Mapping of a Complex Variable with a Unimodular Quadratic Function where all the Coefficients of the Quadratic are Unity versus Mapping of a Quadratic Function of a Unimodular Complex Variable where all the Coefficients of the Quadratic are Unity

Kalyan Roy*
Life Member, Indian Mathematical Society, Pune, India

Abstract

In this paper an attempt has been made to find out the mapping pattern of a complex variable z with a unimodular quadratic function $f(z)$, where all the coefficients of the quadratic are unity. Applying this concept one can conclude the solution set of all possible z or can determine the locus of z on Argand Plane, when $f(z)$ lies on a unit circle whose center is at origin. Also attempted to find out the mapping pattern of a quadratic function $f(z)$ of a unimodular complex variable z, where all the coefficients of the quadratic are unity. Applying this concept one can conclude the solution set of all possible $f(z)$ or can determine the locus of $f(z)$ on Argand Plane, when z lies on a unit circle whose center is at origin.

Keywords: Unimodular complex variable, Unimodular complex function, Complex mapping, Complex Quadratic, Graph based complex analysis

1. To find out the mapping pattern of a complex variable z ; when $f(z)=z^{2}+z+1$ is unimodular, i.e., $f(z)$ lies on a unit circle with centre at origin :
$|f(z)|=1$
$\Rightarrow\left|z^{2}+z+1\right|=1$
$\Rightarrow\left|(z-\omega)\left(z-\omega^{2}\right)\right|=1$
$\Rightarrow|z-\omega|\left|z-\omega^{2}\right|=1$.
; where ω and ω^{2} are the imaginary cube roots of unity.
That means the product of the distances of a variable point $\mathrm{P}(z)$ from two fixed points $\mathrm{A}(\omega)$ and $\mathrm{B}\left(\omega^{2}\right)$ on the Argand Plane is 1 .

Suppose $z=x+i y ; x, y \in R, i=\sqrt{-1}$.

Now $\omega=\frac{-1}{2}+\frac{\sqrt{3}}{2} i, \omega^{2}=\frac{-1}{2}-\frac{\sqrt{3}}{2} i$.

So, we apply distance formula and get

$$
\begin{align*}
& \sqrt{\left(x+\frac{1}{2}\right)^{2}+\left(y-\frac{\sqrt{3}}{2}\right)^{2}} \cdot \sqrt{\left(x+\frac{1}{2}\right)^{2}+\left(y+\frac{\sqrt{3}}{2}\right)^{2}}=1 \\
\Rightarrow & \left\{\left(x+\frac{1}{2}\right)^{2}+\left(y-\frac{\sqrt{3}}{2}\right)^{2}\right\} \cdot\left\{\left(x+\frac{1}{2}\right)^{2}+\left(y+\frac{\sqrt{3}}{2}\right)^{2}\right\}=1 \\
\Rightarrow & \left(x+\frac{1}{2}\right)^{4}+2\left(x+\frac{1}{2}\right)^{2}\left(y^{2}+\frac{3}{4}\right)+\left(y^{2}-\frac{3}{4}\right)^{2}=1 \\
\Rightarrow & \left(x^{2}+x+\frac{1}{4}\right)^{2}+2\left(x^{2}+x+\frac{1}{4}\right)\left(y^{2}+\frac{3}{4}\right)+\left(y^{2}-\frac{3}{4}\right)^{2}=1 \\
\Rightarrow & \left(x^{2}+y^{2}\right)^{2}+2 x\left(x^{2}+y^{2}\right)+3 x^{2}+2 x-y^{2}=0 \ldots \ldots . .(2 \tag{2}
\end{align*}
$$

Equation (2) is satisfied by infinitely many points (x, y) including $(0,0),(-1,0),(0,1),(0,-1),(-1,1),(-1,-1)$, $\left(\frac{-1}{2}, \frac{\sqrt{7}}{2}\right),\left(\frac{-1}{2}, \frac{-\sqrt{7}}{2}\right)$.

So there are infinitely many solutions of z including $0,-1, i$, $-i,-1+i,-1-i, \frac{-1}{2}+\frac{\sqrt{7}}{2} i, \frac{-1}{2}-\frac{\sqrt{7}}{2} i$.

Hence, the solution set of z is
$\left\{z=x+i y:\left(x^{2}+y^{2}\right)^{2}+2 x\left(x^{2}+y^{2}\right)+3 x^{2}+2 x-y^{2}=0\right\}$.
Let's plot the graph (Fig. 1) to understand the mapping pattern.

Fig. 1
Note:
(i) Every complex number $f(z)$ on the circle is mapped to another complex number z on the locus traced by z.
(ii) The locus of z is a closed curve.
(iii) The locus of z is symmetric about the line $x=-1 / 2$.
(iv) The locus of z is symmetric about the line $y=0$.
(v) The locus of z is symmetric about the point $(-1 / 2,0)$.
2. To find out the mapping pattern of a quadratic function $f(z)=z^{2}+z+1$; when the complex variable z is unimodular, i.e., z lies on a unit circle with centre at origin :
$|z|=1$
Let $z=e^{i \theta}$
$\Rightarrow f(z)=z^{2}+z+1=e^{i 2 \theta}+e^{i \theta}+1$
$=(\cos 2 \theta+i \sin 2 \theta)+(\cos \theta+i \sin \theta)+1$
$=(\cos 2 \theta+\cos \theta+1)+i(\sin 2 \theta+\sin \theta)$
Suppose $f(z)=x+i y ; \quad x, y \in R, i=\sqrt{-1}$.
Then $x+i y=(\cos 2 \theta+\cos \theta+1)+i(\sin 2 \theta+\sin \theta)$
Separating real and imaginary parts, we get

$$
\begin{align*}
& x-1=\cos 2 \theta+\cos \theta \tag{3}\\
& \quad \text { and } \\
& y=\sin 2 \theta+\sin \theta \tag{4}
\end{align*}
$$

Squaring and adding (3) and (4), we get
$(x-1)^{2}+y^{2}=2+2 \cos \theta$
$\Rightarrow \cos \theta=\frac{(x-1)^{2}+y^{2}-2}{2}$
Further, (3) can be written as
$x-1=2 \cos ^{2} \theta-1+\cos \theta$
$\Rightarrow x-1=2\left\{\frac{(x-1)^{2}+y^{2}-2}{2}\right\}^{2}-1+\left\{\frac{(x-1)^{2}+y^{2}-2}{2}\right\}$

$$
\begin{align*}
& \Rightarrow x=\frac{\left\{(x-1)^{2}+y^{2}-2\right\}^{2}}{2}+\frac{(x-1)^{2}+y^{2}-2}{2} \\
& \Rightarrow 2 x=\left(x^{2}+y^{2}-2 x-1\right)^{2}+x^{2}+y^{2}-2 x-1 \\
& \Rightarrow\left(x^{2}+y^{2}-2 x-1\right)^{2}+x^{2}+y^{2}-4 x-1=0 \\
& \Rightarrow\left(x^{2}+y^{2}\right)^{2}-4 x\left(x^{2}+y^{2}\right)+3 x^{2}-y^{2}=0 \tag{6}
\end{align*}
$$

Equation (6) is satisfied by infinitely many points (x, y) including $(0,0),(1,0),(3,0),(0,1),(0,-1)$.

So there are infinitely many solutions of $f(z)$ including $0,1,3$, $i,-i$.

Hence, the solution set of $f(z)$ is
$\left\{f(z)=x+i y:\left(x^{2}+y^{2}\right)^{2}-4 x\left(x^{2}+y^{2}\right)+3 x^{2}-y^{2}=0\right\}$.
Let's plot the graph (Fig. 2) to understand the mapping pattern.

Fig. 2
Note:
(i) Every complex number z on the circle is mapped to another complex number $f(z)$ on the locus traced by $f(z)$.
(ii) The locus of $f(z)$ is a closed curve.
(iii) The locus of $f(z)$ is symmetric about the line $y=0$.
(iv) The locus of $f(z)$ has no point of symmetry.

References

[1] Stephen D. Fisher, Complex Variables, 2 ed., Dover, 1999.
[2] Henrici, P., Applied and Computational Complex Analysis, Wiley, 1986.
[3] Markushevich, A.I., Theory of Functions of a Complex Variable, Prentice-Hall, 1965.
[4] Ahlfors, L., Complex Analysis, 3 ed., McGraw-Hill, 1979.
[5] Needham, T., Visual Complex Analysis, Oxford, 1997.
[6] Marsden \& Hoffman, Basic Complex Analysis, 3 ed., Freeman, 1999.
[7] Kreyszig, E., Advanced Engineering Mathematics, 10 ed., Wiley, 2011.

