Enhance Senses the Facility of Mathematics in Symmetry and Sequences

Urmila Machhindra Patil ${ }^{1}$, Sneha Shashikant Lokhande ${ }^{2 *}$
${ }^{1,2}$ Department of Computer Science and Information Technology, Shri. D. D. Vispute College of Science Commerce and Management, Navi Mumbai, India

Abstract

This study is qualitative, aims to explain the" Enhance senses the facility of Mathematics in symmetry \& sequences" like hell maths. In Mathematics symmetry features a more precise definition $\&$ is typically wont to ask an object that's invariant under some transformation, including translation, reflection, rotation, or scaling. Although these two meanings of symmetry, can sometimes be told apart, they're intricately related \& hence are discussed together during this article. A Sequence is an enumerated collection of objects during which repetitions are allowed \& order matters. A sequence is often defined as a function whose domain is either the set of the natural no. The position of a component during a sequence is its rank or index, it's a natural comfort which the element is that the image. Symmetry is a crucial geometrical concept, commonly exhibited in nature and is employed almost in every field of activity. Artists, professionals, designers of clothing or jewellery, car manufacturers, architects, and lots of others make use of the thought of symmetry. The beehives, the flowers, the tree-leaves, religious symbols, rugs, and handkerchiefs - everywhere you discover symmetrical designs.

Keywords: Symmetry, Sequences, Body, Rotational symmetry.

1. Introduction

Symmetry may be a fundamental concept parading both science and culture. Symmetry is usually viewed as a sort of balance. In mathematics, symmetry has been given a more precise meaning. Asymmetry of some Mathematical object may be a transformation that preserves the thing structure.

A butterfly looks an equivalent as its reflection. The wheel of a car may look an equivalent after being rotated on its axle by 90 degrees (or possibly by 72 or 120 degrees, counting on the actual design. A sequence is an enumerated collection of objects during which repetitions are allowed and order matters. The no. of elements is named the length of the sequence.

2. Body

There are three sorts of symmetry you'll got to realize it. Line symmetry, Plane symmetry, Rotational symmetry. Things are" line " symmetric or "Plane" symmetric if you'll place a mirror on a line or plane and therefore the shape looks an equivalent with or without the mirror. it's perfectly reflected within the mirror. A plane may be a completely flat surface sort of a piece of card.

For an example of a line, symmetry looks at this diagram of
a rectangle. Imagine we place a mirror at the road. we will see how the rectangle has two lines of symmetry. The dotted lines within the lower diagram are what the form on the side of the mirror would appear as if it had been reflected within the mirror. Notice that the reflected image looks an equivalent because the original rectangle.

Fig. 1. Lines of symmetry
In this figure, we attempt to find symmetry by placing a mirror on the diagonal line between two corners. The dark shade shows what part of the rectangle above the mirror seems like when it's reflected. you'll see it doesn't match the rectangle. If the rectangle was square there would be diagonal symmetry also.

Fig. 2.
Plane symmetry is analogous to line symmetry but we glance at 3 D shapes.

[^0]For example, a plane of symmetry of the cube is shown by the dark plane. If there was a mirror where the plane is that the cube would look an equivalent if we glance through the mirror because it would without the mirror.

Fig. 3.
Rotational symmetry is once we can fix some extent on a shape, rotate the form around that time and angle quite 0 and fewer than 360 such the form looks an equivalent after it's rotated.

Look at this shape. If we rotate the form round the centre 120 degrees and 240 degrees' shape will look an equivalent, so it's rotational symmetry. The outcome of a random number generated is predicted.

Fig. 4.

3. The Tale

Sequence may be a set of numbers that follow a particular rule. Each number within the sequence is named a" term". we will often create a formula that tells us what the nth term is (in other words the formula is going to be an equation with the letter " n " in once we replace " n " with " 1 " the equation will tell us the primary number within the sequence once we replace" n" with " 2 " the equation will tell us the 3rd number within the sequence etc.)

Here are some samples of sequences.

Sequence:	Rule:	Formula:
$2,4,6,8,10,12 \ldots$	Even numbers	(formula is: $2 n$)
$1,3,5,7,9,11, \ldots$	Odd numbers	(formula is: $2 n-1$)
$1,4,9,16,25,36, \ldots$	Square numbers	(formula is: n^{2})
$1,10,100,1000,10000$	Powers of 10	(formula is: $10^{(n-1)}$)

If we all know the terms of the sequence, how would we discover the formula for that sequence? Well, a useful gizmo is to write down out the sequence and underneath each pair of numbers write the difference between those two numbers like this.

4	7	10	13		
	3	3	3	3	3

A number within the second row is that the difference between the 2 numbers above it. Notice that within the bottom row there's just one number repeated. during this case, where the repeated number is 3 we all know the formula features a " $3 n$ n" in it.

We then try " $3 n$ " because the formula but notice how far each term" $3 n$ " gives us the incorrect answer. But it's wrong by an equivalent amount (1) whenever. So we will correct the formula we tried and now write the formula because the " $3 n+1$ ". Try it and it works.

4. Results

- (M, A, R, Y) may be a sequence of letters with the letter 'M' first and ' Y ' last. This sequence differs from (A, R, M, Y). Also, the sequence $(1,1,2,3,5,8)$, which contains the amount 1 at two different positions, may be a valid sequence. Sequences are often finite, as in these examples, or infinite, like the sequence of all even positive integers (2, $4,6, \ldots)$.
- A sequences is ordered list of elements that normally defined consistent with this formula, $\mathrm{Sn}=$ a function of $\mathrm{n}=$ $1,2,3, \ldots$ If S may be a sequences $\{\mathrm{Sn} \mid \mathrm{n}=1,2,3, \ldots\}$,]
S1 denotes the primary elements, S2 denoted the second element, and so on.

The indexing set of the sequences, n usually the indexing set may be a number usually the indexing set is a natural number, N or an infinite subset of N .

5. Conclusion

Symmetry and asymmetry are major factors in design. Deciding whether to use symmetry or asymmetry depends on the application, but the seemingly-innocuous choice can make or break a design. You use symmetry on designs that are traditional and require a sense of trust.

You can use the golden ratio to ensure that your layout is pleasing to the eye. No matter which one you decide to use, your designs will be much more appealing if you use the right technique for your application.

As a conclusion here, the subtopics in sequences has interesting to learn and not interesting to learn. Besides that, it
has easy to remembered and not easy to remember. Here, do not all topics are easy. This condition must be identified so that a problem can be solved immediately and correctly among the students.

References

[1] en.m.wikipedia.org
[2] www.project2061.org
[3] www.iejme.com
[4] www.sitepoint.com
[5] www.thoughtco.com

[^0]: *Corresponding author: lokhande.sneha999@gmail.com

