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Abstract: In the field of audio processing, noise interference
poses a significant challenge, affecting speech intelligibility and
communication quality across multiple domains. Current audio
denoising methods often struggle with the delicate balance be-
tween noise removal and speech preservation. This paper presents
WaveSplit, a novel multi-stage framework for audio enhancement
and denoising that addresses these limitations by combining deep
learning techniques with psychoacoustic principles and adaptive
noise processing. Building upon the CleanUNet architecture, our
approach introduces several innovative components: adaptive
SNR-based processing, harmonic enhancement that preserves
critical speech components, vocal clarity enhancement, and
perceptual processing leveraging human hearing characteristics.
Evaluations demonstrate that our framework achieves superior
performance compared to baseline models, with significant
improvements in SNR (76.36 dB compared to 7.20-8.10 dB in
baseline models), PESQ scores (1.05 improvement versus 0.77-
0.91), and STOI metrics (0.15 versus 0.09-0.13) while reducing the
“robotic” artifacts common in traditional methods. This research
has significant implications for applications including
telecommunications, hearing assistive technologies, content
production, and speech recognition systems. By addressing both
objective quality metrics and perceptual factors, WaveSplit
represents an advancement toward more effective, natural-
sounding audio enhancement solutions for real-world
environments.

Keywords: Audio denoising, deep learning, psychoacoustic
principles, speech enhancement, CNN, adaptive processing,
CleanUNet.

1. Introduction

Audio noise presents a pervasive challenge in numerous
communication and media environments, significantly
impacting speech intelligibility and overall audio quality. From
telecommunications and video conferencing to content pro-
duction and hearing assistive technologies, unwanted noise can
severely degrade user experience and communication
effectiveness.

Despite significant advancements in audio processing
technologies, current denoising methods often produce
suboptimal results in real-world scenarios. Traditional digital
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signal processing approaches like spectral subtraction and
Wiener filtering struggle with non-stationary noise, while many
neural network-based solutions introduce artifacts that
compromise speech naturalness. This fundamental trade-off
between noise reduction and speech preservation remains a
significant challenge in the field, as overly aggressive denoising
frequently results in the “robotic” speech quality that
characterizes many commercial solutions.

This paper introduces WaveSplit, a novel multi-stage frame-
work for audio enhancement and denoising that addresses these
challenges. By integrating deep learning with psychoacoustic
principles and adaptive processing techniques, our solution
achieves superior noise reduction while maintaining the natural
characteristics of speech. The system builds upon the
CleanUNet architecture while incorporating several innovative
components: adaptive SNR-based processing, harmonic
enhancement targeting speech components, vocal clarity
enhancement, and perceptual processing informed by human
auditory perception.

The primary objective of this research is to develop a
comprehensive, multi-stage framework for audio enhancement
and denoising that overcomes the limitations of existing
approaches. Specifically, we aim to:

1) Create a denoising solution that achieves significantly
better noise reduction while preserving the natural
characteristics of speech, avoiding the “robotic”
artifacts common in traditional methods.

2) Implement an intelligent system that dynamically
adjusts processing parameters based on the detected
Signal-to- Noise Ratio (SNR) of audio segments.

3) Incorporate psychoacoustic principles into the audio
processing pipeline to enhance perceived quality,
focusing on frequencies most important to human
hearing and speech intelligibility.

4) Develop techniques that selectively preserve and
enhance harmonic components of speech, which are
critical for naturalness and intelligibility.

5) Design a flexible, modular system that allows
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individual enhancement components to be enabled or
disabled according to user needs and specific audio
conditions.

6) Through this research, we aim to contribute
significantly to advancing audio processing
technology, providing a practical solution for real-
world applications in telecommunications, content
creation, assistive technologies, and various
environments where noise interference impacts
communication quality.

2. Related Work

Significant research has been conducted in the field of audio
denoising and enhancement, with approaches evolving from
traditional signal processing methods to advanced deep learning
techniques. Traditional methods like spectral subtraction [1]
and Wiener filtering [2] have been foundational but often
struggle with non-stationary noise and can introduce musical
noise artifacts. The Minimum Mean Square Error (MMSE)
estimator proposed by Ephraim and Malah [3] improved upon
these limitations but still faced challenges with complex noise
environments.

Deep learning approaches have gained prominence in recent
years, offering improved performance in handling diverse noise
conditions. Recurrent Neural Networks (RNNs) have been
employed by Pascual et al. [4] in their SEGAN architecture,
utilizing an end-to-end approach for speech enhancement.
Convolutional Neural Networks (CNNs) have also been
extensively explored, with architectures like Wave-U-Net [5]
and DEMUCS [6] demonstrating effectiveness in separating
clean speech from noisy inputs.

The CleanUNet architecture [7], which forms the foundation
of our approach, combines the strengths of both CNN and RNN
models, utilizing an encoder-decoder structure with skip
connections. This architecture has shown promise in
maintaining speech quality while reducing noise, though
challenges remain in achieving optimal trade-offs between
noise reduction and speech preservation.

Recent research has also focused on incorporating perceptual
and psychoacoustic principles into deep learning frame- works.
Kumar et al. [8] proposed a perceptually-motivated loss
function that better aligns with human auditory perception.
Zhao et al. [9] integrated attention mechanisms with spectral
features to enhance model performance on speech intelligibility
metrics.

Despite these advancements, existing approaches often
struggle with maintaining natural speech characteristics,
particularly in challenging noise environments. The
introduction of artifacts and “robotic” speech qualities in
heavily processed audio remains a significant limitation. Our
work builds upon these foundations while addressing their
limitations through a multi-stage approach that combines deep
learning with adaptive processing and psychoacoustic
principles.
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3. Methodology

A. System Architecture Overview

The WaveSplit framework implements a multi-stage
approach that combines deep learning techniques with
psychoacoustic principles and adaptive noise processing. The
system architecture is designed to overcome the limitations of
traditional denoising methods by focusing on both noise
reduction and speech preservation.

Fig. 1. Complete system architecture - This figure illustrates the end-to-end
processing pipeline of the audio enhancement and denoising framework, from
input acquisition through noise classification, neural processing, enhancement

modules, and output generation

Fig. 1 presents the complete system architecture, showing the
full data flow from audio input to enhanced output. The
framework consists of three main stages: input processing and
noise classification, core neural processing with enhancement
modules, and output generation with analysis. Each stage is
described in detail below.

B. Input Processing and Noise Classification

The input stage accepts audio from two primary sources: file
uploads and microphone recordings. Regardless of source, all
incoming audio undergoes loading and resampling to
standardize the sampling rate to 16kHz, ensuring consistent
processing throughout the pipeline. Initial analysis is then
performed to extract signal characteristics that inform
subsequent processing steps.

The noise classification module categorizes the audio ac-
cording to several noise types: stationary noise (like fans or
HVAC systems), impulse noise (clicks and pops), non-
stationary noise (such as traffic or background speech),
environmental noise, and reverberation effects. This
classification plays a crucial role in the adaptive processing
approach, allowing the system to optimize its denoising strategy
based on the specific noise characteristics present in the audio.

Once classified, the audio is divided into fixed-length
segments (3 seconds) by the chunking module. This approach
enables efficient batch processing of longer audio files while
maintaining manageable memory requirements. These chunks
are then fed into the core processing engine based on
CleanUNet.

C. Core Denoising Engine Implementation

The foundation of our audio enhancement framework is the
core denoising engine, which is based on an enhanced
implementation of the CleanUNet architecture. This neural
network is specifically designed for audio denoising tasks and
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provides the primary noise reduction capability before
additional enhancement techniques are applied.

The CleanUNet architecture employs an encoder-decoder
structure with skip connections, similar to the U-Net archi-
tecture commonly used in image processing but adapted for
one-dimensional audio signals. The key components include:

o  Encoder Path: A series of convolutional layers that
progressively reduce the temporal resolution while
increasing feature dimensions. Each encoder block
consists of 1D convolutional layers with kernel size
15, batch normalization for training stability, ReLU
activation functions, and downsampling operations to
reduce temporal dimensions.

e Decoder Path: Mirror of the encoder that reconstructs
the audio signal from the latent representation. Each
decoder block contains 1D transposed convolutional
layers for upsampling, batch normalization, ReLU
activations, and concatenation with skip connection
features.

e Skip Connections: Direct pathways connecting
corresponding encoder and decoder layers, which help
pre- serve detailed information that might otherwise be
lost during encoding.

Our implementation uses PyTorch for the neural network
components. The model is initialized with pre-trained weights
to leverage transfer learning, significantly improving
performance without requiring extensive training on new data.
The audio processing through the model is handled in batches
to optimize computational efficiency, with appropriate memory
management to handle longer audio files.

D. Enhancement Techniques

After the initial denoising provided by the CleanUNet
architecture, our framework implements several specialized
enhancement techniques that further improve audio quality and
intelligibility. These techniques address specific aspects of
audio perception and speech characteristics that neural
networks alone may not fully optimize.

1) Adaptive SNR-based Processing: The adaptive SNR-
based processing module dynamically adjusts the intensity of
enhancement based on the estimated Signal-to-Noise Ratio
(SNR) of each audio segment. This approach prevents over-
processing of relatively clean segments while applying more
intensive denoising to noisier portions. The implementation
involves:

e SNR Estimation: For each audio chunk, the system
calculates an SNR estimate using signal envelope

analysis. The algorithm analyzes amplitude
distributions to differentiate between signal and noise
components.

e  Processing Mode Selection: Based on the estimated
SNR, the system selects an appropriate processing
mode.

For high SNR segments (above 30dB), a “light” processing
mode is applied to preserve natural characteristics, while
standard processing is used for segments with lower SNR
values.
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e Parameter Adjustment: Processing parameters such as
filtering thresholds and enhancement intensities are
dynamically adjusted according to the detected noise
conditions.

This adaptive approach significantly improves on traditional
fixed-parameter methods by optimizing the trade-off between
noise reduction and speech preservation on a segment-by-
segment basis.

2) Harmonic Enhancement Algorithm: The harmonic
enhancement module focuses on preserving and enhancing the
harmonic components of speech, which are critical for natural-
ness and intelligibility. The implementation utilizes harmonic-
percussive source separation (HPSS) to identify and enhance
speech harmonics:

e  Harmonic-Percussive Separation: The audio is
decom- posed into harmonic components (sustained
tones with horizontal structure in the spectrogram) and
percussive components (transients with vertical
structure).

o  Selective Enhancement: The harmonic components,
which typically contain the fundamental speech
elements, are selectively enhanced.

e Adaptive Blending: The enhanced harmonic
components are blended with the original signal using
a 70/30 ratio, maintaining a balance between
enhancement and natural sound qualities.

This technique particularly improves vowel clarity and over-
all speech intelligibility by emphasizing the natural harmonic
structure of human speech.

3) Vocal Clarity Enhancement: The vocal clarity
enhancement technique targets the frequency ranges most
important for speech intelligibility, with a specific focus on the
300-3000 Hz range where most speech information is
concentrated:

e Bandpass Filtering: A Butterworth bandpass filter is
applied with carefully selected cutoff frequencies (300
Hz lower cutoff, 3000 Hz upper cutoff).

e Bidirectional Filtering: To prevent phase distortion,
bidirectional filtering is employed using the filtfilt
function from the SciPy signal processing library.

e Original Signal Preservation: The filtered output is
blended with the original signal at a 30/70 ratio to
enhance vocal clarity while maintaining natural
acoustic properties.

This approach improves the perception of consonants and
vowels without making the audio sound artificial or processed.

4) Perceptual ~ Enhancement  Filter: The perceptual
enhancement filter, which is always active in our framework,
applies psychoacoustic principles to improve the perceived
quality of audio. This filter:

e  Equal-Loudness Contour Modeling: Implements an
ap- proximation of human hearing sensitivity across
different frequencies, based on ISO equal-loudness

standards.
e  Frequency-Dependent Processing: Applies spectral
weighting that emphasizes frequencies most
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perceptually relevant to human hearing.

e  Phase Preservation: Maintains the original phase in-
formation while enhancing magnitude components to
preserve natural sound characteristics.

By incorporating psychoacoustic principles, this filter
enhances audio in a way that aligns with human perception,
focusing processing resources on the frequencies and
characteristics that most impact perceived quality.

E.  Audio Processing Pipeline

The audio processing pipeline represents the sequential flow
of data through our enhancement framework, from input
acquisition to final output generation.

Our audio processing pipeline implements a strictly sequen-
tial approach, ensuring that each enhancement technique builds
on the improvements made by previous stages. This design
decision was based on empirical testing that demonstrated that
the specific order of processing techniques significantly affects
the final quality of the output.

The pipeline begins with audio input, either from file upload
or microphone recording. After initial loading and analysis, the
audio is divided into fixed-length chunks for efficient
processing. These chunks then proceed through the CleanUNet
neural network, which performs the primary denoising
operation.

The output from CleanUNet is then processed through a
series of enhancement stages:

1) Adaptive SNR Processing: Analyzes the SNR of each
segment and adjusts the processing parameters accord-
ingly, ensuring the appropriate treatment of both noisy
and relatively clean sections.

2) Perceptual Enhancement Filter: Always active, this
stage applies psychoacoustic principles to improve
perceived audio quality by emphasizing frequencies
most relevant to human hearing.

3) Optional Enhancement Stages: Based on user
selection, the audio may then pass through three
additional enhancement stages:

e Harmonic Enhancement for improved speech
naturalness

e Vocal Clarity Enhancement for
intelligibility

e Dynamic Range Compression for more consistent
volume levels

After all enhancement stages, the processed chunks are
reconstructed into a continuous audio stream, normalized to
prevent clipping, and provided as the final output.

better
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Fig. 2. Audio Processing Pipeline - This diagram shows the sequential flow
of audio data through each processing and enhancement stage. Optional
components are indicated with dashed outlines

4. Results and Analysis

A. Performance Metrics Comparison

Table I presents the performance metrics for our WaveS- plit
framework compared to three baseline models: Base
CleanUNet, DEMUCS, and DeepFilterNet across key audio
enhancement metrics.

B. Interpretation of the Results

1) SNR Improvement: The WaveSplit framework achieved
an SNR improvement of 76.36 dB, significantly outperforming
the baseline models, which ranged from 7.20 to 8.10 dB. This
dramatic difference (nearly tenfold) demonstrates the
exceptional noise reduction capability of our multistage
approach, particularly the effectiveness of the adaptive SNR
processing module.
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Table 1
Performance comparison of audio enhancement models

Model SNR Improv. PESQ STOI Proc.

(dB) Improv. Improv. Time
WaveSplit 76.36 1.05 0.15 1.00
Base CleanUNet  7.80 0.83 0.11 1.20
DEMUCS 8.10 0.91 0.13 1.80
DeepFilterNet 7.20 0.77 0.09 0.90

Objective Quality Metrics Comparison

26.36 = WaveSplit
mm= Base CleanUNet
DEMUCS
mmm DeepFilterNet

105 083 091 077 015 01 _ o 009

STOI Improvement

SNR Improvement (dB) PESQ Improvement

Metrics

Fig. 3. Objective quality metrics comparison across models

2) Perceptual Quality and Intelligibility: For PESQ im-
provement, which evaluates perceptual speech quality, our
WaveSplit framework scored 1.05, while the next best model
(DEMUCS) achieved 0.91. This 15% improvement indicates
that our framework produces more natural-sounding speech
with fewer artifacts. The STOI improvement of 0.15 compared
to 0.11 for Base CleanUNet represents a 36% increase in
intelligibility enhancement.

Model Performance Comparison

SNR Improvement

Spectral Bafa xpprovement

Harmoxic

Preservation ! Iphprovement

~——— WaveSplit - Audio Denoiser
~— Base Cleanunet

Demucs
—— Deepfilternet

Speech Distortion
Improvement

Fig. 4. Model performance comparison - Radar chart showing
performance across six key metrics

As visualized in Fig. 4, our framework consistently leads
across all dimensions of speech quality.

3) Processing Efficiency. The WaveSplit framework re-
quired a relative processing time of 1.00, compared to 1.20 for
Base CleanUNet and 1.80 for DEMUCS. This demonstrates
that our framework achieves superior performance without
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computational penalties, despite adding enhancement stages.
Only DeepFilterNet was marginally faster at 0.90, but with
significantly inferior enhancement metrics.

4) Spectral Analysis: The spectrogram comparison in Fig. 5
shows the visual improvement in speech quality, with cleaner
representation of speech formants and significantly reduced
background noise. The Power Spectral Density comparison
(Fig. 6) shows how our framework effectively reduces energy
in noise-dominated low frequencies while preserving critical
speech frequencies (3004000 Hz).

oisy Audio Spectrogram

Fig. 5. Spectrogram comparison - Top: noisy audio, Bottom: enhanced audio
showing clearer speech formants and reduced noise

Power Spectral Density Comparison
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Power/Frequency (dB/Hz)

10 10 10
Frequency (Hz)

Fig. 6. Power spectral density comparison - Showing selective frequency
enhancement

5) Frequency-Selective  Processing:  Our  framework
significantly reduces energy in the 50-100 Hz band where
environ- mental noise typically occurs, as shown in Fig. 10. It
preserves or enhances energy in speech-critical bands (300—
2000 Hz), particularly in the 600—-1200 Hz range where vowel
formants are concentrated. The noise reduction map (Fig. 8)
visualizes the frequency-selective nature of our enhancement
approach, with stronger processing applied to noise-dominated
regions. This selective processing demonstrates the
effectiveness of our vocal clarity enhancement and harmonic
enhancement modules.
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Fig. 7. Frequency band energy distribution - Comparison before and after
enhancement
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Fig. 8. Noise reduction map - Brighter areas indicate stronger noise reduction

6) Waveform Analysis: The waveform comparison in Fig. 9
visually demonstrates the noise reduction capabilities of our
system. The noisy audio (top) shows a consistent noise floor
obscuring the speech signal, while the enhanced audio (bottom)
displays clearly defined speech segments with near- zero
amplitude in silent regions. This transformation results in
significantly improved clarity and listening comfort.

Through both objective metrics and visual analysis, our
multi-stage framework significantly outperforms existing
approaches in audio enhancement and denoising tasks,
delivering superior noise reduction, enhanced speech clarity,
and preserved natural speech characteristics.

Noisy Audio Waveform

Amplitude
L

00 0s 10 15 20 25 30

Denoised Audio Waveform

Amplitude

00 05 10 20 25 30

15
Time (s)

Fig. 9. Waveform comparison - Before and after enhancement

5. Conclusion and Future Work

This research presents WaveSplit, a novel multi-stage frame-
work for audio enhancement and denoising that significantly
enhances the capabilities of the base CleanUNet model. By
integrating deep learning techniques with psychoacoustic
principles and adaptive processing, our approach achieves
remarkable improvements in noise reduction while preserving
the natural characteristics of speech. The WaveSplit framework

International Journal of Research in Engineering, Science and Management, VOL. 9, NO. 2, FEBRUARY 2026 21

substantially outperforms baseline models in objective quality
metrics while maintaining natural speech qualities and avoiding
the “robotic” artifacts common in traditional denoising
methods.

The success of our approach can be attributed to several key
innovations. The adaptive SNR-based processing dynamically
adjusts the enhancement strategy based on the noise
characteristics of each audio segment, preventing over-
processing of already clean segments while applying
appropriate denoising where needed. The combination of
harmonic enhancement, vocal clarity enhancement, and
perceptual optimization creates a system that not only reduces
noise but also improves speech intelligibility and listening
comfort. Our comprehensive metrics and visualization suite
provides unprecedented insight into the performance of audio
enhancement systems, facilitating both user understanding and
further research development.

Our WaveSplit framework demonstrates that the traditional
trade-off between noise reduction and speech preservation can
be significantly improved through a multi-stage approach that
integrates deep learning with classical signal processing
techniques. This balanced approach results in superior audio
quality without introducing artifacts commonly found in
aggressive denoising methods. The improvements in
processing efficiency, achieving better results without
computational penalties despite additional enhancement stages,
further highlight the practical value of our approach for real-
world applications.

Several promising directions for future work emerge from
this research. Optimizing our audio enhancement framework
for real-time applications could enable integration into live
communication systems such as video conferencing platforms,
hearing aids, and real-time broadcasting. The current frame-
work’s domain adaptation functionality could be fully
implemented with specialized adapters for different noise
environments, further improving performance in targeted
applications. Adapting our WaveSplit framework for mobile
and embedded devices would make the technology accessible
on smartphones and other resource-constrained devices,
benefiting users with hearing impairments in everyday
scenarios.

Further work could incorporate more sophisticated
perceptual models into both training and enhancement stages,
explicitly modeling the human auditory system’s response to
different types of speech distortion and noise. Building upon
our current noise classification capabilities, future research
could explore more granular noise categorization and targeted
processing strategies. Additionally, developing an adaptive
system that learns individual user preferences for the balance
between noise reduction and speech preservation could
significantly enhance user satisfaction in both general and
specialized applications.

The advancements demonstrated in this research have
potential applications across telecommunications, content
creation, and accessibility technologies. By addressing the
fundamental challenge of balancing effective noise reduction
with speech naturalness, our framework represents a significant
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step for- ward in audio enhancement technology, contributing
to more effective human communication in increasingly
complex and noise-filled environments.
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