

A Risk-Governance and Exposure-Monitoring Framework for Synthetic Food Dyes in Pediatric Diets in the United States: Decision Indicators, Labeling Salience, and Post-Market Surveillance

Jossineide Manuela da Silva Cordeiro*

Independent Researcher, Pharmacy and Public Health, Brazil

Abstract: **Purpose:** Synthetic food dyes remain pervasive in the U.S. processed-food supply, with exposure concentrated among children and shaped by product formulation, purchasing patterns, and labeling practices. While clinical and toxicological literature increasingly emphasizes heterogeneous susceptibility, regulatory decision-making still faces operational challenges: translating complex evidence into proportionate, implementable risk-management actions. This study proposes a regulatory-science framework that integrates exposure monitoring, decision indicators, and post-market surveillance to strengthen governance for pediatric-relevant dye exposure. **Methodology:** A conceptual framework was developed using a structured narrative synthesis of (i) clinical evidence on neurobehavioral sensitivity in subgroups, (ii) mechanistic/toxicological plausibility (including oxidative stress and inflammatory signaling), and (iii) regulatory documentation and exposure-context materials from major authorities. The framework was built through an iterative design-science logic: identification of governance gaps; definition of decision indicators; specification of operational levers (benchmark reassessment, labeling as risk communication, surveillance triggers); and articulation of an implementation pathway suitable for routine oversight. **Findings:** The proposed framework addresses three recurring governance gaps: (1) limited integration of contemporary pediatric exposure patterns into decision thresholds; (2) insufficient operational treatment of heterogeneity and susceptible subgroups; and (3) underutilization of labeling salience and surveillance loops as low-burden risk-management tools. The framework provides a practical approach for tiering exposure contexts, specifying triggers for reassessment, and strengthening post-market monitoring without requiring categorical hazard assumptions. **Practical Implications:** A proportionate governance model can reduce preventable risk in high-exposure pediatric contexts by improving transparency, enabling caregiver-level exposure management, and supporting periodic reassessment anchored in real-world consumption. The framework is designed to be implementable through existing regulatory infrastructure and adaptable to evolving evidence. **Originality:** This paper contributes a decision-oriented, implementable governance framework that translates multidisciplinary evidence into operational oversight mechanisms, emphasizing pediatric exposure concentration, susceptibility, and surveillance-driven iteration.

Keywords: labeling salience, pediatric exposure, post-market surveillance, regulatory science, risk communication, risk governance, synthetic food dyes, toxicology.

1. Introduction

Synthetic food dyes are embedded in the U.S. processed-food environment, where visual standardization and brand consistency remain economically valuable. Yet the public-health significance of these additives is shaped less by their technological function than by their population-level exposure context, particularly among children. Pediatric diets frequently contain a high proportion of packaged foods and beverages, and therefore may concentrate exposure to dyes such as Red 40, Yellow 5, and Yellow 6. In parallel, the scientific literature increasingly emphasizes a key feature of dye-related outcomes: heterogeneity of response, in which some children appear more vulnerable to neurobehavioral symptom exacerbation under real-world dietary conditions.

This heterogeneity creates a persistent governance challenge. Traditional safety narratives often rely on population-average effects and historical toxicological benchmarks, while real-world risk management requires additional elements: subgroup sensitivity, mixture-based consumption, exposure concentration, uncertainty management, and effective risk communication. Consequently, the policy-relevant question is not whether evidence yields a single definitive conclusion applicable to all children, but whether existing oversight frameworks possess the operational tools needed to manage plausible risk in high-exposure pediatric contexts with proportionality and transparency.

A second governance limitation is the frequent disconnect between evidence synthesis and implementation. Even when clinical and mechanistic evidence suggests plausibility for adverse response in susceptible subgroups, regulators and stakeholders may lack structured mechanisms to translate uncertainty into actionable oversight—such as decision indicators, surveillance triggers, reassessment cadence, and labeling practices that support informed choice.

This paper responds to these gaps by proposing a risk-governance and exposure-monitoring framework designed to be implementable through existing oversight infrastructure. The framework integrates exposure tiering, subgroup-aware interpretation, labeling salience as risk communication, and post-market surveillance loops—providing a practical pathway to strengthen governance without overstating causal certainty.

2. Objectives

In light of the concentrated exposure of U.S. children to dye-containing processed foods and the persistent challenge of translating heterogeneous evidence into policy-relevant action, this study was developed to operationalize regulatory-science principles into an implementable governance model. Specifically, the objectives are to:

1. Develop a decision-oriented risk-governance framework that integrates clinical sensitivity signals, mechanistic plausibility, and regulatory oversight tools into a coherent operational model for synthetic food dyes in pediatric diets.
2. Define a set of governance-relevant decision indicators capable of guiding proportionate action under uncertainty, including exposure concentration, susceptibility considerations, and consumption-pattern context.
3. Specify an exposure-monitoring architecture that supports routine oversight through tiered exposure contexts and surveillance loops, enabling timely reassessment when predefined triggers are met.
4. Articulate feasible risk-management levers—such as benchmark reassessment cadence, labeling salience as risk communication, and post-market monitoring—designed to reduce preventable risk while maintaining scientific neutrality and implementation feasibility.

3. Methodology

This paper employs a design-science and regulatory-science framework development approach, using structured narrative synthesis as the evidentiary foundation for model construction.

Evidence base and synthesis logic: The framework is informed by peer-reviewed clinical and review literature addressing behavioral sensitivity and dietary effects in children, toxicological discussions of plausible biological pathways (including oxidative stress and inflammatory signaling), and regulatory documentation and exposure-context materials from major authorities. Evidence is interpreted through a weight-of-evidence lens emphasizing consistency, plausibility, exposure relevance, and decision utility.

Framework development steps:

1. *Governance gap identification:* Recurring limitations were extracted from the literature and regulatory posture, focusing on exposure concentration, subgroup susceptibility, endpoint relevance, and implementation tools.
2. *Indicator specification:* Decision indicators were defined to make governance actionable (e.g., exposure

tiering, vulnerability considerations, reassessment triggers).

3. *Mechanism-to-governance mapping:* Mechanistic plausibility and clinical heterogeneity were mapped to governance responses (e.g., enhanced monitoring rather than categorical claims).
4. *Operational pathway design:* The framework's components were assembled into an implementable model consisting of exposure monitoring, decision thresholds, risk communication, and post-market surveillance loops.
5. *Feasibility appraisal:* Implementation was assessed qualitatively for compatibility with existing oversight infrastructure and stakeholder usability.

Scope and limitations: This is a conceptual, decision-support contribution rather than a systematic review or meta-analysis. The framework is designed to be updated as new evidence emerges and to support iterative governance rather than one-time conclusions.

4. Results and Discussion

1) Governance problem definition: Why dyes require an exposure-informed, subgroup-aware decision architecture

The governance challenge posed by synthetic food dyes is structurally defined by three interacting elements: (i) pervasive exposure with pediatric concentration, (ii) heterogeneous clinical responsiveness, and (iii) uncertainty regarding the most appropriate regulatory treatment of neurodevelopmentally relevant outcomes under real-world dietary conditions. In such domains, governance failure often arises not from a lack of evidence in absolute terms, but from an inability to convert evidence properties—heterogeneity, plausibility, mixture context—into implementable oversight mechanisms. Consequently, the central regulatory-science requirement is a decision architecture that is exposure-informed, subgroup-aware, and iterative.

A binary framing (“safe” versus “unsafe”) is misaligned with the evidence structure because it presumes uniformity of effect and exposure. Instead, the evidence more plausibly supports a model in which dyes may act as symptom modifiers for susceptible children under certain dietary patterns. In public-health terms, this is precisely the type of scenario where governance should prioritize: (a) identifying high-exposure contexts, (b) supporting risk communication that enables practical exposure management, and (c) implementing surveillance loops that trigger reassessment when signals strengthen.

2) Component I — Exposure tiering: Prioritizing governance where pediatric exposure is structurally highest

A core weakness in static oversight is treating dye exposure as if it were uniformly distributed. In practice, exposure is shaped by marketed product categories, household purchasing patterns, and the clustering of dyes within heavily processed foods commonly consumed by children. Therefore, the first operational element of the framework is exposure tiering, which functions as a governance triage mechanism.

Tiering is not a substitute for quantitative exposure

modeling; it is a pragmatic prioritization tool that can operate immediately within regulatory constraints. Tier 1 contexts are those where pediatric consumption is frequent and where dye-containing products are common; Tier 2 contexts reflect moderate frequency or intermittent consumption; Tier 3 contexts reflect low-frequency patterns or minimal contribution to cumulative intake. Importantly, tiering is not framed as a hazard claim but as an oversight allocation strategy: it concentrates monitoring, communication, and reassessment resources where the expected marginal public-health benefit is highest, thereby improving proportionality and feasibility.

The governance implication is direct: in Tier 1 contexts, uncertainty should not default to inaction, because repeated exposure among vulnerable consumers increases the cost of error. Instead, Tier 1 contexts justify stronger emphasis on label salience, targeted monitoring, and shorter reassessment cadence.

3) Component II — Susceptibility lens and decision indicators: Operationalizing heterogeneity without overstating causality

Because the clinical evidence suggests heterogeneous responsiveness, governance must explicitly incorporate susceptibility. The objective is not to treat susceptibility as a speculative modifier, but to treat it as a decision-relevant property of the evidence base. In regulatory-science terms, heterogeneity changes the appropriate evidentiary question from “Is there a uniform effect?” to “Is there sufficient evidence that a subset may be affected under realistic exposure conditions, and do existing governance tools adequately protect that subset?”

To make this operational, the framework defines decision indicators that can guide proportionate action under uncertainty:

- *Exposure concentration indicator:* Whether the relevant exposure contexts are structurally pediatric-intensive (frequency, product clustering, and cumulative intake plausibility).
- *Susceptibility indicator:* Whether the literature provides consistent signals that some children exhibit symptom exacerbation associated with dyes or dye-containing additive patterns, with functional relevance to behavior and daily performance.
- *Plausibility indicator:* Whether mechanistic considerations (oxidative stress, inflammatory activation) are sufficiently coherent with observed heterogeneity to justify increased monitoring or refined endpoint consideration.
- *Real-world complexity indicator:* Whether exposure plausibly occurs as part of mixtures and dietary clustering that may amplify sensitivity or confound simple single-agent assumptions.

Collectively, these indicators enable governance to act without making categorical causal statements. They support the regulatory stance that, when the combination of exposure concentration and plausible subgroup sensitivity is present, the appropriate response is enhanced transparency and iterative oversight, not an all-or-nothing posture.

4) Component III — Labeling salience as risk communication: Converting disclosure into a usable mitigation tool

In heterogeneity-driven risk problems, labeling can function as a low-burden mitigation strategy because it shifts risk management closer to the point of consumption. However, this only holds if labeling is salient and interpretable. Ingredient lists that technically disclose dyes may still fail as risk communication if they are low-visibility, inconsistently formatted, or difficult for caregivers to use in real time.

The framework therefore treats labeling as a governance lever with two functions: (i) enabling caregiver-level exposure management for children suspected to be sensitive; and (ii) creating market incentives for reformulation by increasing the visibility of dye presence in pediatric-relevant products. Labeling salience is not positioned as a substitute for safety evaluation; it is positioned as an uncertainty-compatible tool that reduces preventable exposure while reassessments and monitoring continue. In practical governance terms, labeling is often the most feasible intervention precisely because it does not require adjudicating the strongest causal claim; it requires ensuring transparency in a high-exposure context.

5) Component IV — Post-market surveillance and reassessment triggers: Shifting from static approval to iterative governance

A static governance model is structurally vulnerable to lag: evidence evolves, consumption patterns change, and mixture exposures remain common. An iterative post-market surveillance loop is therefore essential for aligning oversight with real-world dynamics. The loop includes: signal detection, trigger criteria, reassessment cadence, and feedback integration.

Signal detection should incorporate emerging clinical syntheses, mechanistic literature relevant to plausibility strengthening, and exposure-context updates. Trigger criteria should be pre-specified to prevent governance paralysis; triggers may include convergent subgroup sensitivity signals, evidence indicating higher-than-assumed pediatric exposure concentration, or mechanistic evidence that increases interpretive confidence. Reassessment cadence should be tiered: Tier 1 exposure contexts merit shorter intervals and higher monitoring intensity. Feedback integration ensures that surveillance outputs alter governance inputs—adjusting communication, monitoring focus, and evaluation endpoints.

This surveillance-driven model is consistent with proportionality: it escalates oversight intensity when convergent indicators are present, without requiring categorical claims that exceed the evidence base.

6) Implementation considerations: Feasibility and net benefit under real-world constraints

The framework is deliberately structured to be implementable using existing oversight tools and publicly available information. Tiering can be applied using consumption context and product-category logic; indicators can be assessed using the evolving literature and exposure assessments; labeling salience is a practical governance lever; and surveillance loops can be institutionalized through routine evidence monitoring and scheduled reassessment.

The feasibility argument is also a net-benefit argument:

small, targeted improvements in transparency and monitoring can yield meaningful benefit when applied to high-exposure pediatric contexts, particularly for susceptible families. Importantly, this governance model avoids extremes—neither dismissing uncertainty nor converting uncertainty into overreach. Instead, it operationalizes uncertainty through structured monitoring and proportionate mitigation, aligning oversight with the evidence structure and the exposure reality of children's diets.

5. Conclusion

Synthetic food dyes constitute a governance problem less because of a single decisive toxicity claim and more because of the structure of risk they present in real-world diets: high availability in processed foods, disproportionate pediatric exposure, and an evidence base in which the most consistent signal is heterogeneous susceptibility rather than uniform effects. In such settings, conventional safety narratives anchored solely in population-average outcomes and static benchmarks can be poorly matched to the policy task. The relevant regulatory-science question becomes whether existing oversight mechanisms are sufficiently exposure-informed, subgroup-aware, and iterative to manage plausible risk where the cost of delayed response is amplified by early-life, repeated intake.

The framework advanced in this paper responds to this gap by operationalizing governance into decision components that can function under uncertainty. First, exposure tiering reorients oversight toward contexts where cumulative pediatric intake is most likely to concentrate, supporting proportional allocation of monitoring and communication resources. Second, subgroup-aware decision indicators provide a structured way to interpret heterogeneous clinical signals and mechanistic plausibility without inflating the evidence into categorical causality. Third, treating labeling salience as risk communication reframes disclosure as an actionable mitigation tool, enabling caregiver-level exposure management for sensitive children while also shaping market incentives for transparency and reformulation. Finally, embedding these elements within a post-market surveillance loop shifts oversight from a static posture to an adaptive model with pre-

specified triggers and reassessment cadence, improving responsiveness to evolving evidence and consumption patterns.

Importantly, the proposed model is designed to be implementable within existing oversight infrastructure: it emphasizes decision utility, transparency, and iteration rather than data-intensive reinvention. Its core contribution is therefore not a new causal claim, but a governance architecture that aligns policy tools with the empirical realities of pediatric exposure, mixture-based consumption, and differential vulnerability. In domains where uncertainty coexists with widespread early-life exposure and functionally meaningful outcomes, such alignment is a prerequisite for proportionate risk management and for improving public-health protection without departing from scientific rigor.

References

- [1] E. K. Dunford, T. M. Galligan, L. Smith Taillie, and A. A. Musicus, "All the colors of the rainbow: Synthetic dyes in US packaged foods and beverages in 2020," *J. Acad. Nutr. Diet.*, vol. 125, no. 9, pp. 1207–1217.e9, 2025.
- [2] EFSA Panel on Food Additives and Nutrient Sources Added to Food (ANS), "Scientific opinion on the re-evaluation of Allura Red AC (E 129) as a food additive," *EFSA J.*, vol. 7, no. 11, p. 1327, 2009.
- [3] EFSA Panel on Food Additives and Nutrient Sources Added to Food (ANS), "Scientific opinion on the re-evaluation of Tartrazine (E 102) as a food additive," *EFSA J.*, vol. 7, no. 11, p. 1331, 2009.
- [4] EFSA Panel on Food Additives and Nutrient Sources Added to Food (ANS), "Reconsideration of the temporary ADI and refined exposure assessment for Sunset Yellow FCF (E 110)," *EFSA J.*, vol. 12, no. 7, p. 3765, 2014.
- [5] D. McCann *et al.*, "Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community: A randomised, double-blinded, placebo-controlled trial," *Lancet*, vol. 370, no. 9598, pp. 1560–1567, 2007.
- [6] M. D. Miller *et al.*, "Potential impacts of synthetic food dyes on activity and attention in children: A review of the human and animal evidence," *Environ. Health*, vol. 21, no. 1, p. 45, 2022.
- [7] Office of Environmental Health Hazard Assessment, *Health Effects Assessment: Potential Neurobehavioral Effects of Synthetic Food Dyes in Children*, Final Rep. Sacramento, CA, USA: California Environmental Protection Agency, Apr. 16, 2021.
- [8] L. J. Stevens, J. R. Burgess, M. A. Stochelski, and T. Kuczek, "Amounts of artificial food colors in commonly consumed beverages and potential behavioral implications for consumption in children," *Clin. Pediatr.*, vol. 53, no. 2, pp. 133–140, 2014.
- [9] U.S. Food and Drug Administration, "Color additive status list," U.S. FDA. [Online]. Available: FDA database.