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Abstract: In this paper an attempt has been made to find out the 

mapping pattern of a complex variable z with a unimodular 

quadratic function f(z), where all the coefficients of the quadratic 

are unity. Applying this concept one can conclude the solution set 

of all possible z or can determine the locus of z on Argand Plane, 

when f(z) lies on a unit circle whose center is at origin. Also 

attempted to find out the mapping pattern of a quadratic function 

f(z) of a unimodular complex variable z, where all the coefficients 

of the quadratic are unity. Applying this concept one can conclude 

the solution set of all possible f(z) or can determine the locus of f(z) 

on Argand Plane, when z lies on a unit circle whose center is at 

origin.  
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1.  To find out the mapping pattern of a complex variable z         

; when f(z)= z2 + z + 1 is unimodular, i.e., f (z) lies on a unit 

circle with centre at origin :  
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        ; where   and 
2 are the imaginary cube roots of unity. 

 

That means the product of the distances of a variable point P(z)  

from two fixed points A )(   and  B )( 2  on the Argand Plane 

is 1. 
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So, we apply distance formula and get 
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Equation (2) is satisfied by infinitely many points                    

),( yx including (0,0), (-1,0), (0,1), (0,-1), (-1,1), (-1,-1), 
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So there are infinitely many solutions of  z  including 0, -1, i,     

-i, -1+ i, -1- i, 
i
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Hence, the solution set of  z  is 

 023)(2)(: 2222222  yxxyxxyxyixz . 

 

Let’s plot the graph (Fig. 1) to understand the mapping pattern.  
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Fig. 1 

 

Note: 

(i) Every complex number f (z) on the circle is mapped    

to another complex number  z  on the locus traced       

by z. 

(ii) The locus of z is a closed curve. 

(iii) The locus of z is symmetric about the line 2/1x . 

(iv) The locus of z is symmetric about the line 0y . 

(v) The locus of z is symmetric about the point )0,2/1( . 

2. To find out the mapping pattern of a quadratic function 

f(z)= z2 + z + 1; when the complex variable z  is unimodular, 

i.e., z  lies on a unit circle with centre at origin : 
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Separating real and imaginary parts, we get 

 cos2cos1 x      ………(3)           

             and         

 sin2sin y             ………(4) 

 

Squaring and adding (3) and (4), we get 
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Further, (3) can be written as 
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03)(4)( 2222222  yxyxxyx       ………(6)                                     

Equation (6) is satisfied by infinitely many points                 

),( yx  including (0,0), (1,0), (3,0), (0,1), (0,-1).  

So there are infinitely many solutions of  f (z) including  0, 1, 3, 

i, -i.   

Hence, the solution set of  f (z)   is 

 03)(4)(:)( 2222222  yxyxxyxyixzf . 

 

Let’s plot the graph (Fig. 2) to understand the mapping pattern.  
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

Fig. 2 

 

Note: 

(i) Every complex number z on the circle is mapped to 

another complex number f (z) on the locus traced        

by f (z). 

(ii) The locus of f (z) is a closed curve. 

(iii) The locus of f (z) is symmetric about the line 0y . 

(iv) The locus of f (z) has no point of symmetry.  
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