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Abstract: In this paper an attempt has been made to find out the 

mapping pattern of a complex variable z with a unimodular 

quadratic function f(z), where all the coefficients of the quadratic 

are unity. Applying this concept one can conclude the solution set 

of all possible z or can determine the locus of z on Argand Plane, 

when f(z) lies on a unit circle whose center is at origin. Also 

attempted to find out the mapping pattern of a quadratic function 

f(z) of a unimodular complex variable z, where all the coefficients 

of the quadratic are unity. Applying this concept one can conclude 

the solution set of all possible f(z) or can determine the locus of f(z) 

on Argand Plane, when z lies on a unit circle whose center is at 

origin.  
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1.  To find out the mapping pattern of a complex variable z         

; when f(z)= z2 + z + 1 is unimodular, i.e., f (z) lies on a unit 

circle with centre at origin :  

1)( zf        

112  zz     

1)()( 2   zz         

12   zz .…..…(1) 

        ; where   and 
2 are the imaginary cube roots of unity. 

 

That means the product of the distances of a variable point P(z)  

from two fixed points A )(   and  B )( 2  on the Argand Plane 

is 1. 

 

Suppose yixz  Ryx ,; 1, i .   
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So, we apply distance formula and get 
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023)(2)( 2222222  yxxyxxyx …..….(2) 

 

Equation (2) is satisfied by infinitely many points                    

),( yx including (0,0), (-1,0), (0,1), (0,-1), (-1,1), (-1,-1), 
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So there are infinitely many solutions of  z  including 0, -1, i,     

-i, -1+ i, -1- i, 
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Hence, the solution set of  z  is 

 023)(2)(: 2222222  yxxyxxyxyixz . 

 

Let’s plot the graph (Fig. 1) to understand the mapping pattern.  
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Fig. 1 

 

Note: 

(i) Every complex number f (z) on the circle is mapped    

to another complex number  z  on the locus traced       

by z. 

(ii) The locus of z is a closed curve. 

(iii) The locus of z is symmetric about the line 2/1x . 

(iv) The locus of z is symmetric about the line 0y . 

(v) The locus of z is symmetric about the point )0,2/1( . 

2. To find out the mapping pattern of a quadratic function 

f(z)= z2 + z + 1; when the complex variable z  is unimodular, 

i.e., z  lies on a unit circle with centre at origin : 

1z  

Let 
iez   

1)( 2  zzzf 12   ii ee

1)sin(cos)2sin2(cos   ii                                                                                     

)sin2(sin)1cos2(cos   i  

Suppose yixzf )( Ryx ,; 1, i . 

Then )sin2(sin)1cos2(cos   iyix  

 

Separating real and imaginary parts, we get 

 cos2cos1 x      ………(3)           

             and         

 sin2sin y             ………(4) 

 

Squaring and adding (3) and (4), we get 
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Further, (3) can be written as 
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03)(4)( 2222222  yxyxxyx       ………(6)                                     

Equation (6) is satisfied by infinitely many points                 

),( yx  including (0,0), (1,0), (3,0), (0,1), (0,-1).  

So there are infinitely many solutions of  f (z) including  0, 1, 3, 

i, -i.   

Hence, the solution set of  f (z)   is 

 03)(4)(:)( 2222222  yxyxxyxyixzf . 

 

Let’s plot the graph (Fig. 2) to understand the mapping pattern.  
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

Fig. 2 

 

Note: 

(i) Every complex number z on the circle is mapped to 

another complex number f (z) on the locus traced        

by f (z). 

(ii) The locus of f (z) is a closed curve. 

(iii) The locus of f (z) is symmetric about the line 0y . 

(iv) The locus of f (z) has no point of symmetry.  
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