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Abstract: Alzheimer’s disease (AD) is a progressive neuro
degenerative disorder characterized by cognitive decline and wide
spread alterations in brain connectivity. In recent years, graph
theory has emerged as a powerful framework for modeling
functional brain networks and quantifying their topological
properties. In this study we investigate disruptions in small world
organizations of functional brain networks in Alzheimer’s disease
using graph theoretic measures. Functional connectivity networks
are constructed from resting state brain regions and edges denote
pairwise functional interactions. Key network metrics including
clustering coefficient, characteristic path length and global
efficiency are computed and compared between Alzheimer’s
patients and health control subjects. The results reveal a
significant reduction in local clustering increased path length and
decreased global efficiency in AD networks indicating impaired
balance between functional segregation and integration.
Furthermore, small worldness analysis demonstrates a clear
breakdown of optimal network organization in Alzheimer’s
disease. These findings provide quantitative evidence of functional
brain network disorganization in AD and highlight graph
theoretic measures as potential biomarkers for neuro degenerative
disorders.
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1. Introduction

Alzheimer’s disease (AD) 1is a progressive neuro
degenerative disorder and the most common cause of dementia
worldwide, characterized by a gradual decline in memory,
cognition and functional abilities [1]. Despite extensive
research the underlying mechanisms driving large scale brain
dysfunction in Alzheimer’s disease are not yet fully understood.
Increasing evidence suggests that AD is not merely the result of
localized brain damage but rather a consequence of disrupted
interactions across distributed brain regions leading to altered
functional connectivity patterns.

Functional brain networks provide a powerful framework for
investigating large scale neural communication. In this context,
the brain is modeled as a complex network in which nodes
represent brain regions and edges represent functional
interactions between them. Graph theory has emerged as an
effective mathematical tool to quantify the topological
organization of such networks enabling the characterization of
both local and global properties of brain connectivity. Graph
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theoretic approaches have been successfully applied to
understand normal brain organizations as well as pathological
alterations associated with neurological disorders.
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Fig. 1. Normal brain vs Alzheimer’s brain

One of the most prominent features of healthy brain networks
is their small world organization which reflects an optimal
balance between local specialization and global integration
[5,6]. Small world networks are characterized by high
clustering coefficients indicating strong local connectivity and
short characteristic path lengths reflecting efficient long range
communication. This efficient network architecture supports
rapid information transfer and robust cognitive functioning.
Disruption of small world properties has been associated with
impaired information processing and cognitive decline [1,2].

In Alzheimer’s disease several studies have reported
abnormalities in functional connectivity including reduced
synchronization between brain regions and degradation of
network hubs. These changes are believed to impair the brain’s
ability to integrate information across distributed regions
contributing to the clinical symptoms observed in AD patients.
However, a comprehensive understanding of how small world
properties are altered in functional brain networks of
Alzheimer’s disease remains an active area of research
particularly from a graph theoretic perspective.

Graph theoretic measures such as clustering coefficient,
characteristic path length and global efficiency provide
quantitative indicators of network segregation and integration.
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The clustering coefficient reflects the degree of local
connectivity among neighboring nodes, characteristic path
length captures the efficiency of information transfer across the
entire network and global efficiency offers a robust measure of
overall communication efficiency. Analyzing these metrics
enables systematic comparison between healthy and diseased
brain networks and offers insights into the topological
reorganization associated with neuro degeneration.

Motivated by these considerations this study aims to
investigate the disruption of small world properties in
functional brain networks of Alzheimer’s disease using graph
theoretic analysis. Functional connectivity networks are
constructed from resting state brain signals and key network
metrics are computed and compared between Alzheimer’s
patients and health control subjects. By quantitatively
characterizing alterations in clustering, path length and global
efficiency this work seeks to provide deeper insight into the
network level mechanisms underlying Alzheimer’s disease and
to highlight graph theoretic measures as potential biomarkers
for neuro degenerative disorders.

2. Methodology
A. Dataset Description

Resting state brain signal data were obtained from publicly
available datasets comprising subjects diagnosed with
Alzheimer’s disease (AD) and age matched healthy control
(HC) participants. All subjects underwent standardized data
acquisition protocols. The dataset was divided into two groups-

e Alzheimer’s disease patients and healthy controls

e Enabling comparative network analysis.
1) Data Processing

To ensure signal quality and reduce noise related artifacts,
standard preprocessing steps were applied.

For functional brain signals:

e Noise and artifact removal was performed.

e Signals were band pass filtered to
physiologically relevant frequency components.

e Time series corresponding to predefined brain regions
or recording channels were extracted.

retain

Let,
X = {1(8), x,(t) v, xn ()}

Represent the preprocessed time series from N brain
regions(nodes).

B. Functional Brain Network Construction
1) Node Definition

Each node v; €V represents a brain region (for fMRI,
defined by a brain atlas) or an EEG channel. Thus, the brain
network is represented as a graph.

G=V,E,W)
Where:
e I is the set of nodes.
e E is the set of edges.
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e W denoted the weighted adjacency matrix.
2) Edge Definition and Weight Assignment
Functional connectivity between pairs of brain regions was
quantified using Pearson’s correlation coefficient [16].
For nodes i and j the edge weight is defined as:

_cov(x;, x;)
Wi S A
0,0,
Where:
e cov(x;, x;) is the covariance between signals x; & x;.
LI Oy, are their respective standard deviations.

This results in a weighted connectivity matrix W = w;;.
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Fig. 2. Brain network

3) Thresholding Strategy

To ecliminate spurious connections and maintain
comparable network densities across subjects a proportional
thresholding approach was employed. Only the top p% of
strongest connections were retained resulting in a sparse and
biologically meaningful network.

The final adjacency matrix A is defined as:

o {Wij, ifwj=1
H 0, otherwise

Where 7 is the threshold value corresponding to the chosen
network density.

C. Graph Theoretic Measures

Graph theoretic metrics were computed to quantify local and
global topological properties of functional brain networks.
1) Clustering Coefficient

The clustering coefficient measures the degree of local inter
connectedness among neighboring nodes.

For a node i, it is defined as:

oo 2
RS
Where
e E; is the number of edges between the neighbors of
node i.
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e  k; is the degree of node i.
The average clustering coefficient of the network is:

2) Characteristic Path Length

The characteristic path length quantifies the efficiency of
information transfer across the network. It is defined as the
average shortest path length between all pairs of nodes:

1
L=—E d;;
N(N—-1)4s"Y

li]

Where d;; is the shortest path length between nodes i and j.
3) Global Efficiency

Global efficiency provides a robust measure of overall
network integration and is defined as:

E = 1 Z 1
9 NN -1) i:tjdij

Higher global efficiency indicated more efficient information
transfer across the brain network.

D. Small World Property Analysis

To assess small world characteristics the clustering
coefficient and characteristic path length of the empirical brain
networks were compared with those of equivalent random
networks.

The normalized measures are computed as:

c L
;/1:

]/:

Crand Lrand

Where C,4,q and L,,,q are the mean clustering coefficient
and path length of randomly generated networks with the same
number of nodes and degree distribution.

The small worldness index is then defined as:

o="
A

A network is considered to exhibit small world properties
when o > 1.

E. Statistical Analysis

Graph metrics were computed for each subject
independently. Group level comparisons between Alzheimer’s
disease and healthy control networks were performed using
appropriate statistical tests. Statistical significance was
assessed at a predefined significance level and results were
reported as mean + standard deviation.
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3. Results

A. Functional Brain Network construction

Functional brain networks were successfully constructed for
all subjects in both Alzheimer’s disease (AD) and healthy
control (HC) groups following preprocessing and thresholding.
The resulting networks exhibited comparable densities across
subjects, ensuring fair topological comparison. Visual
inspection of representative networks indicated noticeable
differences in connectivity patterns between the two groups
with AD networks appearing sparser and less clustered than HC
networks.

This figure illustrates example functional brain networks
from a healthy control subject and an Alzheimer’s disease
subject. Nodes represent brain regions and edges denote
functional connections. Compared to the healthy network the
AD network shows reduced connectivity strength and fewer
clustered connections.

Fig. 3. Representative functional brain networks

B. Alterations in Clustering Coefficient

The average clustering coefficient was significantly lower in
the AD group compared to healthy controls. This reduction
indicates diminished local connectivity and weakened
functional segregation in Alzheimer’s disease.

Quantitatively, healthy control networks exhibited higher
clustering coefficients reflecting preserved local neighborhood
organization whereas AD networks showed a marked decline in
clustering.
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Fig. 4. Group comparison of clustering coefficient

Box plots showing the distribution of average clustering
coefficient for AD and HC groups. The AD group demonstrates
a significant reduction in clustering coefficient relative to
healthy controls (p < 0.05).
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C. Changes in Characteristic Path length

Characteristic path length was found to be significantly
increased in Alzheimer’s disease networks compared to healthy
controls. This increase suggests reduced efficiency in global
information transfer across the brain [11].

Healthy control networks maintained shorter path lengths
indicative of efficient long range communication while AD
networks exhibited longer paths between brain regions.

Bar plots representing mean characteristic path length (+
standard deviation) for AD and HC groups. Alzheimer’s disease
networks show a statistically significant increase in path length
(p < 0.05).
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Fig. 5. Characteristic path length comparison between groups

D. Reduction in Global Efficiency
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Fig. 6. Global efficiency of functional brain networks

Global efficiency was significantly lower in the AD group
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relative to healthy controls. This finding further supports the
presence of impaired global integration and reduced
communication efficiency in Alzheimer’s disease.

The reduction in global efficiency complements the observed
increase in characteristic path length, confirming large — scale
network dysfunction in AD.

Box plots comparing global efficiency AD and HC groups.
Alzheimer’s disease networks exhibit significantly lower global
efficiency (p < 0.05).

E. Disruption of Small World Properties

To evaluate small world organization, normalized clustering
coefficient and characteristic path length were compared
against random networks. Healthy control networks
consistently exhibited small world characteristics with small
worldness index o > 1.In contrast, Alzheimer’s disease
networks showed a pronounced reduction in small worldness
with o values approaching or falling below unity.

This result indicates a breakdown of the optimal balance
between local specialization and global integration in AD.

ra Regular Small-world (ADHD) Random

Small-world (Healthy)

| Regular Small-world (Healthy) Small-world (Schizophrenia) Random

Fig. 7. Small worldness index comparison

Mean Small worldness (a) for AD and HC groups. Healthy
control networks demonstrate strong small world properties
whereas AD networks show significant disruption. (p < 0.05).

F. Network Metric Differences

A summary of group wise differences across all graph
theoretic measures is provided in Table 1.

G. Observations

e Alzheimer’s disease networks exhibit reduced local
clustering indicating impaired functional segregation.

e Increased characteristic path length and decreased
global efficiency reflect compromised global
integration.

e Small world organization is significantly disrupted in
Alzheimer’s disease suggesting large — scale
reorganization of functional brain networks.

4. Discussion

The Present study investigated alterations in small world

Table 1
Comparison of graph theoretic measures between AD and HC groups

Metric Healthy Controls  Alzheimer’s Disease  Significance
Clustering coefficient Higher Lower Significant
Characteristic path length ~ Shorter Longer Significant
Global Efficiency Higher Lower Significant
Small worldness index c>1 Reduced Significant
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properties of functional brain networks in Alzheimer’s disease
using graph theoretic analysis. By comparing network metrics
between Alzheimer’s disease (AD) patients and healthy control
(HC) subjects, observed significant disruptions in both local
and global topological organization providing strong evidence
of large scale functional network reorganization associated with
neuro degeneration.

A key finding of this work is the significant reduction in
clustering coefficient in AD networks. The clustering
coefficient reflects the degree of local interconnectedness
among neighboring brain regions and is commonly interpreted
as a measure of functional segregation. The observed reduction
indicated a weakening of localized information processing and
loss of tightly coupled neural assemblies in Alzheimer’s
disease. This impairment in local connectivity is consistent with
synaptic degeneration and neuronal loss reported in AD
pathology and suggests that specialized processing within
functional modules becomes progressively compromised.

In addition to local disruptions, characteristic path length was
significantly increased in AD networks compared to healthy
controls. Characteristic path length captures the efficiency of
information transfer across the entire network. Longer path
lengths indicate that information must traverse more
intermediate regions to reach distant nodes, reflecting reduced
global integration. This finding suggests that Alzheimer’s
disease impairs long range communication between distributed
brain regions which may underlie deficits in memory
consolidation, attention and executive functioning observed
clinically in AD patients.

The reduction in global efficiency further reinforces the
presence of large scale integration deficits. Global efficiency is
a robust measure of network wide communication efficiency
and is less sensitive to disconnected components than path
length. Lower global efficiency in AD networks indicated that
the brain’s ability to rapidly integrate information across
multiple regions is diminished. This global communication
breakdown aligns with previous evidence of disrupted default
mode and associative networks in Alzheimer’s disease and
supports the conceptualization of AD as a network
disconnection syndrome rather than a purely localized disorder.

Small world analysis revealed a pronounced disruption of
optimal network organization in Alzheimer’s disease. Healthy
control networks exhibited small world characteristics with
high normalized clustering and relatively short path lengths
compared to random networks reflecting an optimal balance
between segregation and integration [2,3,12]. In contrast, AD
networks showed a marked reduction in small worldness index
(o) with values approaching or falling below unity. This loss of
small world topology indicates a departure from the efficient
architecture that supports normal cognitive functioning and
suggests that AD leads to a suboptimal and energetically
inefficient network configuration.

From a neuro biological perspective the observed breakdown
of small world organization may result from progressive
synaptic loss, degeneration of hub regions and disrupted
functional synchronization across cortical and subcortical areas.
Hub regions play a critical role in maintaining efficient

International Journal of Research in Engineering, Science and Management, VOL. 9, NO. 2, FEBRUARY 2026 5

communication, their degradation can disproportionately affect
global network topology, leading to widespread functional
impairments. The combined reduction in clustering increased
path length and decreased efficiency observed in this study
collectively point toward a systematic collapse of hierarchical
network organization in Alzheimer’s disease.

Importantly these findings highlight the potential of graph
theoretic measures as quantitative biomarkers for neuro
degenerative disorders. Metrics such as clustering coefficient,
characteristic path length, global efficiency and small
worldness capture complementary aspects of brain network
organization and may provide sensitive indicators of disease
progression [12,13]. Compared to traditional region based
analyses, network level measures offer a more holistic
understanding of brain dysfunction and may contribute to early
diagnosis and longitudinal monitoring of Alzheimer’s disease.

The results of this study support the growing body of
evidence that Alzheimer’s disease is characterized by a
disruption of both functional segregation and integration
leading to a loss of optimal small world architecture [6, 9-11].
Graph theory provides a powerful and interpretable framework
for characterizing these alterations and advancing our
understanding of the network mechanisms underlying
connectivity studies cognitive decline in Alzheimer’s disease
[6,10].

A. Limitations and Future Directions

Despite the promising findings of this study several
limitations should be acknowledged. First functional
connectivity was quantified using Pearson’s correlation
coefficient which captures only linear relationships between
brain region time series and may not fully represent nonlinear
or complex neural interactions [16]. In addition, the analysis
was restricted to static functional brain networks constructed
over the entire recording duration thereby overlooking the
inherently dynamic nature of brain activity. Since Alzheimer’s
disease is known to affect temporal variability and flexibility of
functional connectivity future studies may benefit from
incorporating alternative connectivity measures and time
resolved or dynamic network analyses [17,18]. Furthermore,
the present work focused on a single neuro imaging modality,
limiting the ability to integrate complementary structural and
functional information. Multimodal approaches combining
functional data with structural connectivity or diffusion
imaging could enhance biological interpretability of network
alterations [19].

Another limitation concerns methodological choices in
network construction, particularly thresholding strategy and
network density selection which can influence graph theoretic
metrics despite the use of proportional thresholding. Future
research should assess the robustness of findings across
multiple thresholds or employ weighted, threshold free network
analyses. Additionally, the current study emphasized global
topological measures without examining regional or nodal level
alterations. Investigating disrupted hubs, rich club organization
and region, specific vulnerability patterns may further improve
clinical relevance. Finally exploring associations between
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network metrics and clinical variables such as cognitive
performance, disease severity and longitudinal progression
would strengthen the potential of graph theoretic measures as
biomarkers for early diagnosis, disease monitoring and
therapeutic evaluation in Alzheimer’s disease.

5. Conclusion

This study employed a graph theoretic framework to
investigate alterations in functional brain network organization
in Alzheimer’s disease with a particular focus on disruptions in
small world properties. Functional connectivity networks
derived from resting state brain signals revealed a significant
reduction in clustering coefficient increased characteristic path
length and decreased global efficiency in Alzheimer’s disease
patients compared to healthy controls indicating impaired local
functional segregation and compromised global integration.
Small worldness analysis further demonstrated a deviation from
optimal network organization supporting the characterization of
Alzheimer’s disease as a network level disconnection disorder
rather than a consequence of isolated regional damage. These
findings highlight the sensitivity and interpretability of graph
theoretic measures as potential biomarkers for large scale
functional brain reorganization and underscore their relevance
for disease characterization, monitoring and therapeutic
evaluation.
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