
International Journal of Research in Engineering, Science and Management
Volume 9, Issue 1, January 2026
www.ijresm.com | E-ISSN: 2581-5792 | RESAIM Publishing | www.resaim.com

*Corresponding author: ratnu.abhishek200@gmail.com

43

Abstract: Early detection of hardware vulnerabilities is critical

to ensuring the security and reliability of electronic systems. This
study investigates and compares various machine learning and
deep learning algorithms for their effectiveness in identifying
hardware vulnerabilities during the early stages of the
development lifecycle. The analysis focuses on algorithms
commonly used in hardware security applications, including
anomaly detection, classification, and pattern recognition, to
detect issues such as hardware Trojans, side-channel attacks, and
other security threats. Key performance metrics such as accuracy,
detection speed, computational efficiency, and robustness against
adversarial scenarios are evaluated. Furthermore, the study
highlights the trade-offs between machine learning and deep
learning approaches, considering their scalability and deployment
feasibility in resource-constrained environments. The findings aim
to provide insights into selecting the most suitable algorithm for
early vulnerability detection, contributing to the advancement of
secure hardware design and the mitigation of potential risks in
critical systems.

Keywords: Machine Learning, Deep Learning, Hardware

Security, Vulnerability detection, Cybersecurity, Predictive
Analysis.

1. Introduction
The rapid advancement of modern electronic systems has

brought about unprecedented functionality and performance but
has also introduced significant security challenges. Hardware
vulnerabilities, including hardware Trojans, side-channel
attacks, and keylogging, pose substantial threats to systems
operating in critical domains such as defence, healthcare, and
finance. These vulnerabilities, if left undetected, can
compromise system integrity, confidentiality, and availability,
leading to devastating consequences. As such, the early
detection of hardware vulnerabilities during the design and
production stages is essential to safeguard electronic systems
and ensure their reliability.

Machine learning (ML) and deep learning (DL) techniques
have emerged as powerful tools for automating the detection of
hardware vulnerabilities. ML models excel at identifying
patterns and anomalies in large datasets, while DL approaches,

such as Artificial Neural Networks (ANNs), leverage
hierarchical representations to detect complex patterns.
However, the adoption of these techniques in hardware security
presents challenges, such as imbalanced datasets,
computational efficiency, and the selection of optimal
algorithms for specific vulnerabilities.

In this study, we propose a comprehensive framework for the
early detection of hardware vulnerabilities by leveraging both
ML and DL techniques. The process begins with data
preprocessing, including cleaning and balancing the dataset
using the Synthetic Minority Oversampling Technique
(SMOTE) to address class imbalance. A wide range of ML
models, including basic algorithms like Decision Trees and
Support Vector Machines, as well as ensemble methods like
Random Forests and Gradient Boosting, are implemented. To
capture more intricate patterns and enhance detection accuracy,
an ANN is employed, offering deep learning-based insights.

To make the findings accessible and actionable, a user-
friendly web application has been developed using ReactJS and
Flask. This platform allows users to interact with the results,
visualize model performance, and understand the comparative
effectiveness of different algorithms in detecting
vulnerabilities. Key performance metrics, including accuracy,
computational efficiency, and robustness against adversarial
conditions, are evaluated to provide a holistic understanding of
the strengths and limitations of each approach.

This work aims to bridge the gap between theoretical
research and practical application in hardware security. By
providing a detailed comparative analysis of ML and DL
models, along with a visualization tool, the study offers a
pathway for researchers and practitioners to adopt AI-driven
methodologies in the secure design of hardware systems.

2. Related Work
Research on the application of machine learning and deep

learning for hardware security has grown significantly in recent
years. Early work focused primarily on traditional techniques
such as rule-based methods and statistical analysis to detect

Comparative Analysis of Machine Learning and
Deep Learning Algorithms for Early Detection

of Hardware Vulnerabilities in Hardware
Security Systems

Milind Paraye1, Abhishek Ratnu1*, Shubham Sinha1, Pratik Waghmode1

1Department of Electronics and Telecommunication Engineering, Sardar Patel Institute of Technology, Mumbai, India

Paraye et al. International Journal of Research in Engineering, Science and Management, VOL. 9, NO. 1, JANUARY 2026 44

hardware vulnerabilities. However, these approaches often
struggled with the complexity and scale of modern hardware
systems. As machine learning gained popularity, several studies
began to apply classification algorithms like Support Vector
Machines (SVMs) and Decision Trees for detecting hardware
Trojans and side-channel attacks. These models showed
promising results in identifying patterns in hardware behavior
but were limited in their ability to handle complex, high-
dimensional data.

Recent advancements have shifted towards ensemble models
like Random Forests and Gradient Boosting, which improve
detection accuracy by combining multiple weak classifiers into
a stronger predictive model. Deep learning methods,
particularly Artificial Neural Networks (ANNs), have also been
explored for their capacity to learn intricate patterns and
representations in large datasets. Notably, studies have
demonstrated that deep learning can outperform traditional ML
methods in identifying subtle vulnerabilities in hardware
designs.

While existing works provide valuable insights, there
remains a gap in comprehensively comparing various ML and
DL algorithms for hardware vulnerability detection,
particularly in terms of practical implementation and
performance in real-world scenarios. This study addresses this
gap by evaluating multiple algorithms and developing a
platform to display the results.

3. Process

A. Dataset Preparation
The dataset used for this study consists of labelled instances

representing hardware behaviors, including both vulnerable and
non-vulnerable hardware configurations. It includes features
such as electrical characteristics, signal patterns, and design
parameters, which are crucial for identifying hardware
vulnerabilities like Trojans and side-channel attacks. However,
the dataset suffers from class imbalance, with a significantly
lower number of vulnerable instances compared to
nonvulnerable ones. To address this issue, the dataset
undergoes a thorough cleaning process, which involves
removing any irrelevant or missing data, handling outliers, and
standardizing the features to ensure consistency.

To further mitigate the class imbalance, the Synthetic
Minority Oversampling Technique (SMOTE) is applied.
SMOTE generates synthetic instances of the minority class
(vulnerable hardware) by interpolating between existing
instances, thereby balancing the dataset. This preprocessing
step enhances the performance of machine learning models by
providing a more equitable representation of both classes,
improving detection accuracy for hardware vulnerabilities.

B. Machine Learning models
This study utilizes a set of fundamental machine learning

models for detecting hardware vulnerabilities. These models,
each with distinct characteristics and algorithms, are
implemented to classify hardware behavior as either vulnerable
or non-vulnerable. Below is a detailed description of the models

used and the formulas employed.
1) Linear Regression

Although typically used for regression tasks, Linear
Regression is also employed here for binary classification
through logistic transformation. The model attempts to find a
linear relationship between the input features x and the output
y. The prediction is given by:

y = wTx+ b

where w represents the weights assigned to the features, x is

the feature vector, and b is the bias term. While Linear
Regression isn’t ideal for classification, it provides a baseline
model by predicting continuous values that can be mapped to
binary classes using a threshold.
2) Logistic Regression

Logistic Regression is a widely used model for binary
classification tasks. It estimates the probability that a

given input x belongs to a particular class. The model uses a
logistic function (sigmoid function) to transform the linear
prediction into a probability between 0 and 1:

where P(y = 1 | x) is the probability that the output y is 1

(vulnerable), and wTx+b is the linear combination of input
features. The decision rule is to classify an instance as
vulnerable if the probability is greater than or equal to 0.5,
otherwise as non-vulnerable.
3) Support Vector Machine (SVM)

Support Vector Machine (SVM) is a powerful classification
model that aims to find the optimal hyperplane to separate
different classes in a high-dimensional feature space. The
decision boundary is determined by maximizing the margin
between the closest instances of each class (support vectors).
The SVM optimization problem can be formulated as:

Minimize subject to yi(wTxi+b) ≥ 1, ∀i

where w is the weight vector, b is the bias term, yi is the class

label of the i-th sample (+1 or −1), and xi is the feature vector
of the i-th sample. SVM works well for high-dimensional
datasets, making it suitable for detecting complex hardware
vulnerabilities.
4) K-Nearest Neighbors (KNN)

The K-Nearest Neighbors (KNN) algorithm is a simple,
instance-based learning algorithm used for classification. Given
a new data point, the class is determined by the majority vote of
its K-nearest neighbors in the feature space. The Euclidean
distance between two data points x and y is computed as:

where n is the number of features. KNN is a nonparametric

Paraye et al. International Journal of Research in Engineering, Science and Management, VOL. 9, NO. 1, JANUARY 2026 45

method, meaning it makes no assumptions about the underlying
data distribution, which can be advantageous when working
with complex hardware behavior patterns.
5) Random Forest

Random Forest is an ensemble learning method that
constructs multiple decision trees and combines their outputs to
make predictions. Each tree is built using a random subset of
the data and a random subset of features. The final classification
is determined by majority voting across all the trees. Random
Forest can be expressed as:

yˆ= MajorityVote({h1(x),h2(x),...,hM(x)})

where hm(x) is the prediction from the m-th tree, and M is the

total number of trees in the forest. Random Forest is particularly
effective in handling overfitting and can capture complex, non-
linear relationships in the data. It is a robust model well-suited
for detecting hardware vulnerabilities.

C. Ensemble learning
Ensemble models are a powerful approach in machine

learning where multiple individual models are combined to
produce a final prediction. The primary idea behind ensembles
is that combining several models can often result in improved
accuracy, as it reduces the likelihood of errors that might occur
in any single model. This is particularly useful when the
individual models have different strengths and weaknesses,
making their combination more robust.

One of the most common ensemble methods is bagging,
where multiple models (typically decision trees) are trained on
different subsets of the data and their predictions are averaged.
Bagging works well when individual models are highly
variable, as the variance of the ensemble prediction is reduced.
The Random Forest algorithm is a well-known example of this
technique, where a large number of decision trees are trained on
random subsets of the data, and the final prediction is made by
aggregating the individual predictions.

Another widely used ensemble method is boosting, where
models are trained sequentially. Each subsequent model tries to
correct the errors of the previous one, with a higher weight
given to misclassified examples. This can significantly improve
accuracy, especially in complex tasks. Algorithms like
AdaBoost and Gradient Boosting use this technique to achieve
higher performance.

Finally, stacking is another ensemble technique that involves
training multiple different models and then combining their
predictions using a meta-model. The meta-model learns how to
best combine the predictions from the base models to maximize
accuracy.

In terms of mathematical formulation, let yi represent the
prediction of the i-th model, and yensemble represent the final
ensemble prediction. For bagging, the ensemble prediction is
simply the average of all individual predictions:

 yensemble

For boosting, the ensemble prediction involves weighted
sums of predictions from individual models, typically using
weights determined by the model’s performance on the training
data. The ensemble prediction for boosting can be represented
as:

 = Xαiyi N yensemble
 i=1

where αi are the weights assigned to each model based on its

performance. The goal of these methods is to reduce errors and
increase accuracy by combining models that are
complementary.

D. Deep Learning
Deep learning is a subset of machine learning that focuses on

using neural networks with many layers to model complex
patterns in data. Artificial Neural Networks (ANNs) are at the
core of deep learning algorithms. ANNs are inspired by the
human brain’s structure, where layers of neurons are
interconnected, each capable of learning specific features from
the data. These networks have proven to be highly effective in
solving complex tasks such as image recognition, natural
language processing, and hardware security, where traditional
machine learning models might struggle.

At a basic level, an ANN consists of three types of layers: the
input layer, hidden layers, and the output layer. The input layer
receives the features from the dataset, the hidden layers process
the input data through weighted connections, and the output
layer produces the final prediction or classification. The
connections between neurons are characterized by weights,
which are adjusted during training to minimize the prediction
error.

The learning process in ANNs involves the backpropagation
algorithm, which updates the weights of the connections in the
network based on the error calculated in the output.
Backpropagation uses the gradient descent optimization
method to iteratively adjust the weights in the direction that
minimizes the loss function. The loss function quantifies the
difference between the predicted output and the true output, and
its minimization is the goal of the learning process. The
network’s performance improves over time as the weights are
adjusted to reduce this error.

A key advantage of deep learning is its ability to
automatically learn features from raw data, eliminating the need
for manual feature engineering. For example, in image
recognition tasks, deeper layers of the network can
automatically learn to recognize edges, shapes, textures, and
objects, allowing the model to perform complex pattern
recognition without human intervention. This ability to extract
hierarchical features from the data makes deep learning
particularly effective for tasks that require high-level
abstraction.

In the context of hardware security, deep learning with ANNs
has shown promise in detecting vulnerabilities such as
hardware Trojans and side-channel attacks. In these
applications, the network can learn to distinguish between

Paraye et al. International Journal of Research in Engineering, Science and Management, VOL. 9, NO. 1, JANUARY 2026 46

secure and compromised hardware based on features extracted
from the data, such as signal patterns or power consumption.
The training of the network requires large datasets of labelled
examples, where the network learns to classify the data as
secure or insecure based on the input features.

While deep learning offers powerful capabilities, it also
comes with certain challenges. One of the main challenges is
the need for large amounts of labelled data to train deep
networks effectively. Additionally, deep networks are
computationally expensive to train, requiring significant
resources in terms of processing power and memory.
Overfitting is another common issue, where the model learns
the noise in the training data rather than the underlying patterns,
leading to poor generalization to new, unseen data.

Despite these challenges, deep learning with ANNs remains
one of the most powerful tools in machine learning, achieving
state-of-the-art results in many fields. The continued
development of more efficient algorithms, such as
convolutional neural networks (CNNs) for image processing or
recurrent neural networks (RNNs) for sequence data, has
further enhanced the capabilities of deep learning models. As
computational power increases and more data becomes
available, deep learning is expected to continue transforming a
wide range of industries, from healthcare to cybersecurity.

The mathematical formulation of an ANN involves the
propagation of inputs through layers using activation functions.
Let x represent the input vector, W the weight matrix, and b the
bias term. The output of each neuron in a layer is computed as:

z = W · x + b

The output a of the neuron is then passed through an

activation function f(z), which introduces non-linearity:

a = f(z)

The output from the final layer is compared with the true

label, and the loss is computed using a loss function L. The
weights are updated to minimize this loss through
backpropagation and gradient descent.

E. Website and Flask Integration
Creating a dynamic and interactive website using ReactJS is

a popular approach for developing modern web applications.
ReactJS, a JavaScript library for building user interfaces, allows
developers to create single-page applications (SPAs) with fast
rendering and efficient state management. The core idea behind
ReactJS is its component-based architecture, where each part of
the user interface is built as a reusable and independent
component. This modularity makes it easier to manage complex
UIs and provides a seamless user experience.

For integrating machine learning models into a ReactJS
website, Flask—a lightweight Python web framework—is
commonly used as a backend to handle server-side logic. Flask
allows easy integration with machine learning models by
providing an HTTP interface through which the models can be
exposed as RESTful APIs. Once the backend is set up, ReactJS

can communicate with Flask using HTTP requests to send data
and receive predictions from the machine learning model.

To integrate a machine learning model into a ReactJS website
using Flask, the typical process involves several steps: 1. Model
Training: First, the machine learning model is trained using a
dataset, typically in Python using libraries like Scikitlearn,
TensorFlow, or PyTorch. 2. Model Serialization: Once trained,
the model is serialized into a format that can be easily loaded in
the Flask application, such as a ‘.pkl‘ file for Scikitlearn models
or a ‘.h5‘ file for Keras models. 3. Flask API: A Flask API is
created to load the serialized model and define endpoints that
accept input data (e.g., JSON) and return the model’s
predictions as a response. 4. ReactJS Frontend: The ReactJS
frontend is designed to collect input from users (e.g., through
forms or other interactive elements) and send this input to the
Flask API using fetch or Axios. 5. Displaying Results: The
frontend receives the response from Flask (which includes the
model’s predictions) and dynamically updates the UI with the
results.

This architecture ensures seamless communication between
the frontend and backend, providing an interactive platform for
users to interact with machine learning models in real-time.

4. Results

A. Accuracy
Accuracy is a widely used metric for evaluating the

performance of machine learning (ML) models. It is defined as
the ratio of the number of correct predictions made by the model
to the total number of predictions. Mathematically, accuracy
can be expressed as:

 Number of Correct Predictions
Accuracy =
 Total Number of Predictions

For classification problems, accuracy provides a

straightforward measure of how well the model correctly
identifies instances across all classes. While useful for balanced
datasets, accuracy can be misleading in cases of imbalanced
data. For instance, in a dataset where 95% of samples belong to
one class, a model predicting only the majority class can
achieve 95% accuracy without effectively identifying the
minority class.

To address this limitation, additional metrics such as
precision, recall, and the F1-score are commonly used.
Precision measures the proportion of correctly predicted
positive instances out of all instances predicted as positive. It is
calculated as:

 True Positives (TP)
Precision =
 True Positives (TP) + False Positives (FP)

Recall, also known as sensitivity, measures the proportion of

correctly predicted positive instances out of all actual positive
instances. It is given by:

Paraye et al. International Journal of Research in Engineering, Science and Management, VOL. 9, NO. 1, JANUARY 2026 47

 True Positives (TP)
Recall =
 True Positives (TP) + False Negatives (FN)

The F1-score is the harmonic mean of precision and recall,

providing a balance between the two metrics. It is particularly
useful for datasets with class imbalances and is calculated as:

 Precision × Recall

F1-Score = 2 ×
 Precision + Recall

These metrics offer deeper insights into model performance.

For example, high precision indicates fewer false positives,
while high recall indicates fewer false negatives. The F1-score
provides a single measure to evaluate the trade-off between
precision and recall, making it especially effective when false
positives and false negatives carry different costs.

Fig. 1. Visualization of Accuracy, Precision, Recall, and F1-Score

B. Confusion Matrix
A confusion matrix is a performance evaluation tool for

classification models. It is a table that summarizes the model’s
predictions against actual outcomes, providing insights into its
accuracy and errors. The matrix consists of four key
components: True Positives (TP), correctly predicted positive
instances; True Negatives (TN), correctly predicted negative
instances; False Positives (FP), incorrect positive predictions
(Type I error); and False Negatives (FN), incorrect negative
predictions (Type II error). The confusion matrix helps compute
critical metrics such as accuracy, precision, recall, and F1-
score, enabling a comprehensive analysis of model
performance, especially for imbalanced datasets.

Fig. 2. Confusion matrix for Random Forest

Fig. 3. Confusion matrix for SVM

Fig. 4. Confusion matrix for KNN

Fig. 5. Confusion matrix for artificial neural network

5. Conclusion
In this paper, we explored the application of various machine

learning models, including logistic regression, random forest,
support vector machines (SVM), and artificial neural networks
(ANN), for detecting hardware vulnerabilities in electronic
devices. Our paper highlighted the unique strengths and
limitations of each model. Logistic regression served as a
baseline with its simplicity and interpretability, while random
forest demonstrated robustness and scalability for high-
dimensional data. SVM effectively captured non-linear
relationships using kernel functions, providing flexibility in
modelling complex data patterns.

Paraye et al. International Journal of Research in Engineering, Science and Management, VOL. 9, NO. 1, JANUARY 2026 48

We observed varying degrees of generalization and
adaptability across the models, emphasizing the importance of
evaluating performance under diverse conditions, including
adversarial scenarios. Practical considerations such as
computational efficiency, interpretability, and deployment
constraints were also addressed, underscoring the trade-offs
between model complexity and real-world applicability.

Our findings contribute valuable insights into hardware
vulnerability detection, particularly for Trojan and side-channel
attack detection. Future research directions include refining
model architectures, applying advanced feature engineering,
and integrating anomaly detection techniques to further
enhance hardware security. This work lays a foundation for
developing resilient and secure electronic systems, helping to
mitigate potential hardware threats in an evolving technological
landscape.

References
[1] D. Saha, S. Tarek, K. Yahyaei, S. K. Saha, J. Zhou, M. Tehranipoor, and

F. Farahmandi, “LLM for SoC security: A paradigm shift,” IEEE Access,
vol. 12, pp. 155498–155521, 2024.

[2] M. Akyash and H. Mardani Kamali, “Evolutionary large language models
for hardware security: A comparative survey,” ACM Great Lakes
Symposium on VLSI (GLSVLSI), Apr. 2024.

[3] M. Nair, R. Sadhukhan, and D. Mukhopadhyay, “Generating secure
hardware using ChatGPT resistant to CWEs,” Cryptology ePrint Archive,
Paper 2023/212, 2023. Available: https://eprint.iacr.org/2023/212.

[4] B. Ahmad, S. Thakur, B. Tan, R. Karri, and H. Pearce, “On hardware
security bug code fixes by prompting large language models,” IEEE
Transactions on Information Forensics and Security, vol. 19, pp. 4043–
4057, 2024.

[5] X. Meng, A. Srivastava, A. Arunachalam, A. Ray, P. H. Silva, R. Psiakis,
Y. Makris, and K. Basu, “Unlocking hardware security assurance: The
potential of LLMs,” arXiv preprint arXiv:2308.11042, Aug. 2023.

[6] R. Kande, H. Pearce, B. Tan, B. Dolan-Gavitt, S. Thakur, R. Karri, and J.
Rajendran, “(Security) assertions by large language models,” IEEE
Transactions on Information Forensics and Security, vol. 19, pp. 4374–
4389, 2024.

[7] G. Kokolakis, A. Moschos, and A. D. Keromytis, “Harnessing the power
of general-purpose LLMs in hardware Trojan design,” in Applied
Cryptography and Network Security Workshops (ACNS 2024), Lecture
Notes in Computer Science, vol. 14586, Springer, Cham, 2024, pp. 176–
194.

[8] W. Fang, M. Li, M. Li, Z. Yan, S. Liu, Z. Xie, and H. Zhang, “AssertLLM:
Generating and evaluating hardware verification assertions from design
specifications via MultiLLMs,” arXiv preprint arXiv:2402.00386, Feb.
2024.

[9] B. Mali et al., “ChIRAAG: ChatGPT informed rapid and automated
assertion generation,” in 2024 IEEE Computer Society Annual Symposium
on VLSI (ISVLSI), Knoxville, TN, USA, 2024, pp. 680–683.

https://eprint.iacr.org/2023/212?utm_source=chatgpt.com

	1. Introduction
	2. Related Work
	3. Process
	A. Dataset Preparation
	B. Machine Learning models
	1) Linear Regression
	2) Logistic Regression
	3) Support Vector Machine (SVM)
	4) K-Nearest Neighbors (KNN)
	5) Random Forest

	C. Ensemble learning
	D. Deep Learning
	E. Website and Flask Integration

	4. Results
	A. Accuracy
	B. Confusion Matrix

	5. Conclusion
	References

