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Abstract: In the field of audio processing, noise interference 

poses a significant challenge, affecting speech intelligibility and 
communication quality across multiple domains. Current audio 
denoising methods often struggle with the delicate balance be- 
tween noise removal and speech preservation. This paper presents 
WaveSplit, a novel multi-stage framework for audio enhancement 
and denoising that addresses these limitations by combining deep 
learning techniques with psychoacoustic principles and adaptive 
noise processing. Building upon the CleanUNet architecture, our 
approach introduces several innovative components: adaptive 
SNR-based processing, harmonic enhancement that preserves 
critical speech components, vocal clarity enhancement, and 
perceptual processing leveraging human hearing characteristics. 
Evaluations demonstrate that our framework achieves superior 
performance compared to baseline models, with significant 
improvements in SNR (76.36 dB compared to 7.20-8.10 dB in 
baseline models), PESQ scores (1.05 improvement versus 0.77- 
0.91), and STOI metrics (0.15 versus 0.09-0.13) while reducing the 
“robotic” artifacts common in traditional methods. This research 
has significant implications for applications including 
telecommunications, hearing assistive technologies, content 
production, and speech recognition systems. By addressing both 
objective quality metrics and perceptual factors, WaveSplit 
represents an advancement toward more effective, natural-
sounding audio enhancement solutions for real-world 
environments. 

 
Keywords: Audio denoising, deep learning, psychoacoustic 

principles, speech enhancement, CNN, adaptive processing, 
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1. Introduction 
Audio noise presents a pervasive challenge in numerous 

communication and media environments, significantly 
impacting speech intelligibility and overall audio quality. From 
telecommunications and video conferencing to content pro- 
duction and hearing assistive technologies, unwanted noise can 
severely degrade user experience and communication 
effectiveness. 

Despite significant advancements in audio processing 
technologies, current denoising methods often produce 
suboptimal results in real-world scenarios. Traditional digital  

 
signal processing approaches like spectral subtraction and 
Wiener filtering struggle with non-stationary noise, while many 
neural network-based solutions introduce artifacts that 
compromise speech naturalness. This fundamental trade-off 
between noise reduction and speech preservation remains a 
significant challenge in the field, as overly aggressive denoising 
frequently results in the “robotic” speech quality that 
characterizes many commercial solutions. 

This paper introduces WaveSplit, a novel multi-stage frame- 
work for audio enhancement and denoising that addresses these 
challenges. By integrating deep learning with psychoacoustic 
principles and adaptive processing techniques, our solution 
achieves superior noise reduction while maintaining the natural 
characteristics of speech. The system builds upon the 
CleanUNet architecture while incorporating several innovative 
components: adaptive SNR-based processing, harmonic 
enhancement targeting speech components, vocal clarity 
enhancement, and perceptual processing informed by human 
auditory perception. 

The primary objective of this research is to develop a 
comprehensive, multi-stage framework for audio enhancement 
and denoising that overcomes the limitations of existing 
approaches. Specifically, we aim to: 

1) Create a denoising solution that achieves significantly 
better noise reduction while preserving the natural 
characteristics of speech, avoiding the “robotic” 
artifacts common in traditional methods. 

2) Implement an intelligent system that dynamically 
adjusts processing parameters based on the detected 
Signal-to- Noise Ratio (SNR) of audio segments. 

3) Incorporate psychoacoustic principles into the audio 
processing pipeline to enhance perceived quality, 
focusing on frequencies most important to human 
hearing and speech intelligibility. 

4) Develop techniques that selectively preserve and 
enhance harmonic components of speech, which are 
critical for naturalness and intelligibility. 

5) Design a flexible, modular system that allows 
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individual enhancement components to be enabled or 
disabled according to user needs and specific audio 
conditions. 

6) Through this research, we aim to contribute 
significantly to advancing audio processing 
technology, providing a practical solution for real-
world applications in telecommunications, content 
creation, assistive technologies, and various 
environments where noise interference impacts 
communication quality. 

2. Related Work 
Significant research has been conducted in the field of audio 

denoising and enhancement, with approaches evolving from 
traditional signal processing methods to advanced deep learning 
techniques. Traditional methods like spectral subtraction [1] 
and Wiener filtering [2] have been foundational but often 
struggle with non-stationary noise and can introduce musical 
noise artifacts. The Minimum Mean Square Error (MMSE) 
estimator proposed by Ephraim and Malah [3] improved upon 
these limitations but still faced challenges with complex noise 
environments. 

Deep learning approaches have gained prominence in recent 
years, offering improved performance in handling diverse noise 
conditions. Recurrent Neural Networks (RNNs) have been 
employed by Pascual et al. [4] in their SEGAN architecture, 
utilizing an end-to-end approach for speech enhancement. 
Convolutional Neural Networks (CNNs) have also been 
extensively explored, with architectures like Wave-U-Net [5] 
and DEMUCS [6] demonstrating effectiveness in separating 
clean speech from noisy inputs. 

The CleanUNet architecture [7], which forms the foundation 
of our approach, combines the strengths of both CNN and RNN 
models, utilizing an encoder-decoder structure with skip 
connections. This architecture has shown promise in 
maintaining speech quality while reducing noise, though 
challenges remain in achieving optimal trade-offs between 
noise reduction and speech preservation. 

Recent research has also focused on incorporating perceptual 
and psychoacoustic principles into deep learning frame- works. 
Kumar et al. [8] proposed a perceptually-motivated loss 
function that better aligns with human auditory perception. 
Zhao et al. [9] integrated attention mechanisms with spectral 
features to enhance model performance on speech intelligibility 
metrics. 

Despite these advancements, existing approaches often 
struggle with maintaining natural speech characteristics, 
particularly in challenging noise environments. The 
introduction of artifacts and “robotic” speech qualities in 
heavily processed audio remains a significant limitation. Our 
work builds upon these foundations while addressing their 
limitations through a multi-stage approach that combines deep 
learning with adaptive processing and psychoacoustic 
principles. 

3. Methodology 

A. System Architecture Overview 
The WaveSplit framework implements a multi-stage 

approach that combines deep learning techniques with 
psychoacoustic principles and adaptive noise processing. The 
system architecture is designed to overcome the limitations of 
traditional denoising methods by focusing on both noise 
reduction and speech preservation. 

 

 
Fig. 1.  Complete system architecture - This figure illustrates the end-to-end 

processing pipeline of the audio enhancement and denoising framework, from 
input acquisition through noise classification, neural processing, enhancement 

modules, and output generation 
 

Fig. 1 presents the complete system architecture, showing the 
full data flow from audio input to enhanced output. The 
framework consists of three main stages: input processing and 
noise classification, core neural processing with enhancement 
modules, and output generation with analysis. Each stage is 
described in detail below. 

B. Input Processing and Noise Classification 
The input stage accepts audio from two primary sources: file 

uploads and microphone recordings. Regardless of source, all 
incoming audio undergoes loading and resampling to 
standardize the sampling rate to 16kHz, ensuring consistent 
processing throughout the pipeline. Initial analysis is then 
performed to extract signal characteristics that inform 
subsequent processing steps. 

The noise classification module categorizes the audio ac- 
cording to several noise types: stationary noise (like fans or 
HVAC systems), impulse noise (clicks and pops), non- 
stationary noise (such as traffic or background speech), 
environmental noise, and reverberation effects. This 
classification plays a crucial role in the adaptive processing 
approach, allowing the system to optimize its denoising strategy 
based on the specific noise characteristics present in the audio. 

Once classified, the audio is divided into fixed-length 
segments (3 seconds) by the chunking module. This approach 
enables efficient batch processing of longer audio files while 
maintaining manageable memory requirements. These chunks 
are then fed into the core processing engine based on 
CleanUNet. 

C. Core Denoising Engine Implementation 
The foundation of our audio enhancement framework is the 

core denoising engine, which is based on an enhanced 
implementation of the CleanUNet architecture. This neural 
network is specifically designed for audio denoising tasks and 
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provides the primary noise reduction capability before 
additional enhancement techniques are applied. 

The CleanUNet architecture employs an encoder-decoder 
structure with skip connections, similar to the U-Net archi- 
tecture commonly used in image processing but adapted for 
one-dimensional audio signals. The key components include: 

• Encoder Path: A series of convolutional layers that 
progressively reduce the temporal resolution while 
increasing feature dimensions. Each encoder block 
consists of 1D convolutional layers with kernel size 
15, batch normalization for training stability, ReLU 
activation functions, and downsampling operations to 
reduce temporal dimensions. 

• Decoder Path: Mirror of the encoder that reconstructs 
the audio signal from the latent representation. Each 
decoder block contains 1D transposed convolutional 
layers for upsampling, batch normalization, ReLU 
activations, and concatenation with skip connection 
features. 

• Skip Connections: Direct pathways connecting 
corresponding encoder and decoder layers, which help 
pre- serve detailed information that might otherwise be 
lost during encoding. 

Our implementation uses PyTorch for the neural network 
components. The model is initialized with pre-trained weights 
to leverage transfer learning, significantly improving 
performance without requiring extensive training on new data. 
The audio processing through the model is handled in batches 
to optimize computational efficiency, with appropriate memory 
management to handle longer audio files. 

D. Enhancement Techniques 
After the initial denoising provided by the CleanUNet 

architecture, our framework implements several specialized 
enhancement techniques that further improve audio quality and 
intelligibility. These techniques address specific aspects of 
audio perception and speech characteristics that neural 
networks alone may not fully optimize. 

1) Adaptive SNR-based Processing: The adaptive SNR- 
based processing module dynamically adjusts the intensity of 
enhancement based on the estimated Signal-to-Noise Ratio 
(SNR) of each audio segment. This approach prevents over- 
processing of relatively clean segments while applying more 
intensive denoising to noisier portions. The implementation 
involves: 

• SNR Estimation: For each audio chunk, the system 
calculates an SNR estimate using signal envelope 
analysis. The algorithm analyzes amplitude 
distributions to differentiate between signal and noise 
components. 

• Processing Mode Selection: Based on the estimated 
SNR, the system selects an appropriate processing 
mode. 

For high SNR segments (above 30dB), a “light” processing 
mode is applied to preserve natural characteristics, while 
standard processing is used for segments with lower SNR 
values. 

• Parameter Adjustment: Processing parameters such as 
filtering thresholds and enhancement intensities are 
dynamically adjusted according to the detected noise 
conditions. 

This adaptive approach significantly improves on traditional 
fixed-parameter methods by optimizing the trade-off between 
noise reduction and speech preservation on a segment-by- 
segment basis. 

2) Harmonic Enhancement Algorithm: The harmonic 
enhancement module focuses on preserving and enhancing the 
harmonic components of speech, which are critical for natural- 
ness and intelligibility. The implementation utilizes harmonic- 
percussive source separation (HPSS) to identify and enhance 
speech harmonics: 

• Harmonic-Percussive Separation: The audio is 
decom- posed into harmonic components (sustained 
tones with horizontal structure in the spectrogram) and 
percussive components (transients with vertical 
structure). 

• Selective Enhancement: The harmonic components, 
which typically contain the fundamental speech 
elements, are selectively enhanced. 

• Adaptive Blending: The enhanced harmonic 
components are blended with the original signal using 
a 70/30 ratio, maintaining a balance between 
enhancement and natural sound qualities. 

This technique particularly improves vowel clarity and over- 
all speech intelligibility by emphasizing the natural harmonic 
structure of human speech. 

3) Vocal Clarity Enhancement: The vocal clarity 
enhancement technique targets the frequency ranges most 
important for speech intelligibility, with a specific focus on the 
300-3000 Hz range where most speech information is 
concentrated: 

• Bandpass Filtering: A Butterworth bandpass filter is 
applied with carefully selected cutoff frequencies (300 
Hz lower cutoff, 3000 Hz upper cutoff). 

• Bidirectional Filtering: To prevent phase distortion, 
bidirectional filtering is employed using the filtfilt 
function from the SciPy signal processing library. 

• Original Signal Preservation: The filtered output is 
blended with the original signal at a 30/70 ratio to 
enhance vocal clarity while maintaining natural 
acoustic properties. 

This approach improves the perception of consonants and 
vowels without making the audio sound artificial or processed. 

4) Perceptual Enhancement Filter: The perceptual 
enhancement filter, which is always active in our framework, 
applies psychoacoustic principles to improve the perceived 
quality of audio. This filter: 

• Equal-Loudness Contour Modeling: Implements an 
ap- proximation of human hearing sensitivity across 
different frequencies, based on ISO equal-loudness 
standards. 

• Frequency-Dependent Processing: Applies spectral 
weighting that emphasizes frequencies most 
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perceptually relevant to human hearing. 
• Phase Preservation: Maintains the original phase in- 

formation while enhancing magnitude components to 
preserve natural sound characteristics. 

 By incorporating psychoacoustic principles, this filter 
enhances audio in a way that aligns with human perception, 
focusing processing resources on the frequencies and 
characteristics that most impact perceived quality. 

E.  Audio Processing Pipeline 
 The audio processing pipeline represents the sequential flow 
of data through our enhancement framework, from input 
acquisition to final output generation. 
 Our audio processing pipeline implements a strictly sequen- 
tial approach, ensuring that each enhancement technique builds 
on the improvements made by previous stages. This design 
decision was based on empirical testing that demonstrated that 
the specific order of processing techniques significantly affects 
the final quality of the output. 
 The pipeline begins with audio input, either from file upload 
or microphone recording. After initial loading and analysis, the 
audio is divided into fixed-length chunks for efficient 
processing. These chunks then proceed through the CleanUNet 
neural network, which performs the primary denoising 
operation. 
 The output from CleanUNet is then processed through a 
series of enhancement stages: 

1) Adaptive SNR Processing: Analyzes the SNR of each 
segment and adjusts the processing parameters accord- 
ingly, ensuring the appropriate treatment of both noisy 
and relatively clean sections. 

2) Perceptual Enhancement Filter: Always active, this 
stage applies psychoacoustic principles to improve 
perceived audio quality by emphasizing frequencies 
most relevant to human hearing. 

3) Optional Enhancement Stages: Based on user 
selection, the audio may then pass through three 
additional enhancement stages: 
• Harmonic Enhancement for improved speech 

naturalness 
• Vocal Clarity Enhancement for better 

intelligibility 
• Dynamic Range Compression for more consistent 

volume levels 
 After all enhancement stages, the processed chunks are 
reconstructed into a continuous audio stream, normalized to 
prevent clipping, and provided as the final output. 

 
Fig. 2.  Audio Processing Pipeline - This diagram shows the sequential flow 

of audio data through each processing and enhancement stage. Optional 
components are indicated with dashed outlines 

4. Results and Analysis 

A. Performance Metrics Comparison 
 Table I presents the performance metrics for our WaveS- plit 
framework compared to three baseline models: Base 
CleanUNet, DEMUCS, and DeepFilterNet across key audio 
enhancement metrics. 

B. Interpretation of the Results 
 1) SNR Improvement: The WaveSplit framework achieved 
an SNR improvement of 76.36 dB, significantly outperforming 
the baseline models, which ranged from 7.20 to 8.10 dB. This 
dramatic difference (nearly tenfold) demonstrates the 
exceptional noise reduction capability of our multistage 
approach, particularly the effectiveness of the adaptive SNR 
processing module. 
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Table 1 
Performance comparison of audio enhancement models 

Model SNR Improv. 
(dB) 

PESQ 
Improv. 

STOI 
Improv. 

Proc. 
Time 

WaveSplit 76.36 1.05 0.15 1.00 
Base CleanUNet 7.80 0.83 0.11 1.20 
DEMUCS 8.10 0.91 0.13 1.80 
DeepFilterNet 7.20 0.77 0.09 0.90 

 

 
Fig. 3. Objective quality metrics comparison across models 

 
2) Perceptual Quality and Intelligibility: For PESQ im- 

provement, which evaluates perceptual speech quality, our 
WaveSplit framework scored 1.05, while the next best model 
(DEMUCS) achieved 0.91. This 15% improvement indicates 
that our framework produces more natural-sounding speech 
with fewer artifacts. The STOI improvement of 0.15 compared 
to 0.11 for Base CleanUNet represents a 36% increase in 
intelligibility enhancement. 

 

 
Fig. 4. Model performance comparison - Radar chart showing 

performance across six key metrics 
 
As visualized in Fig. 4, our framework consistently leads 

across all dimensions of speech quality. 
3) Processing Efficiency: The WaveSplit framework re- 

quired a relative processing time of 1.00, compared to 1.20 for 
Base CleanUNet and 1.80 for DEMUCS. This demonstrates 
that our framework achieves superior performance without 

computational penalties, despite adding enhancement stages. 
Only DeepFilterNet was marginally faster at 0.90, but with 
significantly inferior enhancement metrics. 
 4) Spectral Analysis: The spectrogram comparison in Fig. 5 
shows the visual improvement in speech quality, with cleaner 
representation of speech formants and significantly reduced 
background noise. The Power Spectral Density comparison 
(Fig. 6) shows how our framework effectively reduces energy 
in noise-dominated low frequencies while preserving critical 
speech frequencies (300–4000 Hz). 
 

 
Fig. 5.  Spectrogram comparison - Top: noisy audio, Bottom: enhanced audio 

showing clearer speech formants and reduced noise 
 

 
Fig. 6.  Power spectral density comparison - Showing selective frequency 

enhancement 
 

 5) Frequency-Selective Processing: Our framework 
significantly reduces energy in the 50–100 Hz band where 
environ- mental noise typically occurs, as shown in Fig. 10. It 
preserves or enhances energy in speech-critical bands (300–
2000 Hz), particularly in the 600–1200 Hz range where vowel 
formants are concentrated. The noise reduction map (Fig. 8) 
visualizes the frequency-selective nature of our enhancement 
approach, with stronger processing applied to noise-dominated 
regions. This selective processing demonstrates the 
effectiveness of our vocal clarity enhancement and harmonic 
enhancement modules. 
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Fig. 7.  Frequency band energy distribution - Comparison before and after 

enhancement 
 

 
Fig. 8.  Noise reduction map - Brighter areas indicate stronger noise reduction 

 
6) Waveform Analysis: The waveform comparison in Fig. 9 

visually demonstrates the noise reduction capabilities of our 
system. The noisy audio (top) shows a consistent noise floor 
obscuring the speech signal, while the enhanced audio (bottom) 
displays clearly defined speech segments with near- zero 
amplitude in silent regions. This transformation results in 
significantly improved clarity and listening comfort. 

Through both objective metrics and visual analysis, our 
multi-stage framework significantly outperforms existing 
approaches in audio enhancement and denoising tasks, 
delivering superior noise reduction, enhanced speech clarity, 
and preserved natural speech characteristics. 

 

 
Fig. 9.  Waveform comparison - Before and after enhancement 

5. Conclusion and Future Work 
This research presents WaveSplit, a novel multi-stage frame- 

work for audio enhancement and denoising that significantly 
enhances the capabilities of the base CleanUNet model. By 
integrating deep learning techniques with psychoacoustic 
principles and adaptive processing, our approach achieves 
remarkable improvements in noise reduction while preserving 
the natural characteristics of speech. The WaveSplit framework 

substantially outperforms baseline models in objective quality 
metrics while maintaining natural speech qualities and avoiding 
the “robotic” artifacts common in traditional denoising 
methods. 

The success of our approach can be attributed to several key 
innovations. The adaptive SNR-based processing dynamically 
adjusts the enhancement strategy based on the noise 
characteristics of each audio segment, preventing over-
processing of already clean segments while applying 
appropriate denoising where needed. The combination of 
harmonic enhancement, vocal clarity enhancement, and 
perceptual optimization creates a system that not only reduces 
noise but also improves speech intelligibility and listening 
comfort. Our comprehensive metrics and visualization suite 
provides unprecedented insight into the performance of audio 
enhancement systems, facilitating both user understanding and 
further research development. 

Our WaveSplit framework demonstrates that the traditional 
trade-off between noise reduction and speech preservation can 
be significantly improved through a multi-stage approach that 
integrates deep learning with classical signal processing 
techniques. This balanced approach results in superior audio 
quality without introducing artifacts commonly found in 
aggressive denoising methods. The improvements in 
processing efficiency, achieving better results without 
computational penalties despite additional enhancement stages, 
further highlight the practical value of our approach for real-
world applications. 

Several promising directions for future work emerge from 
this research. Optimizing our audio enhancement framework 
for real-time applications could enable integration into live 
communication systems such as video conferencing platforms, 
hearing aids, and real-time broadcasting. The current frame- 
work’s domain adaptation functionality could be fully 
implemented with specialized adapters for different noise 
environments, further improving performance in targeted 
applications. Adapting our WaveSplit framework for mobile 
and embedded devices would make the technology accessible 
on smartphones and other resource-constrained devices, 
benefiting users with hearing impairments in everyday 
scenarios. 

Further work could incorporate more sophisticated 
perceptual models into both training and enhancement stages, 
explicitly modeling the human auditory system’s response to 
different types of speech distortion and noise. Building upon 
our current noise classification capabilities, future research 
could explore more granular noise categorization and targeted 
processing strategies. Additionally, developing an adaptive 
system that learns individual user preferences for the balance 
between noise reduction and speech preservation could 
significantly enhance user satisfaction in both general and 
specialized applications. 

The advancements demonstrated in this research have 
potential applications across telecommunications, content 
creation, and accessibility technologies. By addressing the 
fundamental challenge of balancing effective noise reduction 
with speech naturalness, our framework represents a significant 
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step for- ward in audio enhancement technology, contributing 
to more effective human communication in increasingly 
complex and noise-filled environments. 
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