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Abstract: In this paper an analysis of hydromagnetic turbulent fluid flow over an immersed curved surface is carried out. The curved 

surface was a circular infinite vertical cylinder. The fluid was considered to be electrically conducting while the surface was assumed to 

be insulated. The fluid flows along the axis of the cylinder. The flow is impulsively started and the flow problem analysed thereafter. A 

mathematical formulation of the problem is done using the conservation equations of momentum and energy. The Reynolds stress terms 

were resolved using Prandtl mixing length hypothesis. The arising governing nonlinear partial differential equations are subsequently 

presented as finite difference schemes and simulated using a computer programme. The results were presented graphically showing 

velocity and temperature profiles. The rates of heat transfer are presented in a table. It is observed that increase in both Grashof number 

and Prandtl number leads to an increase in rate of heat transfer. 
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1. Introduction 

The study of fluid flow within a magnetic field is known as hydromagnetic or magnetohydrodynamics. This has been of great 

interest to scientists and engineers in recent years [5]. Most flows which occur in practical applications are turbulent. This term 

denotes a motion in which an irregular fluctuation is superimposed on the mainstream [9]. 

The effect of magnetic field on the turbulent wake of a cylinder in free-surface magnetohydrodynamic channel flow was studied 

by Rhoads et al, [7]. This was done in an MHD flow experiment detailing the modification of vortices in the wake of a circular 

cylinder. The axis of the cylinder was parallel to the applied magnetic field. From the results it was concluded that the reduction 

in effective viscosity was due to the surpression of small scale eddies by the magnetic field. 

Nusselt number is a parameter equal to the dimensionless temperature gradient at the surface and it provides a measure of the 

convection heat transfer occurring at the surface [2]. 

Yoon et. al. [10] presented a numerical study on the fluid flow and heat transfer around a circular cylinder in an aligned magnetic 

field. In the study a two-dimensional laminar fluid flow and heat transfer past a circular cylinder in an aligned magnetic field was 

done using the spectral method. They concluded that as the intensity of applied magnetic field increased, the vortex shedding 

formed in the wake became weaker.  

A numerical investigation of a hydromagnetic turbulent boundary layer fluid flow past a vertical infinite cylinder with Hall 

current was done by Mukuna et. a.l [6].  The flow was modeled using the momentum, energy and concentration conservation 

equations. The model equations were solved by a finite difference method. The effects of flow parameters on the primary velocity, 

secondary velocity, temperature and concentration profiles are investigated. The skin friction, rate of heat and mass transfer are 

computed and presented in tables.  In the experiment the effect of Hall current on Primary velocity was not observed due to 

turbulence while there was decreased secondary velocity profile when Hall parameter wad increased. 

Sarris et al, [8] carried out direct numerical simulations for the transient and turbulent natural convection cooling of an initially 

isothermal quiescent liquid metal placed in a vertical cylinder in the presence of a vertical magnetic field. The numerical results 

showed that the magnetic field had no observable effect at the initial stage of the vertical boundary layer development. They also 

observed that conduction heat transfer was favored during the transition stage. 

The resultant pressure force acting on the surface of a volume partially or completely surrounded by one or more fluids under 

non flow conditions is defined as buoyant force and acts vertically on the volume. This force is equal to the weight of the displaced 

fluid and acts upwards through the centre of gravity of the displaced fluid [4]. 

Fluid can flow in a pipe, in a channel, in an enclosure or over a flat plate or a curved surface. A curved surface may be a cylinder, 

sphere or any other form of surface that is not flat. This study considers the flow of a fluid over an immersed circular cylindrical 

surface.  
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Kanaris et. al. [3], studied a three-dimensional numerical simulation of magnetohydrodynamic flow around a confined circular 

cylinder under low, moderate, and strong magnetic fields. They presented results for values of the Hartmann number, based on the 

duct width, in the range of 0 ≤ Ha ≤ 1120, and the Reynolds number, based on the cylinder diameter and centerline velocity, in the 

range 0 ≤ Re ≤ 5000. The results revealed a non-monotonic dependence of the critical Reynolds number for the onset of vortex 

shedding, with respect to the Hartmann number. They also observed that there is an increase in the flow unsteadiness with 

increasing intensity of the magnetic field. 

In this paper is presented an analysis of heat transfer rates of a hydromagnetic buoyancy driven turbulent fluid flow over an 

immersed curved surface. The curved surface is a circular vertical infinite cylinder. 

2. Mathematical Formulation 

We consider a two dimensional turbulent boundary layer flow. The fluid flow is along a vertical infinitely long cylinder lying 

in the x-y plane. The cylinder is immersed in the fluid. The axis of the cylinder is in the positive x-axis direction and the fluid flows 

upwards positive x-axis direction parallel to the axis of the cylinder. The cylinder is assumed to have non-end effects. The fluid is 

assumed incompressible and viscous. A strong magnetic field of uniform strength H0 is applied along the x-axis. The induced 

magnetic field is considered negligible hence H = (0, 0, H0). The temperature of the surface of the cylinder and the fluid are 

assumed to be the same initially. At time t*>0 the fluid starts moving impulsively with velocity U0 and at the same time the 

temperature of the cylinder is instantaneously raised to  which is maintained constant later on. Given that the flow is over a 

cylinder, cylindrical coordinate form of the governing equations are used. The flow is considered to be along the axial and angular 

components. There is no radial flow. Thus the two dimensions of this flow are x and θ. 

 

 
Fig. 1.  Geometry of the problem 

 

The above flow is governed by the following cylindrical coordinate equations: 
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It is noted that there is no pressure gradient in  - direction and there is no gravitational force also. The boundary and initial 

conditions are: 

everywhere   ,,0,0:0 *****

 TTUUt x                                ……………….….……. (4) 
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The pressure gradient in the x-axis direction results from the change in elevation up the cylinder. Thus:  
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The density difference ρ- ρ may be expressed in terms of the volume coefficient of expansion  defined by: 
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Such that (7) becomes 
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Which simplifies to 
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Using (*) to indicate dimension, equation (9) becomes.  
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Next, we seek to establish the components of the electromagnetic force term in (10) and (2) that is the term:  

The equation of conservation of charge  gives kjr  , a constant, where  zr jjjJ ,,  . The constant is zero since, 

0rj at the cylinder which is insulated. Thus 0rj  everywhere in the flow. Neglecting the ion-slip and thermoelectric effects, 

generalized Ohm’s law including the effects of Hall current gives: 
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For the problem we seek to solve there is no applied electric field hence and thus neglecting electron pressure, equation 

(11) becomes: 
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Where  is the Hall parameter. 

Thus the electromagnetic force along   and x-axis are respectively: 
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Hence the governing equations (10) and (2) are respectively:     
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A. Non-Dimensionalization 

We seek to non-dimensionalize equations (3), (18) and (19). The following scaling variables are applied in the non-

dimensionalization process: 
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The (*) superscript denotes the dimensional variables, Uo is the reference velocity, D is the diameter of the cylinder, T*
w - T*

 is 

the temperature difference between the surface and the free stream temperature. 

Using the scaling variables above yields the following equations:  
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B. Boundary and Initial Conditions 

From equation (20) the non-dimensional form of (5) becomes: 
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C. Prandtl Mixing Length Hypothesis 

We need to solve equations (21), (22) and (23), subject to equations (24), (25) and (26). However the solution of these equations 

is not currently possible due to the Reynolds stress terms. We thus resolve these terms first, for us to be able to work out the 

approximate solution of these equations by a direct numerical method. The momentum equations are resolved using Prandtl mixing 

length hypothesis. The Reynolds stresses in the energy conservation equation are computed in terms of Turbulent Prandtl number 

and Prandtl mixing length hypothesis. Thus equations (21) – (26) become: 
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D. Finite Difference Scheme 

Considering that the systems of partial differential equations (27) – (29) are highly non-linear their  solutions are approximated by 

finite difference method. In the following finite difference scheme the primary velocity Ux is denoted by U and the secondary 

velocity Uθ is denoted by V to reduce the subscripts as i and j are used as subscripts, i corresponding to r as j corresponds to t. The 

equivalent finite difference scheme for equations are respectively:  
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The boundary and initial conditions take the form: 

everywhere  ,0,0,0:0 ),(),(),(  jijiji VUj           …………………………………….(36) 

  i,,ji,V:Uj jiji
2

Re
at   10),(10 ),(),(        …………………………………….…(37) 

 i,,,VU jijiji  as  000 ),(),(),(                ………………………………….…….(38) 

 

Using the boundary and initial conditions we compute values for consecutive grid points for primary velocity, secondary velocities, 

and temperature that is  )1,( jiU ,  )1,( jiV  and )1,( ji in component form. 

The approximate solution was computed using a computer programme and the results are displayed in graphs as shown in figures 

2, 3 and 4.  

E. Determination of the Rate of Heat Transfer 

The rate of heat transfer is determined from the temperature profiles. This is given by: 

                   
5.0




rr
Nu


              ………………………………………………………..(39) 
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This was calculated by numerical differentiation using Newton’s interpolation formula over the first five points as given in the 

following equation: 

                          iiiiiNu ,4,3,2,1,0 316364825
6

5
        ………………………..(40) 

3. Discussion of Results 

 The simulation was considered when the Grashof number is greater than zero, 
4101Gr . In this case the cylinder is at a 

higher temperature than the surrounding leading to cooling of the cylinder by free convection currents resulting in buoyancy 

force. 

A. Primary Velocity Profiles  

From Figure 2 it is noted that: 

(i) Primary velocity is not affected by magnetic parameter and Hall parameter. 

(ii) There is an increase in primary velocity profiles when Grashof number and time parameter are increased. 

(iii) There is no change in primary velocity when Prandtl is increased. 

B. Secondary Velocity Profiles 

From Figure 3 it is noted that: 

(i) The secondary velocity profiles increase in magnitude with increase in time parameter and magnetic parameter. 

(ii) Variation in Grashof number does not affect secondary velocity profiles 

(iii) There is no variation in velocity profiles with variation in Prandtl number. 

(iv) There is decrease in the secondary velocity profiles with increase in Hall parameter. 

C. Temperature Profiles 

From Figure 4 it is noted that: 

(i) There is no observable variation in temperature profiles with variation in magnetic parameter and Hall parameter. 

(ii) There is increase in temperature profiles with increase in time parameter. 

(iii) There is decrease in temperature profiles with increase in Grashof number  

(iv) Increase in Prandtl number leads to decrease in temperature profiles. 

D. Heat Transfer Rates 

From Table 1 it is observed that 

i) Change in time does not affect the rate of heat transfer. 

ii) Increase in Grashof number leads to an increase in heat transfer. 

iii) Increase in Prandtl number leads to an increase in heat transfer. 
 

 
Fig. 2.  Primary velocity profiles 

 

 

 

 

 

 

 

 

 M2 m t Gr Grm 

I 2 2 0.2 1.0E4 1.0E4 

II 4 2 0.2 1.0E4 1.0E4 

III 2 4 0.2 1.0E4 1.0E4 

IV 2 2 0.4 1.0E4 1.0E4 

V 2 2 0.2 1.0E3 1.0E4 

VI 2 2 0.2 1.0E4 1.0E3 
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Fig. 3.  Secondary velocity profiles 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.  Temperature profiles 

 

 

 

 

 

 

 

 

 

 

 

 

 M2 m t Gr Grm 

I 2 2 0.2 1.0E4 1.0E4 

II 4 2 0.2 1.0E4 1.0E4 

III 2 4 0.2 1.0E4 1.0E4 

IV 2 2 0.4 1.0E4 1.0E4 

V 2 2 0.2 1.0E3 1.0E4 

VI 2 2 0.2 1.0E4 1.0E3 

 t Gr Grm Pr 

I 0.2 1.0E4 1.0E4 1 

II 0.4 1.0E4 1.0E4 1 

III 0.2 2.0E5 1.0E4 1 

IV 0.4 1.0E4 2.0E5 1 

V 0.2 1.0E3 1.0E4 10 
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Table 1 

Heat transfer rates 

 

 

 

 

 

 

 

 

 

 

 

4. Conclusion 

An analysis of heat transfer rates of a hydromagnetic buoyancy driven turbulent flow of a conducting fluid over a curved surface 

is numerically studied. The effects of various flow parameters on the mean velocities and mean temperature are discussed. There 

was no observable change in Primary velocity with variation in Hall parameter while increase in Grashof number led to increase 

in the primary velocity. Secondary velocity profiles decreased with increase in Hall parameter while there was no observable 

variation in temperature profiles with variation in magnetic parameter and Hall parameter. Change in Prandtl number significantly 

varied the temperature profiles. Increase in both Grashof number and Prandtl number causes an increase in rate of heat transfer. 
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 t Gr Grm Pr Nu 

I 0.2 1.0E4 1.0E4 1 -7.6082E-4 

II 0.4 1.0E4 1.0E4 1 -7.6082E-4 

III 0.2 2.0E5 1.0E4 1 -7.6447E-4 

IV 0.4 1.0E4 2.0E5 1 -7.6447E-4 

V 0.2 1.0E3 1.0E4 10 -2.4090E-4 
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Nomenclature 
 

Symbol                                                                                                                Quantity 

2/  density,Current                                                                     mAj  

2/  Wbintensity, field Magnetic                                                                   mH  

2

0 /  Wbintensity, field magneticConstant                                                                    mH  

st   Time,                                                                       

mVE /  field, Electric                                                                      

sm

U r

/ ly,respective axes                                                                         

 x and , r, in the velocity of Components                                                      U,U, x 
 

2/  fluid,  theof Pressure                                                                      mNP  

2/  fluid,  theof Pressure                                                                     mNPe
 

K  re, temperatuAbsolute                                                                      T  

KkgJCp //  fluid,  theof pressureconstant at heat  Specific                                                                      

mD  diameter, sticCharacteri                                                                       

fluid,  thesfcoordinate lcylindrica lDimensiona                                                           , , *** xr 

Hze  frequency,cyclotron electron                                                                         

st    time,lDimensiona                                                                      *
 

K  re, temperatulDimensiona                                                                      T*
 

K  stream, free in the fluid  theof eTemperatur                                                                      T*

  

Kw   plate, at the fluid  theof eTemperatur                                                                      T*
 

ly,respective axes                                                                            

r  and in  componentsity mean veloc essDimensionl                                                                   V U, 
 

st    time,essDimensionl                                                                          

parameter  Magnetic                                                                    M2
 

parameter Hall                                                                      m  

number Prandtl                                                                     Pr  

number  Prandtl Turbulent                                                                     Prt  

Greek symbols 

 

Symbol                                                                                                               Quantity 

3/  density, Fluid                                                                     mkg  

mskg /  , viscosityoft Coefficien                                                                      

mH /  ty,permeabili Magnetic                                                                   0  

intervals distance and Time                                                               , rt   

sm /  , viscosityKinematic                                                                       2  

se   electron, of   timeCollision                                                                        

re temperatufluid essDimensionl                                                                        

s  m  ty,conductivi    Electrical                                                                     -1-1  

 
 


