

Use of Multiple Tuned Mass Dampers for Controlling Vibration in Frame Structure

Amol Arun Gaikwad^{1*}, V. A. Patil², Somanagouda Takkalaki³

¹.P.G. Student, Department of Civil Engineering, B. R. Harne College of Engineering and Technology, Mumbai, India

²Professor & Principal, Department of Civil Engineering, B. R. Harne College of Engineering and Technology, Mumbai, India

³Assistant Professor, Department of Civil Engineering, B. R. Harne College of Engineering and Technology, Mumbai, India

Abstract: Requirement of high-rise structure in construction industry is growing all over the world. These structures are construct light and flexible. Which have low damping value, makes them unsafe to undesirable vibration. This vibration due to wind and earthquake excitation creates problem to serviceability requirement of the structure and reduce structural integrity with possibilities of failure. Present time several techniques are used to reduce structural vibration induced due to wind and earthquake forces. With the increases demands for the safety, serviceability, durability, and reliability of structures. In this present study, for controlling vibration of frame structure Tuned mass dampers (TMD) are use. Tuned mass dampers known as to control the seismic response of high-rise buildings when subjected to earthquake generated ground motion. It is certainly going to regulate the natural frequencies and mode shapes. The efficiency of dampers is totally depend upon mass ratio and location of dampers. More particularly multiple tuned mass dampers are yet to be explore. Both single and multiple tuned mass dampers are analyzed with different aspect ratio of structure and various mass ratio of tuned mass dampers. Twenty-four structure have been modelled using ETABS. Response spectrum analysis has been carried out for different models in ETABS software. storey displacement, storey acceleration and model period Parameters used for study response of the structure when earthquake forces are applied.

Keywords: tuned mass dampers, structural vibration, etabs, mass ratio, aspect ratio, response spectrum analysis.

1. Introduction

Vibration is a mechanical phenomenon whereby oscillations occur about an equilibrium point. The oscillation may be periodic or non-periodic. Controlling vibration is important for machinery, space shuttle and airplane. Various techniques used to minimize vibration and increase stability.

A. Methods of Vibration Control

A several techniques have been using to produce better vibration control. These vibration control methods divided into four broad categories: passive control, active control, semi active control and hybrid control. Each of these will be discuss in following section.

1) Passive Control

A passive control system is one that does not require an external power source. All forces imposed by passive control devices develop as direct responses to the motion of the structure. Hence, sum of the energy of both the device and the primary system will be constant. Tuned mass damper, tuned liquid damper, base isolation are example of passive system.

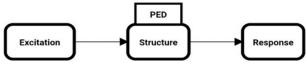


Fig. 1. Vibration reduction of structure by Passive Control

2) Active Control

Active control system has been as any control system in which an external power source is required to provide additional forces to the structure in a prescribed manner, by the use of actuators. The signals are sent to control the actuators and determine the feedback from the sensors provided on or through the structure. Due to the presence of an external power source, the force applied may either add or dissipate energy from the structure.

Fig. 2. Vibration reduction of structure by Active Control

3) Semi-Active Control

Semi active control systems act on the same principle of active control system but they differ in that their external energy

^{*}Corresponding author: aagaikwad29@gmail.com

requirement is smaller. These devices have an inherent stability in terms of bounded-input and output, as these do not add mechanical energy to the primary system. Therefore, it may be considered as controllable passive device. Semi-active control relies on the reactive forces that develop due to variable stiffness or damping devices rather than application of actuator forces.

As a result, semi-active control methods appear to combine the best features of fully active and fully passive systems, leaving them as the best in term acceptance for structural control.

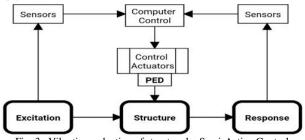


Fig. 3. Vibration reduction of structure by Semi-Active Control

4) Hybrid Control

Hybrid systems act on the combined use of passive and active control system. For example, a base isolated structure, which is equipped with actuator, which actively controls the enhancement of its performance.

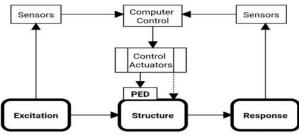


Fig. 4. Vibration reduction of structure by Hybrid Control

B. Tuned Mass Dampers

A Tuned mass damper (TMD) is a passive damping device, which utilizes a secondary mass attached to a main structure normally through spring and dashpot to reduce the dynamic response of the structure. It is widely used for vibration control in mechanical engineering systems. TMD popularly used to reduce vibrations of tall buildings and other civil engineering structures also. The secondary mass system is design to have the natural frequency, which is depended on its mass and stiffness, tuned to that of the primary structure. Mass for TMD varies from 1-10% of the structural mass.

2. Objective and Methodology

A. Objective

Objective of present work is to study the effect of single and multiple TMD on the dynamic response of multi-storey frame structures by the Response Spectrum Analysis with different parameters.

- To determine optimum reduction in vibration of structure by using tuned mass dampers with different aspect ratio of structure and mass ratio of TMD.
- To find out the change in the value of various structural parameters like storey displacement, storey acceleration and Modal period using response spectrum analysis.
- Response spectrum analysis of multi-storey frame with and without TMD.

B. Methodology

One of the basic needs in a structure design is to predict reliability the desired structure under specified loading condition. In designing structure equipped with tuned mass dampers, the most important design parameter is the property of dampers. Loading platform with hinge support use as tuned mass attached through dampers. First, the analysis of structure is carried out without dampers. Then the analysis of structure with single TMD and multiple TMD with different mass ratio of dampers. Trial and error method has been carry out to find the optimum mass ratio for the dampers in the building.

1) General Detail of Structure

The present work involves the study of structure with and without tuned mass dampers. The various aspect ratio and G+50 storey will be consider for the study.

- 2) Material property of building
 - Grade of concrete M30 and grade of steel fe500 are use.
- *3) Dimension of structural member*
 - Size of Beam- Base to 50 storey 230mm X 600mm
 - Size of column- Base to 25 storey 350mmX350mm
 - Size of column -26 to 50 storey 350mmX300mm

4) Primary Load Case

- Dead load as per ETABS
- Live Load-3 KN/m²
 - Floor Finish- 1KN/m²
- 5) Seismic Properties
 - Seismic Load as per IS 1983:2016 (Table 1)

		Table 1			
Table title comes here					
Particulars	Unit	Model-A	Model-B	Model-C	Model-D
Aspect ratio	-	1	1.4	1.6	2
Max. length in X-direction	m	25	30	40	50
Max. length in Y-direction	m	25	25	25	25
No. of floor	nos	G+50	G+50	G+50	G+50
Floor to floor height	nos	3	3	3	3
Total height of structure	m	153	153	153	153
Seismic zone	-	IV	IV	IV	IV
Response reduction factor	-	5	5	5	5
Importance factor	-	1	1	1	1
Soil condition	-	Medium	Medium	Medium	Medium

Table 1

6) Tuned Mass Dampers to be used

Tuned mass damper attached to model structure by loading platform with hinge support and link. Single TMD provide at center of 50 storey and Multiple TMDs provided at center of 30, 35,40,45,50 stories.

Mass ratio of TMD with respect to self-weight of main structure is,

- 1. Single tuned mass Dampers Mass Ratio with respect to self-weight of structure 0.5%, 1%, 2.5% equipped in Model A1, B1, C1, and D1.
- 2. Multiple tuned mass Dampers Mass Ratio with respect to self-weight of structure 0.5%, 1%, 2.5% equipped in Model A2, B2, C2, and D2.

3. Results

All Etabs model has been Analysis by Response Spectrum Function. The significant parameters monitored so far were storey displacement, Storey Acceleration and model period for without damper model, single tuned mass dampers and multiple tuned mass with different location and different aspect ratio of building.

A. Storey Displacement

Without TMD, with single TMD and multiple TMD model are created in ETABS and for the same model analysis has been done for earthquake forces in X-direction and earthquake force in Y-direction. In addition, the result I mention result was compare to understand the behaviour of structure after installation of tuned mass dampers with conventional building.

Table 2
Summary of Storey Displacement for Model A, A1 & A2 when
earthquake force applied in X-direction and Y-direction

$ \begin{array}{c c c c c c } Model \\ Model \\ \hline Model \\ A1 \\ \hline Model \\ A2 \\ \hline Mc \\ A3 \\ \hline Mc \\ A2 \\ \hline Mc$	earthquake force applied in X-direction and Y-direction			
$\begin{tabular}{ c c c c } \hline mm & Displacement \\ \hline X-direction \\ \hline X-direction \\ \hline Model Al & 432.555 & - \\ \hline MR 0.5\% & 24.306 & 94.38\% \\ \hline MR 0.5\% & 24.306 & 94.38\% \\ \hline MR 0.5\% & 75.138 & 82.63\% \\ \hline MR 2.5\% & 75.138 & 82.63\% \\ \hline MR 0.5\% & 19.294 & 95.54\% \\ \hline Model A2 & MR 0.5\% & 19.294 & 95.54\% \\ \hline MR 2.5\% & 8.842 & 97.96\% \\ \hline MR 2.5\% & 8.842 & 97.96\% \\ \hline \hline V-V-direction \\ \hline Model A1 & 453.007 & - \\ \hline MR 0.5\% & 25.299 & 94.42\% \\ \hline Model A1 & MR 1\% & 51.268 & 88.68\% \\ \hline MR 2.5\% & 79.329 & 82.49\% \\ \hline Model A2 & MR 0.5\% & 18.609 & 95.89\% \\ \hline Model A2 & MR 1\% & 12.513 & 97.24\% \\ \hline \end{tabular}$			Maximum Storey	Percentage
$\begin{tabular}{ c c c c c } \hline X-direction & Y-direction & MR 0.5\% & 24.306 & 94.38\% & MR 0.5\% & 24.306 & 94.38\% & MR 0.5\% & 75.138 & 82.63\% & MR 2.5\% & 75.138 & 82.63\% & MR 2.5\% & 75.138 & 82.63\% & MR 2.5\% & 75.138 & 82.63\% & MR 0.5\% & 19.294 & 95.54\% & MR 0.5\% & 19.294 & 95.54\% & MR 2.5\% & 8.842 & 97.96\% & X-direction & Y-direction & Y-direction & Y-direction & Y-direction & Y-direction & Model A1 & MR 0.5\% & 25.299 & 94.42\% & MR 0.5\% & 25.299 & 94.42\% & MR 0.5\% & 79.329 & 82.49\% & MR 0.5\% & 18.609 & 95.89\% & Model A2 & MR 1\% & 12.513 & 97.24\% & MR 0.5\% & 12.513 & 97.24\% & MR 0.5\% & MR 0$	Model		Displacement in	Reduction in
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			mm	Displacement
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			X-direction	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mo	del A	432.555	-
MR 2.5% 75.138 82.63% Model A2 MR 0.5% 19.294 95.54% Model A2 MR 1% 14.068 96.75% MR 2.5% 8.842 97.96% Y-direction Model A1 MR 0.5% 25.299 94.42% Model A1 MR 1% 51.268 88.68% MR 2.5% 79.329 82.49% Model A2 MR 0.5% 18.609 95.89% Model A2 MR 1% 12.513 97.24%		MR 0.5%	24.306	94.38%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Model A1	MR 1%	45.614	89.45%
Model A2 MR 1% 14.068 96.75% MR 2.5% 8.842 97.96% Y-direction Y-direction Model A1 MR 0.5% 25.299 94.42% Model A1 MR 1% 51.268 88.68% MR 2.5% 79.329 82.49% Model A2 MR 0.5% 18.609 95.89%		MR 2.5%	75.138	82.63%
MR 2.5% 8.842 97.96% Wodel A 453.007 - Model A 453.007 - Model A1 MR 0.5% 25.299 94.42% Model A1 MR 1% 51.268 88.68% MR 2.5% 79.329 82.49% Model A2 MR 1% 12.513 97.24%		MR 0.5%	19.294	95.54%
Y-direction Model A 453.007 - Model A1 MR 0.5% 25.299 94.42% Model A1 MR 1% 51.268 88.68% MR 2.5% 79.329 82.49% Model A2 MR 1% 12.513 97.24%	Model A2	MR 1%	14.068	96.75%
Model A 453.007 - MR 0.5% 25.299 94.42% Model A1 MR 1% 51.268 88.68% MR 2.5% 79.329 82.49% Model A2 MR 0.5% 18.609 95.89%		MR 2.5%	8.842	97.96%
MR 0.5% 25.299 94.42% Model A1 MR 1% 51.268 88.68% MR 2.5% 79.329 82.49% Model A2 MR 0.5% 18.609 95.89%			Y-direction	
Model A1 MR 1% 51.268 88.68% MR 2.5% 79.329 82.49% MR 0.5% 18.609 95.89% Model A2 MR 1% 12.513 97.24%	Mo	del A	453.007	-
MR 2.5% 79.329 82.49% MR 0.5% 18.609 95.89% Model A2 MR 1% 12.513 97.24%		MR 0.5%	25.299	94.42%
MR 0.5% 18.609 95.89% Model A2 MR 1% 12.513 97.24%	Model A1	MR 1%	51.268	88.68%
Model A2 MR 1% 12.513 97.24%		MR 2.5%	79.329	82.49%
		MR 0.5%	18.609	95.89%
MR 2 5% 8 809 98 06%	Model A2	MR 1%	12.513	97.24%
0.007 90.0070		MR 2.5%	8.809	98.06%

Table 3 Summary of Storey Displacement for Model B, B1 and B2 whenearthquake force applied in X-direction and Y-direction

whene and the tore applied in M direction and T direction				
		Maximum Storey	Percentage	
M	odel	Displacement in	Reduction in	
		mm	Displacement	
	X-direction			
Mo	del B	365.077	-	
	MR 0.5%	21.645	94.07%	
Model B1	MR 1%	66.826	81.70%	

	MR 2.5%	70.919	80.57%
	MR 0.5%	19.525	94.65%
Model B2	MR 1%	14.336	96.07%
	MR 2.5%	11.171	96.94%
		Y-direction	
Mo	del B	498.798	-
	MR 0.5%	23.586	95.27%
Model B1	MR 1%	87.858	82.39%
	MR 2.5%	90.778	81.80%
	MR 0.5%	23.197	95.35%
Model B2	MR 1%	16.161	96.76%
	MR 2.5%	12.895	97.41%

Table 4 Summary of Storey Displacement for Model C, C1 and C2 when earthquake force applied in X-direction and Y-direction

		Maximum Storey	Percentage Reduction
Mo	del	del Displacement in mm in Displacement	
		X-direction	
Mod	lel C	346.500	-
	MR 0.5%	67.084	80.64%
Model C1	MR 1%	70.033	79.79%
	MR 2.5%	70.486	79.66%
	MR 0.5%	18.618	94.63%
Model C2	MR 1%	14.718	95.75%
	MR 2.5%	13.696	96.05%
		Y-direction	
Mod	lel C	520.105	-
	MR 0.5%	95.917	81.56%
Model C1	MR 1%	34.966	93.28%
	MR 2.5%	152.541	70.67%
	MR 0.5%	26.433	94.92%
Model C2	MR 1%	19.940	96.17%
	MR 2.5%	17.267	96.68%

Table 5 Summary of Storey Displacement for Model D, D1 and D2 when earthquake force applied in X-direction and Y-direction

	1 11		
		Maximum Storey	Percentage
N	Aodel	Displacement in mm	Reduction in
		*	Displacement
		X-direction	
М	odel D	318.848	-
	MR 0.5%	60.476	81.03%
Model D1	MR 1%	45.945	85.59%
	MR 2.5%	21.369	93.30%
	MR 0.5%	14.974	95.30%
Model D2	MR 1%	16.427	94.85%
	MR 2.5%	14.638	95.41%
		Y-direction	
М	odel D	561.916	-
	MR 0.5%	101.170	82.00%
Model D1	MR 1%	58.212	89.64%
	MR 2.5%	24.156	95.70%
	MR 0.5%	21.153	96.24%
Model D2	MR 1%	20.389	96.37%
	MR 2.5%	23.683	95.79%

B. Storey Acceleration

Similar model used to find out the maximum storey acceleration when earthquake force applied in X-direction and Y-direction. After analysis, I got result. The result is used to compared and understand behaviour of structure after installation of dampers. In addition, the percentage of reduction of storey acceleration due to installation of Single TMD and Multiple TMD.

Table 6 Summary of Storey Acceleration for Model A, A1 & A2 when earthquake force applied in X-direction and Y-direction

entage ction in eration
eration -
-
-
-
30%
59%
26%
84%
98%
27%
-
25%
35%
81%
23%
67%
82%

Table 7 Summary of Storey Acceleration for Model B, B1 and B2 when earthquake force applied in X-direction and Y-direction

-	isiee upplied in it d	rection and 1-direction	
		Maximum Storey	Percentage
	Model	Acceleration in	Reduction in
		mm/sec ²	Acceleration
	X-D	irection	
	Model B	165.640	
	MR 0.5%	96.120	41.97%
Model B1	MR 1%	85.230	48.55%
	MR 2.5%	90.430	45.41%
	MR 0.5%	85.270	48.52%
Model B2	MR 1%	87.888	46.94%
	MR 2.5%	105.984	36.02%
	Y-D	irection	
	Model B	189.160	
	MR 0.5%	91.100	51.84%
Model B1	MR 1%	95.880	49.31%
	MR 2.5%	99.060	47.63%
	MR 0.5%	100.078	47.09%
Model B2	MR 1%	100.232	47.01%
	MR 2.5%	105.702	44.12%

Table 8 Summary of Storey Acceleration for Model C, C1 and C2 when earthquake force applied in X-direction and Y-direction

foree appried in re direction and r direction				
Model	Maximum Storey Acceleration in mm/sec ²	Percentage Reduction in Acceleration		
X-Direction				
Model C	161.940	-		

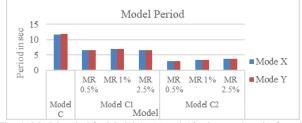

	MR 0.5%	86.640	46.50%
Model C1	MR 1%	80.680	50.18%
	MR 2.5%	92.090	43.13%
	MR 0.5%	83.880	48.20%
Model C2	MR 1%	82.319	49.17%
	MR 2.5%	97.140	40.01%
		Y-Direction	
Ν	Iodel C	193.890	
	MR 0.5%	102.570	47.10%
Model C1	MR 1%	95.010	51.00%
	MR 2.5%	108.999	43.78%
	MR 0.5%	101.350	47.73%
Model C2	MR 1%	95.570	50.71%
	MR 2.5%	106.590	45.03%
		,	

Table 9 Summary of Storey Acceleration for Model D, D1 and D2 when earthquake force applied in X-direction and Y-direction

		Maximum Storey	Percentage
Model		Acceleration in	Reduction in
		mm/sec ²	Acceleration
	X-]	Direction	
Mo	odel D	155.080	-
	MR 0.5%	80.050	48.38%
Model D1	MR 1%	81.567	47.40%
	MR 2.5%	96.990	37.46%
	MR 0.5%	68.290	55.96%
Model D2	MR 1%	67.026	56.78%
	MR 2.5%	64.500	58.41%
	Y-]	Direction	
Mo	odel D	203.010	-
	MR 0.5%	105.010	48.27%
Model D1	MR 1%	90.669	55.34%
	MR 2.5%	90.820	55.26%
	MR 0.5%	80.640	60.28%
Model D2	MR 1%	85.309	57.98%
	MR 2.5%	72.380	64.35%

C. Model Period

Similar model used to carry out model period when earthquake forces applied in X-direction and Y-direction. In addition, the result compare to understand the behavior after installation of single TMD and multiple TMD

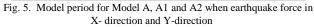


Table 10 Model period for Model C, C1 and C2 when earthquake force in X-direction and Y-direction.

F	1110		11101					
	Model C	Model C1			Model C2			
		MR 0.5%	MR 1%	MR 2.5%	MR 0.5%	MR 1%	MR 2.5%	
Unit	sec	sec	sec	sec	sec	sec	sec	
Mode X	11.585	6.612	6.909	6.598	3	3.291	3.752	
Mode Y	11.891	6.612	6.909	6.598	3	3.291	3.752	

Table 11

Model period for Model B, B1 and B2 when earthquake force in X- direction and Y-direction

	Model B	Model B1			Model B2		
		MR 0.5% MR 1% MR 2.5%		MR 0.5%	MR 1%	MR 2.5%	
Unit	sec	sec	sec	sec	sec	sec	sec
Mode X	11.499	3.851	6.556	6.414	3.636	3.525	3.102
Mode Y	11.502	3.782	4.983	6.414	3.636	2.966	2.132

 Table 12

 Model period for Model C, C1 and C2 when earthquake force in X- direction and Y-direction

inour period for moder e, er and ez when earanquate force mitt aneetaon and r aneetaon							i aneetton
	Mode C	Model C1			Model C2		
		MR 0.5%	MR 1%	MR 2.5%	MR 0.5%	MR 1%	MR 2.5%
Unit	sec	sec	sec	sec	sec	sec	sec
Mode X	11.585	6.612	6.909	6.598	3	3.291	3.752
Mode Y	11.891	6.612	6.909	6.598	3	3.291	3.752

Table 13

Model period for Model D, D1and D2 when earthquake force in X- direction and Y-direction								
	Model D	Model D1			Model D2			
		MR 0.5%	MR 1%	MR 2.5%	MR 0.5%	MR 1%	MR 2.5%	
Unit	sec	sec	sec	sec	sec	sec	sec	
Mode X	11.721	6.694	5.181	3.906	3.808	3.891	4.217	
Mode Y	12.821	7.694	6.181	4.906	4.208	4.021	4.317	

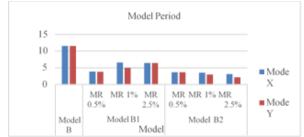


Fig. 6. Model period for Model B, B1 and B2 when earthquake force in Xdirection and Y-direction

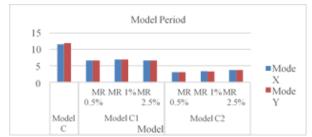


Fig. 7. Model period for Model C, C1 and C2 when earthquake force in Xdirection and Y-direction

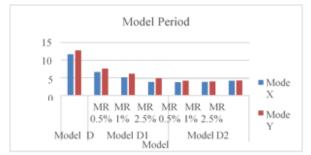


Fig. 8. Model period for Model D, D1 and D2 when earthquake force in X-direction and Y-direction

4. Conclusion

• Use loading platform with hinged support gives satisfying

reduction in vibration when earthquake load applied in Xdirection and Y-direction.

• From the study, TMD installed structure efficiently reduce storey displacement, storey acceleration, Storey force when earthquake forces applied on X and Y direction.

1 87 1

- It observed that, single tuned mass damper model A1 with MR 0.5% is efficiently reduced earthquake excitation.
- From the study concluded that multiple tuned mass damper, model D2 with MR 2.5 % efficiently reduce vibration of structure.
- From the study concluded that Square shape structure is effective for single tuned mass dampers with economical perspective and multiple tuned mass dampers are effective for square and rectangle shape structure.

References

- Igusa and Xu, "Vibration control using multiple tuned mass dampers," 1994.
- [2] Kareem and Kline, "Performance of multiple mass dampers under random loading," 1995.
- [3] Abe, M., and Igusa, T, 1995, "Tuned mass dampers for structures with closely spaced natural frequencies."
- [4] Joshi, A. S., and Jangid, R. S. "Optimum parameters of multiple tuned mass dampers for base-excited damped systems," 1997.
- [5] Han, B., and Li, C, 2006, "Seismic response of controlled structures with active multiple tuned mass damper.
- [6] Han, B., and Li, C, 2008, "Characteristics of linearly distributed parameter-based multiple- tuned mass dampers."
- [7] Zuo, L, 2009, "Effective and robust vibration control using series multiple tuned-mass dampers."
- [8] Agarwal, P., and Shrikhande, M. "Earthquake resistance design of structures", New Delhi, PHI Learning, 2008.
- [9] Han, B., and Li, C, 2008, "Characteristics of linearly distributed parameter-based multiple- tuned mass dampers." Struct. Control Health Monit., Vol. 15, 839–856.
- [10] Lindh, W. C, 2010, "Dynamic range implications for the effectiveness of semi-active tuned mass damper." Department of civil and environmental engineering, MIT.
- [11] Mishra, R, 2011, "Application of tuned mass damper for vibration control of frame structures under seismic excitations." Department of Civil Engineering, NIT Rourkela.
- [12] Clark A.J. "Multiple passive TMDs for reducing earthquake induced building motion," 1988.