem by

directly recognizing the signs as words instead of alphabets. This

model was trained using a set of 20 images for a particular sign in

different conditions such as different lighting, different skin tones,

backgrounds, etc., in order to increase the accuracy of detecting

the gesture. The system displayed a high accuracy for all the

datasets when new test data, which had not been used in the

training, were introduced. The results have shown a high accuracy

of 85% for the sign detection.

Keywords: Deep Learning SSD ML algorithm, LabelImg

software, real time, TensorFlow object detection module.

1. Introduction

A very few people know how to communicate using sign

language as it is not a mandatory language to learn. This makes

it difficult for differently abled people to communicate with

others.

The most common means to communicate with them is with

the help of human interpreters, which is again very expensive

and not many can afford it. There are many different sign

languages in the world. There are around 200 sign languages in

the world including Chinese, Spanish, Irish, American Sign

Language and Indian Sign Language, which are the most

commonly used sign languages.

The ML based Sign Language Detection system aims at

communicating with differently abled people without the help

of any expensive human interpreter. This model translates the

signs/gestures captured into text so that the user can simply read

and know what the person is trying to convey irrespective of

whether the user has knowledge about the sign language or not.

2. Literature Survey

The first approach in relation to sign language recognition

was by Bergh in 2011 [1]. Haar wavelets and database

searching were employed to build a hand gesture recognition

system. Although this system gives good results, it only

considers six classes of gestures.

In a study by Balbin et al. [2], the system only recognized

five Filipino words and used colored gloves for hand position

recognition; our model can be trained for different gestures and

can be recognized without any colored gloves and using only

bare hands.

In our model the images are captured using a PC Cam and

were able to get an accuracy of 75% at an average. In other

models these were captured using motion sensors, such as

electromyography (EMG) sensors [3], RGB cameras [4],

Kinect sensors [5] and their combinations. Although the

accuracy of detecting the signs is high, they also have

limitations; first is their cost, as they require large-size datasets

with diverse sign motion they go toned a high-end computer

with powerful specifications; whereas in our model this can be

achieved with minimum specifications.

The SSD model was also adopted for hand detection. The

proposed model was evaluated based on the IsoGD dataset,

which achieved 4.25% accuracy [6].

In 2016, with the aim of real-time object detection in testing

images, two novel algorithms came out, namely, YOLO and

SSD [7], [8]. YOLO uses CNN to reduce the spatial dimension

detection box. It performs a linear regression to make boundary

box predictions. In the case of SSD, the size of the detecting

box is usually fixed and used for simultaneous size detection.

Therefore, the purported advantage of SSD is known to be the

simultaneous detection of objects with various sizes.

In comparison to other systems which only recognized ASL

alphabets, our model is mainly for recognizing gestures,

making it more useful and effective. In the literature [9]-[12],

the systems only recognized ASL alphabets.

3. Methodology

A. System Architecture

In this project, a real time sign recognition ML model was

built with the help of LabelImg software and TensorFlow

Object Detection API, using real coloring images. This system

was divided into three main phases; Initially we wrote some

code to automate the picture taking process, once the pictures

were taken, we used the LabelImg software to segregate these

Machine Learning Based Real Time Sign

Language Detection

P. Rishi Sanmitra1, V. V. Sai Sowmya2, K. Lalithanjana3*

1,2,3Student, Department of Computer Science and Engineering, CMR Technical Campus, Hyderabad, India

P. R. Sanmitra et al. International Journal of Research in Engineering, Science and Management, VOL. 4, NO. 6, JUNE 2021 138

images into the appropriate labels. These labels are named in

such a way that they express the meaning of the gesture made.

Once the labelling of the images was done, we have two sets of

files for each image taken, one which has the actual image in it

and the other being an XML file which contains information of

where the model should be looking in the image during the

training process. Once these files are generated, the training

process begins, where the Machine is going to use a Deep

Learning SSD ML algorithm to extract features from the

desired image. Finally, after the model has been trained, it

allows for the Sign Language Detection part to begin. To

achieve the detection, we are using the TensorFlow Object

Detection API where the extracted features from the images

taken are passed onto the TensorFlow module which is going to

make comparisons with the real time video present in the frame.

On detection of any of these features it is going to generate a

bounding box around the gesture and make the prediction. The

prediction is going to be the same as the label of the image,

hence it is very important to understand the gesture made so as

to name the label correctly, a wrongly named label could result

in a wrong prediction.

Fig. 1. System architecture

B. Dataset Creation

The LabelImg software is used for graphically labelling the

images that is further used when recognizing the images. We

have to keep in mind that labelling has to be done correctly i.e,

the gesture should be labelled with a right label so that we get

the gestures recognized correctly later with the right label. Once

the images are labelled and saved an XML file is created for

that image. This XML file contains the information about where

the model should be looking in the image during the training

process.

This model is trained for 5 different gestures hence 5

different labels were used for labelling them. For each gesture

20 images were used that are clicked in different angles. A code

is used to take the images automatically and save them in a

particular folder.

The labelling is done by drawing a box around the gesture

made. This box is called the Ground Truth which means a set

of measurements that is known to be much more accurate than

measurements from the system you are testing. The below

figure (i.e., Fig. 2) demonstrates how the images are labelled

using LabelImg software.

The XML file associated with a labelled image showing

where the model has to search for the gesture while training the

ML model is shown in the below figure (i.e., Fig. 3).

Fig. 2. Labelling the gestures using LabelImg

Fig. 3. XML file of a labelled image

C. Training and Testing

Out of the 20 images collected along with the generated

XML files for each image, 5 were used for testing and the

remaining 15 were used for training the model. The ML model

was trained using the Deep Learning SSD ML Algorithm and

tested using the TensorFlow Object Detection API.

SSD (Single Shot Detection) algorithm is designed for object

detection in real-time. Faster R-CNN uses a region proposal

network to create boundary boxes and utilizes those boxes to

classify objects. While it is considered state-of-the-art in

accuracy, the whole process runs at 7 frames per second. Far

below what real-time processing needs. SSD speeds up the

process by eliminating the need for the region proposal

network. To recover the drop in accuracy, SSD applies a few

improvements including multi-scale features and default boxes.

These improvements allow SSD to match the Faster R-CNN’s

accuracy using lower resolution images, which further pushes

the speed higher.

The SSD architecture is a single convolution network that

learns to predict bounding box locations and classify these

locations in one pass. Hence, SSD can be trained end-to-end.

The SSD network consists of base architecture (MobileNet in

this case) followed by several convolution layers.

TensorFlow is an open-source library for numerical

computation and large-scale machine learning that eases

Google Brain TensorFlow, the process of acquiring data,

training models, serving predictions, and refining future results.

P. R. Sanmitra et al. International Journal of Research in Engineering, Science and Management, VOL. 4, NO. 6, JUNE 2021 139

The TensorFlow Object Detection API is an open-source

framework built on top of TensorFlow that makes it easy to

construct, train and deploy object detection models. There are

already pre-trained models in their framework which are

referred to as Model Zoo. It includes a collection of pre-trained

models trained on various datasets such as the COCO (Common

Objects in Context) dataset, the KITTI dataset, and the Open

Images Dataset. The TensorFlow object detection API is the

framework for creating a deep learning network that solves

object detection problems.

Fig. 4. SSD network architecture

TensorFlow bundles together Machine Learning and Deep

Learning models and algorithms. It uses Python as a convenient

front-end and runs it efficiently in optimized C++. TensorFlow

allows developers to create a graph of computations to perform.

Each node in the graph represents a mathematical operation and

each connection represents data. Hence, instead of dealing with

low-details like figuring out proper ways to hitch the output of

one function to the input of another, the developer can focus on

the overall logic of the application.

We use ‘Checkpoints’ that are save points which a model

generates to keep track of how much it has trained itself. In case

the training process is interrupted, it would simply start itself

again from the checkpoint. Since the training process can be

very time consuming, this mechanism allows the model to save

itself from system failures. The learning rate of our model when

used 10000 steps for training is shown below in Fig. 5.

Fig. 5. Learning rate of 10000 steps training model

A loss function is used to optimize the machine learning

algorithm. The loss is calculated on training and testing, and its

interpretation is based on how well the model is doing in these

two sets. It is the sum of errors made for each example in

training or testing sets. Loss value implies how poorly or well a

model behaves after each iteration of optimization. The loss at

each iteration of our machine learning model has been

decreasing which indicates a better accuracy of model for

detection. The loss of our model is shown in the below Fig. 6.

Fig. 6. Loss of the Machine Learning model

The localization loss is the mismatch between the ground

truth box and the predicted boundary box. SSD only penalizes

predictions from positive matches. Only the predictions from

the positive matches to get closer to the ground truth is required.

Negative matches can be ignored. Ground truth box is the box

that is created in the LabelImg software while creating the

labels and the predicted boundary box is the box that is

predicted by the model while testing the images. The

localization loss for our model is 0.05 as shown in Fig. 9.

Fig. 7. Formula for calculating localization loss

The confidence loss is the loss of making a class prediction.

For every positive match prediction, the loss is penalized

according to the confidence score of the corresponding class.

For negative match predictions, the loss is penalized according

to the confidence score of the class “0”: class “0” classifies no

object is detected. The confidence loss for our model is 0.19 as

shown in Fig. 9.

Fig. 8. Formula for calculating confidence loss

The below image (i.e., Fig. 9.) represents the evaluation

results and evaluation metrics for a 10000-step machine

learning model. An evaluation metric consists of the average

precision and average recall. For each precision and recall an

IOU is calculated. IOU stands for Intersection Over Union

P. R. Sanmitra et al. International Journal of Research in Engineering, Science and Management, VOL. 4, NO. 6, JUNE 2021 140

which determines the ratio of area of intersection between the

Ground Truth and predicted box to the area of union between

the Ground Truth and Predicted box (as shown in Fig. 10)

Fig. 9. Evaluation results and evaluation metrics

Fig. 10. Intersection over Union (IoU)

Fig. 11. Loss at each iteration

A loss function is a mathematical formula used to produce

loss values during training time. During training, the

performance of a model is measured by the loss (L) that the

model produces for each sample or batch of samples. The loss

essentially measures how “far” the predicted values (y) are from

the expected value (y). If y is far away (very different) from y,

then the loss will be high. However, if y is close to y then the

loss is low. The model uses the loss as an “indicator” to update

its parameters so that it can produce very small losses in future

predictions. That means producing y that are very close to y.

The figure (i.e., Fig. 11.) shows the loss incurred at each step

while training the model. The lowest loss recorded is 0.133 at

step 9400 and at step 9700.

4. Results and Discussions

A real-time Sign Language Detection with a SSD algorithm

using real coloring images from a PC camera was introduced.

In this paper, signs are translated into text statements to help the

differently abled people to communicate with others with ease.

This system showed good results by taking advantage of deep

learning techniques. This section discusses the results obtained

by the system.

Fig. 12. shows an accuracy of 90% for the recognition of the

sign ‘No’ by the system.

Fig. 12. Gesture recognition for No

Fig. 13. Gesture recognition for ILoveYou and Hello

P. R. Sanmitra et al. International Journal of Research in Engineering, Science and Management, VOL. 4, NO. 6, JUNE 2021 141

Two gestures can also be recognized simultaneously using

our system. The accuracy has shown to be the same irrespective

of two gestures being made simultaneously. In Fig. 13. we can

see that both the gestures are being recognized without any

difficulty.

Apart from the gestures recognized above, there are two

more gestures that we used for training the model. Total five

gestures were used to train the machine learning model by

taking 20 images for each model in different angles,

backgrounds, skin tones, lighting and other various situations.

Out of the 20 images collected, 15 were used for training and 5

were for testing. All the images were converted into gray scale

images as shown in Fig. 14., for training the ML model. The

results have shown up to an average accuracy of 85%.

Fig. 14. Images for training in grayscale

5. Conclusion

In this paper, a real-time ML based Sign Language

Recognition system was built using real coloring images that

were taken with the help of a PC camera. New datasets were

built to contain a wider variety of features for example different

lightings, different skin tones, different backgrounds, and a

wide variety of hand gestures. The system achieved a maximal

accuracy of about 75% for training and 85% for the validation

set. In addition, the system showed a high accuracy with the

introduction of new test data that had not been used in the

training. There is a lot of scope for this project, since we have

the ability to label these images, we can label the gestures in

any language required, allowing the user to communicate with

others irrespective of the language boundaries.

References

[1] M. Van den Bergh and L. Van Gool, "Combining RGB and ToF cameras

for real-time 3D hand gesture interaction," 2011 IEEE Workshop on

Applications of Computer Vision (WACV), 2011, pp. 66-72.
[2] J. R. Balbin et al., "Sign language word translator using Neural Networks

for the Aurally Impaired as a tool for communication," 2016 6th IEEE

International Conference on Control System, Computing and Engineering
(ICCSCE), 2016, pp. 425-429.

[3] J. Wu, Z. Tian, L. Sun, L. Estevez and R. Jafari, "Real-time American

Sign Language Recognition using wrist-worn motion and surface EMG
sensors," 2015 IEEE 12th International Conference on Wearable and

Implantable Body Sensor Networks (BSN), 2015, pp. 1-6.

[4] D. Mart, Sign Language Translator Using Microsoft Kinect XBOX 360
TM, 2012, pp. 1-76.

[5] Cao Dong, M. C. Leu and Z. Yin, "American Sign Language alphabet

recognition using Microsoft Kinect," 2015 IEEE Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), 2015,

pp. 44-52.

[6] Rastgoo R, Kiani K, Escalera S, “Video-based isolated hand sign
language recognition using a deep cascaded model,” in Multimed. Tools

Appl. 2020, pp. 22965–22987.

[7] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, "You Only Look
Once: Unified, Real-Time Object Detection," 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2016, pp. 779-788.

[8] Liu W, Anguelov D, Erhan D, et al., “SSD: Single shot multibox
detector,” in Proceedings of the European Conference on Computer

Vision,” New York: Springer; 2016, pp. 21–37.

[9] T. Kim, G. Shakhnarovich, and K. Livescu, “Finger-spelling recognition
with semi-markov conditional random fields,” in Proc. 2013 IEEE

International Conference on Computer Vision, 2013, pp. 1521–1528.

[10] N. Pugeault and R. Bowden, “Spelling it out: Real-time asl finger-spelling
recognition,” in Proc. 2011 IEEE International Conference on Computer

Vision Workshop, 2011, pp. 1114–1119

[11] S. Shahriar, A. Siddiquee, T. Islam, A. Ghosh, R. Chakraborty, A. I. Khan,
C. Shahnaz, and S. A. Fattah, “Real-time american sign language

recognition using skin segmentation and image category classification
with convolutional neural network and deep learning,” in Proc. TENCON

2018-2018 IEEE Region 10 Conference, 2018, pp. 1168-1171.

[12] R. Daroya, D. Peralta, and P. Naval, “Alphabet sign language image
classification using deep learning,” in Proc. TENCON 2018-2018 IEEE

Region 10 Conference, 2018, pp. 646-650.

