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Abstract: Alzheimer’s disease (AD) is a progressive neuro 

degenerative disorder characterized by cognitive decline and wide 
spread alterations in brain connectivity. In recent years, graph 
theory has emerged as a powerful framework for modeling 
functional brain networks and quantifying their topological 
properties. In this study we investigate disruptions in small world 
organizations of functional brain networks in Alzheimer’s disease 
using graph theoretic measures. Functional connectivity networks 
are constructed from resting state brain regions and edges denote 
pairwise functional interactions. Key network metrics including 
clustering coefficient, characteristic path length and global 
efficiency are computed and compared between Alzheimer’s 
patients and health control subjects. The results reveal a 
significant reduction in local clustering increased path length and 
decreased global efficiency in AD networks indicating impaired 
balance between functional segregation and integration. 
Furthermore, small worldness analysis demonstrates a clear 
breakdown of optimal network organization in Alzheimer’s 
disease. These findings provide quantitative evidence of functional 
brain network disorganization in AD and highlight graph 
theoretic measures as potential biomarkers for neuro degenerative 
disorders.   
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1. Introduction 
Alzheimer’s disease (AD) is a progressive neuro 

degenerative disorder and the most common cause of dementia 
worldwide, characterized by a gradual decline in memory, 
cognition and functional abilities [1]. Despite extensive 
research the underlying mechanisms driving large scale brain 
dysfunction in Alzheimer’s disease are not yet fully understood. 
Increasing evidence suggests that AD is not merely the result of 
localized brain damage but rather a consequence of disrupted 
interactions across distributed brain regions leading to altered 
functional connectivity patterns. 

Functional brain networks provide a powerful framework for 
investigating large scale neural communication. In this context, 
the brain is modeled as a complex network in which nodes 
represent brain regions and edges represent functional 
interactions between them. Graph theory has emerged as an 
effective mathematical tool to quantify the topological 
organization of such networks enabling the characterization of 
both local and global properties of brain connectivity. Graph  

 
theoretic approaches have been successfully applied to 
understand normal brain organizations as well as pathological 
alterations associated with neurological disorders. 

 

 
Fig. 1.  Normal brain vs Alzheimer’s brain 

 
One of the most prominent features of healthy brain networks 

is their small world organization which reflects an optimal 
balance between local specialization and global integration 
[5,6]. Small world networks are characterized by high 
clustering coefficients indicating strong local connectivity and 
short characteristic path lengths reflecting efficient long range 
communication. This efficient network architecture supports 
rapid information transfer and robust cognitive functioning. 
Disruption of small world properties has been associated with 
impaired information processing and cognitive decline [1,2].  

In Alzheimer’s disease several studies have reported 
abnormalities in functional connectivity including reduced 
synchronization between brain regions and degradation of 
network hubs. These changes are believed to impair the brain’s 
ability to integrate information across distributed regions 
contributing to the clinical symptoms observed in AD patients. 
However, a comprehensive understanding of how small world 
properties are altered in functional brain networks of 
Alzheimer’s disease remains an active area of research 
particularly from a graph theoretic perspective. 

Graph theoretic measures such as clustering coefficient, 
characteristic path length and global efficiency provide 
quantitative indicators of network segregation and integration. 
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The clustering coefficient reflects the degree of local 
connectivity among neighboring nodes, characteristic path 
length captures the efficiency of information transfer across the 
entire network and global efficiency offers a robust measure of 
overall communication efficiency. Analyzing these metrics 
enables systematic comparison between healthy and diseased 
brain networks and offers insights into the topological 
reorganization associated with neuro degeneration. 

Motivated by these considerations this study aims to 
investigate the disruption of small world properties in 
functional brain networks of Alzheimer’s disease using graph 
theoretic analysis. Functional connectivity networks are 
constructed from resting state brain signals and key network 
metrics are computed and compared between Alzheimer’s 
patients and health control subjects. By quantitatively 
characterizing alterations in clustering, path length and global 
efficiency this work seeks to provide deeper insight into the 
network level mechanisms underlying Alzheimer’s disease and 
to highlight graph theoretic measures as potential biomarkers 
for neuro degenerative disorders.   

2. Methodology 

A. Dataset Description 
Resting state brain signal data were obtained from publicly 

available datasets comprising subjects diagnosed with 
Alzheimer’s disease (AD) and age matched healthy control 
(HC) participants. All subjects underwent standardized data 
acquisition protocols. The dataset was divided into two groups-  

• Alzheimer’s disease patients and healthy controls 
• Enabling comparative network analysis. 

1) Data Processing 
 To ensure signal quality and reduce noise related artifacts, 

standard preprocessing steps were applied. 
For functional brain signals: 
• Noise and artifact removal was performed. 
• Signals were band pass filtered to retain 

physiologically relevant frequency components. 
• Time series corresponding to predefined brain regions 

or recording channels were extracted. 
 

Let,  
𝑋𝑋 = {𝑥𝑥1(𝑡𝑡), 𝑥𝑥2(𝑡𝑡) … . . , 𝑥𝑥𝑁𝑁(𝑡𝑡)} 

 
Represent the preprocessed time series from N brain 

regions(nodes). 

B. Functional Brain Network Construction 
1) Node Definition 

Each node 𝑣𝑣𝑖𝑖 ∈ 𝑉𝑉 represents a brain region (for fMRI, 
defined by a brain atlas) or an EEG channel. Thus, the brain 
network is represented as a graph. 

 
𝐺𝐺 = (𝑉𝑉,𝐸𝐸,𝑊𝑊) 

Where:  
• 𝑉𝑉 is the set of nodes. 
• 𝐸𝐸 is the set of edges. 

• 𝑊𝑊 denoted the weighted adjacency matrix. 
2) Edge Definition and Weight Assignment 

Functional connectivity between pairs of brain regions was 
quantified using Pearson’s correlation coefficient [16].  

For nodes 𝑖𝑖 and 𝑗𝑗  the edge weight is defined as: 
 

𝑤𝑤𝑖𝑖𝑖𝑖 =
𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗)
𝜎𝜎𝑥𝑥𝑖𝑖𝜎𝜎𝑥𝑥𝑗𝑗

 

Where: 
• 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗) is the covariance between signals 𝑥𝑥𝑖𝑖 & 𝑥𝑥𝑗𝑗. 
• 𝜎𝜎𝑥𝑥𝑖𝑖& 𝜎𝜎𝑥𝑥𝑗𝑗 are their respective standard deviations. 

This results in a weighted connectivity matrix 𝑊𝑊 = 𝑤𝑤𝑖𝑖𝑖𝑖. 
 

 
Fig. 2.  Brain network 

 
3) Thresholding Strategy 

 To eliminate spurious connections and maintain 
comparable network densities across subjects a proportional 
thresholding approach was employed. Only the top 𝑝𝑝% of 
strongest connections were retained resulting in a sparse and 
biologically meaningful network. 

 The final adjacency matrix 𝐴𝐴 is defined as: 
 

𝐴𝐴𝑖𝑖𝑖𝑖 = �
𝑤𝑤𝑖𝑖𝑖𝑖 , 𝑖𝑖𝑖𝑖 𝑤𝑤𝑖𝑖𝑖𝑖 ≥ 𝜏𝜏
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 

 
Where 𝜏𝜏 is the threshold value corresponding to the chosen 

network density. 

C. Graph Theoretic Measures 
Graph theoretic metrics were computed to quantify local and 

global topological properties of functional brain networks. 
1) Clustering Coefficient 

The clustering coefficient measures the degree of local inter 
connectedness among neighboring nodes.  

For a node 𝑖𝑖, it is defined as: 
 

𝐶𝐶𝑖𝑖 =
2𝐸𝐸𝑖𝑖

𝑘𝑘𝑖𝑖(𝑘𝑘𝑖𝑖 − 1)
 

 
Where  

• 𝐸𝐸𝑖𝑖 is the number of edges between the neighbors of 
node 𝑖𝑖. 
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• 𝑘𝑘𝑖𝑖 is the degree of node 𝑖𝑖. 
The average clustering coefficient of the network is: 
 

𝐶𝐶 =  
1
𝑁𝑁
�𝐶𝐶𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 

 
2) Characteristic Path Length 

The characteristic path length quantifies the efficiency of 
information transfer across the network. It is defined as the 
average shortest path length between all pairs of nodes: 

 

𝐿𝐿 =
1

𝑁𝑁(𝑁𝑁 − 1)
�𝑑𝑑𝑖𝑖𝑖𝑖
𝑖𝑖≠𝑗𝑗

 

 
Where 𝑑𝑑𝑖𝑖𝑖𝑖 is the shortest path length between nodes 𝑖𝑖 and 𝑗𝑗.  

3) Global Efficiency 
Global efficiency provides a robust measure of overall 

network integration and is defined as: 
 

𝐸𝐸𝑔𝑔 =
1

𝑁𝑁(𝑁𝑁 − 1)
�

1
𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖≠𝑗𝑗

 

 
Higher global efficiency indicated more efficient information 

transfer across the brain network. 

D. Small World Property Analysis 
To assess small world characteristics the clustering 

coefficient and characteristic path length of the empirical brain 
networks were compared with those of equivalent random 
networks.  

The normalized measures are computed as: 
 

𝛾𝛾 =
𝐶𝐶

𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
, 𝜆𝜆 =

𝐿𝐿
𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 

 
Where 𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 and 𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 are the mean clustering coefficient 

and path length of randomly generated networks with the same 
number of nodes and degree distribution. 

The small worldness index is then defined as: 
 

𝜎𝜎 =
𝛾𝛾
𝜆𝜆

 

 
A network is considered to exhibit small world properties 

when 𝜎𝜎 > 1. 

E. Statistical Analysis 
Graph metrics were computed for each subject 

independently. Group level comparisons between Alzheimer’s 
disease and healthy control networks were performed using 
appropriate statistical tests. Statistical significance was 
assessed at a predefined significance level and results were 
reported as mean ± standard deviation. 

3. Results 

A. Functional Brain Network construction 
Functional brain networks were successfully constructed for 

all subjects in both Alzheimer’s disease (AD) and healthy 
control (HC) groups following preprocessing and thresholding. 
The resulting networks exhibited comparable densities across 
subjects, ensuring fair topological comparison. Visual 
inspection of representative networks indicated noticeable 
differences in connectivity patterns between the two groups 
with AD networks appearing sparser and less clustered than HC 
networks. 

This figure illustrates example functional brain networks 
from a healthy control subject and an Alzheimer’s disease 
subject. Nodes represent brain regions and edges denote 
functional connections. Compared to the healthy network the 
AD network shows reduced connectivity strength and fewer 
clustered connections. 
 

 
Fig. 3.  Representative functional brain networks 

B. Alterations in Clustering Coefficient 
The average clustering coefficient was significantly lower in 

the AD group compared to healthy controls. This reduction 
indicates diminished local connectivity and weakened 
functional segregation in Alzheimer’s disease. 

Quantitatively, healthy control networks exhibited higher 
clustering coefficients reflecting preserved local neighborhood 
organization whereas AD networks showed a marked decline in 
clustering. 
 

 
Fig. 4.  Group comparison of clustering coefficient 

 
Box plots showing the distribution of average clustering 

coefficient for AD and HC groups. The AD group demonstrates 
a significant reduction in clustering coefficient relative to 
healthy controls (𝑝𝑝 < 0.05). 
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C. Changes in Characteristic Path length  
Characteristic path length was found to be significantly 

increased in Alzheimer’s disease networks compared to healthy 
controls. This increase suggests reduced efficiency in global 
information transfer across the brain [11]. 

Healthy control networks maintained shorter path lengths 
indicative of efficient long range communication while AD 
networks exhibited longer paths between brain regions. 

Bar plots representing mean characteristic path length (± 
standard deviation) for AD and HC groups. Alzheimer’s disease 
networks show a statistically significant increase in path length 
(𝑝𝑝 < 0.05). 
 

 
Fig. 5.  Characteristic path length comparison between groups 

D. Reduction in Global Efficiency  

 
Fig. 6.  Global efficiency of functional brain networks 

 
Global efficiency was significantly lower in the AD group 

relative to healthy controls. This finding further supports the 
presence of impaired global integration and reduced 
communication efficiency in Alzheimer’s disease. 

The reduction in global efficiency complements the observed 
increase in characteristic path length, confirming large – scale 
network dysfunction in AD. 
 Box plots comparing global efficiency AD and HC groups. 
Alzheimer’s disease networks exhibit significantly lower global 
efficiency (𝑝𝑝 < 0.05). 

E. Disruption of Small World Properties 
To evaluate small world organization, normalized clustering 

coefficient and characteristic path length were compared 
against random networks. Healthy control networks 
consistently exhibited small world characteristics with small 
worldness index 𝜎𝜎 > 1.In contrast, Alzheimer’s disease 
networks showed a pronounced reduction in small worldness 
with 𝜎𝜎 values approaching or falling below unity. 

 This result indicates a breakdown of the optimal balance 
between local specialization and global integration in AD. 
 

 
Fig. 7.  Small worldness index comparison 

 
Mean Small worldness (𝜎𝜎) for AD and HC groups. Healthy 

control networks demonstrate strong small world properties 
whereas AD networks show significant disruption.  (𝑝𝑝 < 0.05). 

F. Network Metric Differences 
A summary of group wise differences across all graph 

theoretic measures is provided in Table 1.  

G. Observations 
• Alzheimer’s disease networks exhibit reduced local 

clustering indicating impaired functional segregation. 
• Increased characteristic path length and decreased 

global efficiency reflect compromised global 
integration. 

• Small world organization is significantly disrupted in 
Alzheimer’s disease suggesting large – scale 
reorganization of functional brain networks. 

4. Discussion 
The Present study investigated alterations in small world 

Table 1 
Comparison of graph theoretic measures between AD and HC groups 

Metric Healthy Controls Alzheimer’s Disease Significance 
Clustering coefficient Higher Lower Significant 
Characteristic path length Shorter Longer Significant 
Global Efficiency Higher Lower Significant 
Small worldness index 𝜎𝜎 > 1 Reduced Significant 
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properties of functional brain networks in Alzheimer’s disease 
using graph theoretic analysis. By comparing network metrics 
between Alzheimer’s disease (AD) patients and healthy control 
(HC) subjects, observed significant disruptions in both local 
and global topological organization providing strong evidence 
of large scale functional network reorganization associated with 
neuro degeneration. 

A key finding of this work is the significant reduction in 
clustering coefficient in AD networks. The clustering 
coefficient reflects the degree of local interconnectedness 
among neighboring brain regions and is commonly interpreted 
as a measure of functional segregation. The observed reduction 
indicated a weakening of localized information processing and 
loss of tightly coupled neural assemblies in Alzheimer’s 
disease. This impairment in local connectivity is consistent with 
synaptic degeneration and neuronal loss reported in AD 
pathology and suggests that specialized processing within 
functional modules becomes progressively compromised. 

In addition to local disruptions, characteristic path length was 
significantly increased in AD networks compared to healthy 
controls. Characteristic path length captures the efficiency of 
information transfer across the entire network. Longer path 
lengths indicate that information must traverse more 
intermediate regions to reach distant nodes, reflecting reduced 
global integration. This finding suggests that Alzheimer’s 
disease impairs long range communication between distributed 
brain regions which may underlie deficits in memory 
consolidation, attention and executive functioning observed 
clinically in AD patients. 

The reduction in global efficiency further reinforces the 
presence of large scale integration deficits. Global efficiency is 
a robust measure of network wide communication efficiency 
and is less sensitive to disconnected components than path 
length. Lower global efficiency in AD networks indicated that 
the brain’s ability to rapidly integrate information across 
multiple regions is diminished. This global communication 
breakdown aligns with previous evidence of disrupted default 
mode and associative networks in Alzheimer’s disease and 
supports the conceptualization of AD as a network 
disconnection syndrome rather than a purely localized disorder. 

Small world analysis revealed a pronounced disruption of 
optimal network organization in Alzheimer’s disease. Healthy 
control networks exhibited small world characteristics with 
high normalized clustering and relatively short path lengths 
compared to random networks reflecting an optimal balance 
between segregation and integration [2,3,12]. In contrast, AD 
networks showed a marked reduction in small worldness index 
(𝜎𝜎) with values approaching or falling below unity. This loss of 
small world topology indicates a departure from the efficient 
architecture that supports normal cognitive functioning and 
suggests that AD leads to a suboptimal and energetically 
inefficient network configuration. 

From a neuro biological perspective the observed breakdown 
of small world organization may result from progressive 
synaptic loss, degeneration of hub regions and disrupted 
functional synchronization across cortical and subcortical areas. 
Hub regions play a critical role in maintaining efficient 

communication, their degradation can disproportionately affect 
global network topology, leading to widespread functional 
impairments. The combined reduction in clustering increased 
path length and decreased efficiency observed in this study 
collectively point toward a systematic collapse of hierarchical 
network organization in Alzheimer’s disease. 

Importantly these findings highlight the potential of graph 
theoretic measures as quantitative biomarkers for neuro 
degenerative disorders. Metrics such as clustering coefficient, 
characteristic path length, global efficiency and small 
worldness capture complementary aspects of brain network 
organization and may provide sensitive indicators of disease 
progression [12,13]. Compared to traditional region based 
analyses, network level measures offer a more holistic 
understanding of brain dysfunction and may contribute to early 
diagnosis and longitudinal monitoring of Alzheimer’s disease. 

The results of this study support the growing body of 
evidence that Alzheimer’s disease is characterized by a 
disruption of both functional segregation and integration 
leading to a loss of optimal small world architecture [6, 9-11]. 
Graph theory provides a powerful and interpretable framework 
for characterizing these alterations and advancing our 
understanding of the network mechanisms underlying 
connectivity studies cognitive decline in Alzheimer’s disease 
[6,10].  

A. Limitations and Future Directions 
Despite the promising findings of this study several 

limitations should be acknowledged. First functional 
connectivity was quantified using Pearson’s correlation 
coefficient which captures only linear relationships between 
brain region time series and may not fully represent nonlinear 
or complex neural interactions [16]. In addition, the analysis 
was restricted to static functional brain networks constructed 
over the entire recording duration thereby overlooking the 
inherently dynamic nature of brain activity.  Since Alzheimer’s 
disease is known to affect temporal variability and flexibility of 
functional connectivity future studies may benefit from 
incorporating alternative connectivity measures and time 
resolved or dynamic network analyses [17,18]. Furthermore, 
the present work focused on a single neuro imaging modality, 
limiting the ability to integrate complementary structural and 
functional information. Multimodal approaches combining 
functional data with structural connectivity or diffusion 
imaging could enhance biological interpretability of network 
alterations [19]. 

Another limitation concerns methodological choices in 
network construction, particularly thresholding strategy and 
network density selection which can influence graph theoretic 
metrics despite the use of proportional thresholding. Future 
research should assess the robustness of findings across 
multiple thresholds or employ weighted, threshold free network 
analyses. Additionally, the current study emphasized global 
topological measures without examining regional or nodal level 
alterations. Investigating disrupted hubs, rich club organization 
and region, specific vulnerability patterns may further improve 
clinical relevance. Finally exploring associations between 
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network metrics and clinical variables such as cognitive 
performance, disease severity and longitudinal progression 
would strengthen the potential of graph theoretic measures as 
biomarkers for early diagnosis, disease monitoring and 
therapeutic evaluation in Alzheimer’s disease. 

5. Conclusion 
This study employed a graph theoretic framework to 

investigate alterations in functional brain network organization 
in Alzheimer’s disease with a particular focus on disruptions in 
small world properties. Functional connectivity networks 
derived from resting state brain signals revealed a significant 
reduction in clustering coefficient increased characteristic path 
length and decreased global efficiency in Alzheimer’s disease 
patients compared to healthy controls indicating impaired local 
functional segregation and compromised global integration. 
Small worldness analysis further demonstrated a deviation from 
optimal network organization supporting the characterization of 
Alzheimer’s disease as a network level disconnection disorder 
rather than a consequence of isolated regional damage. These 
findings highlight the sensitivity and interpretability of graph 
theoretic measures as potential biomarkers for large scale 
functional brain reorganization and underscore their relevance 
for disease characterization, monitoring and therapeutic 
evaluation.  
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