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Abstract: The continuing development and interest of 

mathematical researchers, both from the purely theoretical and 
the applied perspective, can still be seen in the field of sequence 
spaces. One such sequence space is the Cesàro sequence of an 
absolute space, which J. S. Shiue introduced for real sequences in 
1970. Let 𝟏𝟏 ≤ 𝒑𝒑 < ∞ be real numbers. This space is defined to be 
the set of all real sequences (𝒙𝒙𝒏𝒏) such that ∑ �𝟏𝟏

𝒏𝒏
∑ |𝒙𝒙𝒌𝒌|𝒏𝒏
𝒌𝒌=𝟏𝟏 �

𝒑𝒑
∞
𝒏𝒏=𝟏𝟏 <

∞. In ℝ, the terms |𝒙𝒙𝒌𝒌|, relates to the standard metric 𝒅𝒅ℝ(𝒂𝒂,𝒃𝒃) ≔
|𝒂𝒂 − 𝒃𝒃|,∀𝒂𝒂,𝒃𝒃 ∈ ℝ, thus |𝒙𝒙𝒌𝒌| = 𝒅𝒅ℝ(𝒙𝒙𝒌𝒌,𝟎𝟎). Aiming to explore this 
insight, we construct the definition of absolute Cesàro sequence 
space on an arbitrary metric space (𝑿𝑿,𝒅𝒅) with a fixed point 𝒙𝒙𝟎𝟎 ∈
𝑿𝑿, denoted by 𝒄𝒄𝒄𝒄𝒔𝒔𝒑𝒑(𝒙𝒙𝟎𝟎). Then, we define a metric on 𝒄𝒄𝒄𝒄𝒔𝒔𝒑𝒑(𝒙𝒙𝟎𝟎), 
denoted by 𝝆𝝆𝒑𝒑. Also, we investigate the effect of the choice of 𝒙𝒙𝟎𝟎 ∈
𝑿𝑿 and the fundamental aspects of �𝒄𝒄𝒄𝒄𝒔𝒔𝒑𝒑(𝒙𝒙𝟎𝟎),𝝆𝝆𝒑𝒑� such as 
completeness, the inclusion relation of 𝒄𝒄𝒄𝒄𝒔𝒔𝒑𝒑(𝒙𝒙𝟎𝟎), the ordering of 
𝝆𝝆𝒑𝒑 on elements of 𝒄𝒄𝒄𝒄𝒔𝒔𝒑𝒑(𝒙𝒙𝟎𝟎) for various 𝒑𝒑, and the separability of 
�𝒄𝒄𝒄𝒄𝒔𝒔𝒑𝒑(𝒙𝒙𝟎𝟎),𝝆𝝆𝒑𝒑�. The primary outcomes indicate that for 𝟏𝟏 ≤ 𝒑𝒑 <
∞, �𝒄𝒄𝒄𝒄𝒔𝒔𝒑𝒑(𝒙𝒙𝟎𝟎),𝝆𝝆𝒑𝒑� is complete if (𝑿𝑿,𝒅𝒅) is complete; for 𝟏𝟏 < 𝒑𝒑 < ∞, 
�𝒄𝒄𝒄𝒄𝒔𝒔𝒑𝒑(𝒙𝒙𝟎𝟎),𝝆𝝆𝒑𝒑� is separable if and only if (𝑿𝑿,𝒅𝒅) is separable; and 
�𝒄𝒄𝒄𝒄𝒔𝒔𝒑𝒑(𝒙𝒙𝟎𝟎),𝝆𝝆𝒑𝒑� is not complete if (𝑿𝑿,𝒅𝒅) is not complete. Also, for 
𝟏𝟏 ≤ 𝒑𝒑 < 𝒒𝒒 < ∞, 𝒄𝒄𝒄𝒄𝒔𝒔𝒑𝒑(𝒙𝒙𝟎𝟎) ⊆ 𝒄𝒄𝒄𝒄𝒔𝒔𝒒𝒒(𝒙𝒙𝟎𝟎). For 𝒑𝒑 = 𝟏𝟏, we have 
𝒄𝒄𝒄𝒄𝒔𝒔𝟏𝟏(𝒙𝒙𝟎𝟎) = {(𝒙𝒙𝟎𝟎,𝒙𝒙𝟎𝟎, … )}. Hence, (𝒄𝒄𝒄𝒄𝒔𝒔𝟏𝟏(𝒙𝒙𝟎𝟎),𝝆𝝆𝟏𝟏) is separable for 
any metric space (𝑿𝑿,𝒅𝒅).  
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1. Introduction 
Sequence spaces refer to specific spaces in mathematics 

which consist of sequences with added some mathematical 
structure. Any sequence can also be considered to be a function 
defined from the set of natural numbers to a given non-empty 
set [1]. A classical example of a sequence space is the absolute 
Cesàro sequence space, 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝, which consists of all real 
sequences of the form (𝑥𝑥𝑛𝑛) such that that satisfy the condition 
∑ �1

𝑛𝑛
∑ |𝑥𝑥𝑘𝑘|𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
∞
𝑛𝑛=1 < ∞ for all 𝑝𝑝 ∈ ℝ with 1 ≤ 𝑝𝑝 < ∞. 
This space has been a subject of great deal of study. The first 

comprehensive study was done by Shiue [14], following a 
problem that was posed by the Dutch Mathematical Society 
concerning the dual of 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝, which was also a subject of 
topological study by Jagers [4] and Leibowitz [9]. Asides from 
the absolute case, Lee and Ng [12] pioneered the non-absolute 
case, denoted 𝑋𝑋𝑝𝑝. For 1 ≤ 𝑝𝑝 < ∞, 𝑋𝑋𝑝𝑝 is the space of all real  

 
sequences (𝑥𝑥𝑛𝑛) that satisfy ∑ �1

𝑛𝑛
∑ 𝑥𝑥𝑘𝑘𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
∞
𝑛𝑛=1 < ∞. 

The Cesàro sequence space of absolute type has a rich 
history, not only as a theory but also in various analysis related 
fields. In the early works on 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝, the objects studied were real 
sequences (𝑥𝑥𝑘𝑘) with 𝑥𝑥𝑘𝑘 ∈ ℝ for all 𝑘𝑘 ∈ ℕ. Consider real 
numbers 𝑎𝑎, 𝑏𝑏. Their distance is given by the standard metric on 
ℝ defined by 𝑑𝑑ℝ(𝑎𝑎, 𝑏𝑏) = |𝑎𝑎 − 𝑏𝑏| [6]. Thus, the expression |𝑥𝑥𝑘𝑘| 
in the definition of 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝 can be seen as the distance of 𝑥𝑥𝑘𝑘 from 
the zero element, that is |𝑥𝑥𝑘𝑘| = 𝑑𝑑ℝ(𝑥𝑥𝑘𝑘, 0).  In this regard, 
Maligranda et al. [10] defined ‖𝑥𝑥‖𝑝𝑝, the Cesàro norm, 
on 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝.  This norm is given by ‖𝑥𝑥‖𝑝𝑝 ≔

�∑ �1
𝑛𝑛
∑ |𝑥𝑥𝑘𝑘|𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
∞
𝑛𝑛=1 �

1
𝑝𝑝 for all 𝑥𝑥 = (𝑥𝑥𝑛𝑛) ∈ 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝, which 

Maligranda et al. used to capture other elements of 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝, that 
are not present in ℓ𝑝𝑝, namely the 𝐵𝐵-convex property. For any 
real number 𝑝𝑝 with 1 < 𝑝𝑝 < ∞, it is known that 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝 lacks the 
𝐵𝐵-convex property, in contrast to ℓ𝑝𝑝, which is 𝐵𝐵-convex. Also, 
Hakim et al. [3] studied 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝 in the same setting as Maligranda 
et al., that is, real sequences, and showed that 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝 is a Banach 
space with the Cesàro norm. They also examined various 
sequence-space characteristics such as solid, BK-space, FK-
space, and the AK-property.   

Though some other studies take different perspectives on 
sequence spaces related to Cesàro, they all seem to start from 
sequences whose terms are real numbers, so the measurement 
of distance is ultimately expressed through the absolute value 
on ℝ. For example, Malkowsky et al. [11] studied sequence 
spaces generated by the Cesàro transformation of real 
sequences, then through the use of norms and dual norms in the 
construction of Wulff’s crystals, related them to 
crystallography. In the context of machine learning and data 
clustering, Khan et al. [5] distance measure proposed an 
intuitionistic fuzzy distance measure related to a paranormed 
Cesàro sequence space, and even though it is an applied context, 
the distance measure is formulated in a numerical form which 
is, from its essence, based on the absolute value of real numbers.  

If we looked at the research above as a whole, we see that it 
always starts from the case where the terms of the sequence are 
numbers that belong to a universe which in this case is the set 
of all real numbers, ℝ. In this universe, we can always calculate 
the distances between elements using the absolute value 
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function defined on ℝ. This case changes, however, when the 
terms of the sequence are no longer real numbers, or objects 
that can be represented by real numbers, but instead elements 
of some general metric space, (𝑋𝑋,𝑑𝑑), where 𝑋𝑋 is the underlying 
set, and 𝑑𝑑 is the metric on 𝑋𝑋, which gives some notion of 
distance between its elements. In this particular case, the 
expression |𝑥𝑥𝑘𝑘| in the definition of 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝 is not defined and so 
we need a new definition which is solely dependent on the 
metric 𝑑𝑑. Because of the relation |𝑥𝑥𝑘𝑘| = 𝑑𝑑ℝ(𝑥𝑥𝑘𝑘, 0) on ℝ, this 
generalization intends to substitute |𝑥𝑥𝑘𝑘| with the distance to 
some fixed point 𝑥𝑥0 ∈ 𝑋𝑋, that is, 𝑑𝑑(𝑥𝑥𝑘𝑘, 𝑥𝑥0). 

Consequently, the purpose of this paper is constructing the 
definition the absolute type of Cesàro sequence space on a 
metric space (𝑋𝑋,𝑑𝑑) for a chosen fixed point 𝑥𝑥0 ∈ 𝑋𝑋, which we 
will denote by 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0). This space is defined for all sequences 
(𝑥𝑥𝑛𝑛) with 𝑥𝑥𝑛𝑛 ∈ 𝑋𝑋 for all 𝑛𝑛 ∈ ℕ such that the series 
∑ �1

𝑛𝑛
∑ 𝑑𝑑(𝑥𝑥𝑘𝑘, 𝑥𝑥0)𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
∞
𝑛𝑛=1 converges for 𝑝𝑝 ∈ ℝ, 1 ≤ 𝑝𝑝 < ∞. 

This is followed with a discussion on the effect of the choice of 
the fixed point on 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0). Then a function 𝜌𝜌𝑝𝑝 is constructed 
such that �𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0),𝜌𝜌𝑝𝑝� is a metric space. In addition, the study 
of certain fundamental properties such as the relations of 
completeness, inclusion for different values of 𝑝𝑝 to verify that 
the generalized space produced is of a desirable type with a 
stable topology. This study extends the classical Cesàro 
sequence theory and is the first of its type to go beyond ℝ. It 
also provides a base for further extensions beyond the real 
numbers. 

2. Literature Survey 
Some basic concepts and properties used in this discussion 

are presented as follows. 

A. Metric Space 
Definition 2.1 [6] Let 𝑋𝑋 be any nonempty set. A function 

𝑑𝑑:𝑋𝑋 × 𝑋𝑋 → ℝ is called a metric on 𝑋𝑋 if for every 𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ 𝑋𝑋 the 
following hold: 

a. 𝑑𝑑(𝑥𝑥,𝑦𝑦) ≥ 0 
b. 𝑑𝑑(𝑥𝑥,𝑦𝑦) = 0 if and only if 𝑥𝑥 = 𝑦𝑦 
c. 𝑑𝑑(𝑥𝑥,𝑦𝑦) = 𝑑𝑑(𝑦𝑦, 𝑥𝑥) 
d. 𝑑𝑑(𝑥𝑥,𝑦𝑦) ≤ 𝑑𝑑(𝑥𝑥, 𝑧𝑧) + 𝑑𝑑(𝑧𝑧,𝑦𝑦) 

The set 𝑋𝑋 equipped with 𝑑𝑑, written (𝑋𝑋,𝑑𝑑), is called a metric 
space. The elements of 𝑋𝑋 are called points, and 𝑑𝑑(𝑥𝑥,𝑦𝑦) is called 
the distance from 𝑥𝑥 to 𝑦𝑦. 

Definition 2.2 [1] Let (𝑋𝑋,𝑑𝑑) be a metric space and let 𝑥𝑥0 ∈
𝑋𝑋. For a real number 𝜀𝜀 > 0, the neighborhood of 𝑥𝑥0 with radius 
𝜀𝜀, denoted by 𝑁𝑁(𝑥𝑥0; 𝜀𝜀), is the set 

 
𝑁𝑁(𝑥𝑥0; 𝜀𝜀) = {𝑥𝑥 ∈ 𝑋𝑋:𝑑𝑑(𝑥𝑥0, 𝑥𝑥) < 𝜀𝜀} 

 
Definition 2.3 [15] Let (𝑋𝑋,𝑑𝑑) be a metric space and 𝐴𝐴 ⊂ 𝑋𝑋. 
A point 𝑥𝑥 ∈ 𝑋𝑋 is called a limit point of A if for every real 

number 𝜀𝜀 > 0, there exists a point 𝑥𝑥0 ∈ 𝑁𝑁(𝑥𝑥; 𝜀𝜀) ∩ 𝐴𝐴 with 𝑥𝑥0 ≠
𝑥𝑥; equivalently, 𝑁𝑁(𝑥𝑥; 𝜀𝜀) ∩ 𝐴𝐴 − {𝑥𝑥} ≠ ∅. 

 
Definition 2.4 [1] Let (𝑥𝑥𝑛𝑛) be a sequence in a metric space 

(𝑋𝑋,𝑑𝑑). The sequence (𝑥𝑥𝑛𝑛) is said to converge to a point 𝑥𝑥 ∈ 𝑋𝑋 
if for every real number 𝜀𝜀 > 0, there exists a natural number 𝐾𝐾 
such that for every 𝑛𝑛 ∈ ℕ with 𝑛𝑛 ≥ 𝐾𝐾, we have 𝑥𝑥𝑛𝑛 ∈ 𝑁𝑁(𝑥𝑥; 𝜀𝜀). 

 
Definition 2.5 [1] Let (𝑋𝑋,𝑑𝑑) be a metric space. A sequence 

(𝑥𝑥𝑛𝑛) in 𝑋𝑋 is called a Cauchy sequence if for every real number 
𝜀𝜀 > 0, there exists a natural number 𝐻𝐻 such that for all natural 
numbers 𝑚𝑚,𝑛𝑛 with 𝑚𝑚 ≥ 𝐻𝐻 and 𝑛𝑛 ≥ 𝐻𝐻, we have 𝑑𝑑(𝑥𝑥𝑛𝑛, 𝑥𝑥𝑚𝑚) < 𝜀𝜀. 

 
Definition 2.6 [1] A metric space (𝑋𝑋,𝑑𝑑) is called complete 

if every Cauchy sequence in 𝑋𝑋 converges to some element 𝑥𝑥 ∈
𝑋𝑋. 

B. Infinite Series 
Definition 2.7 [1] Let (𝑥𝑥𝑛𝑛) be a sequence of real numbers. 

The infinite series generated by (𝑥𝑥𝑛𝑛) is a new sequence (𝑠𝑠𝑘𝑘) 
defined by 𝑠𝑠𝑘𝑘 = ∑ 𝑥𝑥𝑛𝑛𝑘𝑘

𝑛𝑛=1 . Furthermore, the infinite series is 
written as ∑ 𝑥𝑥𝑛𝑛∞

𝑛𝑛=1 , where 𝑥𝑥𝑛𝑛 are called the terms of the series 
and 𝑠𝑠𝑘𝑘 is called the 𝑘𝑘-th partial sum of the series 

 
Definition 2.8 [1] The series ∑ 𝑥𝑥𝑛𝑛∞

𝑛𝑛=1  is said to converge if 
the sequence of partial sums (𝑠𝑠𝑘𝑘) converges, that is, if there 
exists 𝑆𝑆 ∈ ℝ such that lim

𝑘𝑘→∞
𝑠𝑠𝑘𝑘 = 𝑆𝑆. In this case, 𝑆𝑆 is called the 

sum (value) of the series and it is written ∑ 𝑥𝑥𝑛𝑛∞
𝑛𝑛=1 = 𝑆𝑆. 

 
Theorem 2.9 [1] If the series ∑ 𝑥𝑥𝑛𝑛∞

𝑛𝑛=1  converges, then we 
have lim(𝑥𝑥𝑛𝑛) = 0 

 
Theorem 2.10 [1] If 𝑝𝑝 > 1, then the series ∑ 1

𝑛𝑛𝑝𝑝
∞
𝑛𝑛=1  

converges 

C. Mikowski Inequality 
Theorem 2.11 [2] Given real sequences (𝑥𝑥𝑛𝑛) and (𝑦𝑦𝑛𝑛). If 

1 ≤ 𝑝𝑝 < ∞, then 
 

��|𝑥𝑥𝑛𝑛 + 𝑦𝑦𝑛𝑛|𝑝𝑝
∞

𝑛𝑛=1

�

1
𝑝𝑝

≤ ��|𝑥𝑥𝑛𝑛|𝑝𝑝
∞

𝑛𝑛=1

�

1
𝑝𝑝

+ ��|𝑦𝑦𝑛𝑛|𝑝𝑝
∞

𝑛𝑛=1

�

1
𝑝𝑝

 

 

D. Cesàro Sequence Space of Absolute Type 
Definition 2.12 [8] The Cesàro sequence space of absolute 

type, denoted by 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝, is the set of all real sequences (𝑥𝑥𝑛𝑛) 

satisfying∑ �1
𝑛𝑛
∑ |𝑥𝑥𝑘𝑘|𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
< ∞∞

𝑛𝑛=1  for real number 𝑝𝑝 with 1 ≤
𝑝𝑝 < ∞. Symbolically, 

 

𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝 = �(𝑥𝑥𝑛𝑛): ��
1
𝑛𝑛
�|𝑥𝑥𝑘𝑘|
𝑛𝑛

𝑘𝑘=1

�
𝑝𝑝

< ∞
∞

𝑛𝑛=1

� 

 
To understand this definition, several examples are given 

below. 
 
Example 2.13 The real sequence 𝑋𝑋 = �1

𝑛𝑛
− 1

𝑛𝑛+1
� is an 

element of 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝 for every real number 𝑝𝑝 with 1 < 𝑝𝑝 < ∞. 
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Proof: Given any natural number 𝑛𝑛. For each 𝑘𝑘 = 1,2, … ,𝑛𝑛 
we have 1

𝑘𝑘
> 1

𝑘𝑘+1
, hence �1

𝑘𝑘
− 1

𝑘𝑘+1
� = 1

𝑘𝑘
− 1

𝑘𝑘+1
. Thus, for every 

𝑛𝑛 ∈ ℕ,  1
𝑛𝑛
∑ |𝑥𝑥𝑘𝑘|𝑛𝑛
𝑘𝑘=1 = 1

𝑛𝑛
∑ �1

𝑘𝑘
− 1

𝑘𝑘+1
�𝑛𝑛

𝑘𝑘=1 = 1
𝑛𝑛
∑ �1

𝑘𝑘
− 1

𝑘𝑘+1
�𝑛𝑛

𝑘𝑘=1  
 

=
1
𝑛𝑛
�1 −

1
2

+
1
2
−

1
3

+ ⋯+
1
𝑛𝑛
−

1
𝑛𝑛 + 1

� 

 

=
1
𝑛𝑛
�1 −

1
𝑛𝑛 + 1

� 

 

=
1
𝑛𝑛 �

𝑛𝑛
𝑛𝑛 + 1�

 

 

=
1

𝑛𝑛 + 1
 

 
Since 1

𝑛𝑛+1
≤ 1

𝑛𝑛
 for every 𝑛𝑛 ∈ ℕ, we obtain 1

𝑛𝑛
∑ |𝑥𝑥𝑘𝑘|𝑛𝑛
𝑘𝑘=1 ≤ 1

𝑛𝑛
,

∀𝑛𝑛 ∈ ℕ. Therefore, for any real number 𝑝𝑝 with 1 < 𝑝𝑝 < ∞, 

�1
𝑛𝑛
∑ |𝑥𝑥𝑘𝑘|𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
≤ �1

𝑛𝑛
�
𝑝𝑝

= 1
𝑛𝑛𝑝𝑝

. Summing over 𝑛𝑛, we get 

∑ �1
𝑛𝑛
∑ |𝑥𝑥𝑘𝑘|𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
∞
𝑛𝑛=1 ≤ ∑ 1

𝑛𝑛𝑝𝑝
∞
𝑛𝑛=1 . By Theorem 2.13, the series 

∑ 1
𝑛𝑛𝑝𝑝

∞
𝑛𝑛=1  converges for every 𝑝𝑝 > 1. Hence, we obtain 

∑ �1
𝑛𝑛
∑ |𝑥𝑥𝑘𝑘|𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
∞
𝑛𝑛=1 < ∞. Thus, by definition, 𝑋𝑋 ∈ 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝 for 

every real number 𝑝𝑝 with 1 < 𝑝𝑝 < ∞.  
 
Example 2.14 The constant sequence 𝑋𝑋 = (𝑐𝑐, 𝑐𝑐, 𝑐𝑐, … ) for 

some real number 𝑐𝑐 > 0 is not an element of 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝 for every real 
number 𝑝𝑝 with 1 ≤ 𝑝𝑝 < ∞. 

Proof: Given any natural number 𝑛𝑛. Since 𝑋𝑋 = (𝑐𝑐, 𝑐𝑐, 𝑐𝑐, … ), 
we have 𝑥𝑥𝑘𝑘 = 𝑐𝑐 for each 𝑘𝑘 = 1,2, … ,𝑛𝑛. Hence, for every 𝑛𝑛 ∈
ℕ, 1

𝑛𝑛
∑ |𝑥𝑥𝑘𝑘|𝑛𝑛
𝑘𝑘=1 = 1

𝑛𝑛
∑ |𝑐𝑐|𝑛𝑛
𝑘𝑘=1 = 1

𝑛𝑛
𝑛𝑛|𝑐𝑐| = |𝑐𝑐| = 𝑐𝑐, so 

1
𝑛𝑛
∑ |𝑥𝑥𝑘𝑘|𝑛𝑛
𝑘𝑘=1 = 𝑐𝑐,∀𝑛𝑛 ∈ ℕ. Let 𝑝𝑝 be any real number with 1 ≤

 𝑝𝑝 < ∞. We have �1
𝑛𝑛
∑ |𝑥𝑥𝑘𝑘|𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
= 𝑐𝑐𝑝𝑝. Summing over 𝑛𝑛 ∈ ℕ, 

we obtain ∑ �1
𝑛𝑛
∑ |𝑥𝑥𝑘𝑘|𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
=∞

𝑛𝑛=1 ∑ 𝑐𝑐𝑝𝑝∞
𝑛𝑛=1 . Consider the 

sequence of partial sums of the infinite series, namely (𝑠𝑠𝑛𝑛) with 
𝑠𝑠𝑛𝑛 = ∑ 𝑐𝑐𝑝𝑝𝑛𝑛

𝑘𝑘=1 = 𝑛𝑛𝑐𝑐𝑝𝑝. Then (𝑠𝑠𝑛𝑛) is unbounded, hence (𝑠𝑠𝑛𝑛) 
diverges. So, the series ∑ 𝑐𝑐𝑝𝑝∞

𝑛𝑛=1  diverges. Hence, 
∑ �1

𝑛𝑛
∑ |𝑥𝑥𝑘𝑘|𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
=∞

𝑛𝑛=1 ∑ 𝑐𝑐𝑝𝑝∞
𝑛𝑛=1  diverges. Therefore, the 

constant sequence 𝑋𝑋 = (𝑐𝑐, 𝑐𝑐, 𝑐𝑐, … ) ∉ 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝 for every real 
number 𝑝𝑝 with 1 ≤ 𝑝𝑝 < ∞. 

3. Main Results 

A. Cesàro Sequence Space of Absolute Type on A Metric 
Space 

In this section, (𝑋𝑋,𝑑𝑑) represents a metric space, with 𝑋𝑋 being 
the set and 𝑑𝑑 being the metric. The classical absolute-type 
Cesàro sequence space on ℝ with the standard metric was stated 
in Definition 2.12. The idea is here generalized to an arbitrary 
metric space by substituting |𝑥𝑥𝑘𝑘| with 𝑑𝑑(𝑥𝑥𝑘𝑘, 𝑥𝑥0) for some fixed 
reference point 𝑥𝑥0 ∈ 𝑋𝑋. 

Definition 3.1 Let (𝑋𝑋,𝑑𝑑) be a metric space, 𝑝𝑝 ∈ ℝ where 1 ≤
𝑝𝑝 < ∞, and 𝑥𝑥0 ∈ 𝑋𝑋. The absolute-type Cesàro sequence space 
on (𝑋𝑋,𝑑𝑑) with reference point 𝑥𝑥0, denoted by 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0), is the 
collection of all sequences (𝑥𝑥𝑛𝑛) with 𝑥𝑥𝑛𝑛 ∈ 𝑋𝑋 for every 𝑛𝑛 ∈ ℕ 
such that 

𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0) ≔ �(𝑥𝑥𝑛𝑛): ��
1
𝑛𝑛
�𝑑𝑑(𝑥𝑥𝑘𝑘, 𝑥𝑥0)
𝑛𝑛

𝑘𝑘=1

�
𝑝𝑝

< ∞
∞

𝑛𝑛=1

� 

 
Some examples will be provided. Keep in mind that if  𝑋𝑋 =

ℝ, 𝑑𝑑 is the standard metric, and 𝑥𝑥0 = 0, 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0) coincides 
with the classical 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝 in Definition 2.12. Therefore, the 
examples concentrate on other types of metric spaces. 

 
Examples 3.2 Let (𝑋𝑋,𝑑𝑑) be a metric space with 𝑋𝑋 = ℝ and 

the standard metric 𝑑𝑑(𝑥𝑥,𝑦𝑦) = |𝑥𝑥 − 𝑦𝑦| for all 𝑥𝑥,𝑦𝑦 ∈ ℝ. Fix a 
reference point 𝑥𝑥0 = 1 ∈ ℝ. Then the absolute-type of Cesàro 
sequence space over (ℝ,𝑑𝑑) with reference point 1 is the 
collection of all real sequences (𝑥𝑥𝑛𝑛) satisfying 

 

𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(1) = �(𝑥𝑥𝑛𝑛): ��
1
𝑛𝑛
�|𝑥𝑥𝑘𝑘 − 1|
𝑛𝑛

𝑘𝑘=1

�
𝑝𝑝

< ∞
∞

𝑛𝑛=1

� 

 
Where 𝑝𝑝 is the real number statisfy 1 ≤ 𝑝𝑝 < ∞. 
After providing the definition of 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(1), we give some 

examples of real sequences, in particular, those that are in 
𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(1) and those that are not. 

a. The constant real sequence (𝑐𝑐, 𝑐𝑐, 𝑐𝑐, … )  belongs to 
𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(1) for every real number 𝑝𝑝 with 1 ≤  𝑝𝑝 < ∞ if 
and only if 𝑐𝑐 = 1. 

Proof: Let (𝑐𝑐, 𝑐𝑐, 𝑐𝑐, … ) be a constant sequence with  𝑐𝑐 ∈ ℝ. 
Given any natural number 𝑛𝑛. For each 𝑘𝑘 = 1,2, … ,𝑛𝑛, we have 
𝑥𝑥𝑘𝑘 = 𝑐𝑐. Hence for all 𝑛𝑛 ∈ ℕ, 1

𝑛𝑛
∑ |𝑥𝑥𝑘𝑘 − 1|𝑛𝑛
𝑘𝑘=1 = 1

𝑛𝑛
∑ |𝑐𝑐 −𝑛𝑛
𝑘𝑘=1

1| = 1
𝑛𝑛
𝑛𝑛|𝑐𝑐 − 1| = |𝑐𝑐 − 1|. Therefore, for every 𝑝𝑝 ∈ ℝ with 

1 ≤ 𝑝𝑝 < ∞, �1
𝑛𝑛
∑ |𝑥𝑥𝑘𝑘 − 1|𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
= |𝑐𝑐 − 1|𝑝𝑝,∀𝑛𝑛 ∈ ℕ.  

Since 𝑐𝑐 ∈ ℝ, we consider the following cases 
Case 𝒄𝒄 ≠ 𝟏𝟏: Then |𝑐𝑐 − 1| > 0, and consequently 
∑ �1

𝑛𝑛
∑ |𝑥𝑥𝑘𝑘 − 1|𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
∞
𝑛𝑛=1 = ∑ �1

𝑛𝑛
∑ |𝑐𝑐 − 1|𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
∞
𝑛𝑛=1 =

∑ |𝑐𝑐 − 1|𝑝𝑝∞
𝑛𝑛=1  diverges. Thus, when 𝑐𝑐 ≠ 1, the sequence 

(𝑐𝑐, 𝑐𝑐, 𝑐𝑐, … ) ∉ 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(1) 

Case 𝒄𝒄 = 𝟏𝟏: Then |c-1|=0, so ∑ �1
𝑛𝑛
∑ |𝑥𝑥𝑘𝑘 − 1|𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
∞
𝑛𝑛=1 =

∑ 0∞
𝑛𝑛=1 = 0 < ∞. Hence, for 𝑐𝑐 = 1, the sequence (𝑐𝑐, 𝑐𝑐, 𝑐𝑐, … ) =

(1,1,1, … ) belongs to 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(1) for every real number 𝑝𝑝 with 1 ≤
𝑝𝑝 < ∞.  

b. The real sequence (𝑎𝑎𝑛𝑛) where 𝑎𝑎𝑛𝑛 = � 0,𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜
2,𝑛𝑛 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is not 

an element of 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(1) for every real number 𝑝𝑝 with 
1 ≤ 𝑝𝑝 < ∞. 

Proof: Given any natural number 𝑛𝑛. Notice that for each 𝑘𝑘 =
1,2, … ,𝑛𝑛,  

|𝑎𝑎𝑘𝑘 − 1| = � |0 − 1| = 1, 𝑘𝑘 𝑜𝑜𝑜𝑜𝑜𝑜
|2 − 1| = 1, 𝑘𝑘 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 
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Hence |𝑎𝑎𝑘𝑘 − 1| = 1,∀𝑘𝑘 = 1,2, … ,𝑛𝑛. Therefore, for every 

𝑛𝑛 ∈ ℕ, 1
𝑛𝑛
∑ |𝑎𝑎𝑘𝑘 − 1|𝑛𝑛
𝑘𝑘=1 = 1

𝑛𝑛
∑ 1𝑛𝑛
𝑘𝑘=1 = 1

𝑛𝑛
𝑛𝑛 = 1. Let 𝑝𝑝 be any real 

number with 1 ≤ 𝑝𝑝 < ∞, then we have �1
𝑛𝑛
∑ |𝑎𝑎𝑘𝑘 − 1|𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
=

1𝑝𝑝 = 1. Summing over 𝑛𝑛 yields ∑ �1
𝑛𝑛
∑ |𝑎𝑎𝑘𝑘 − 1|𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
∞
𝑛𝑛=1 =

∑ 1∞
𝑛𝑛=1 = ∞. Therefore (𝑎𝑎𝑛𝑛) ∉ 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(1) for every real number 

𝑝𝑝 with 1 ≤ 𝑝𝑝 < ∞.  
 
We now consider ℝ with 𝑑𝑑(𝑥𝑥,𝑦𝑦) = min{1, |𝑥𝑥 − 𝑦𝑦|} and a 

reference point 𝑥𝑥0 = 2; the corresponding space is provided in 
this example below. 

 
Example 3.3 Let (𝑋𝑋,𝑑𝑑) be a metric space with 𝑋𝑋 = ℝ and 

𝑑𝑑(𝑥𝑥,𝑦𝑦) = min{1, |𝑥𝑥 − 𝑦𝑦|},∀𝑥𝑥,𝑦𝑦 ∈ ℝ. Fix a reference point 
𝑥𝑥0 = 2 ∈ ℝ. Then the absolute-type of Cesàro sequence space 
over (ℝ,𝑑𝑑) with reference point 𝑥𝑥0 = 2 is the collection of all 
real sequences (𝑥𝑥𝑛𝑛) satisfying 

 

𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(2) = �(𝑥𝑥𝑛𝑛): ��
1
𝑛𝑛
�min{1, |𝑥𝑥𝑘𝑘 − 2|}
𝑛𝑛

𝑘𝑘=1

�
𝑝𝑝

< ∞
∞

𝑛𝑛=1

� 

 
Where 𝑝𝑝 is the real number statisfy 1 ≤ 𝑝𝑝 < ∞. 
We will now discuss examples of both real sequences that 

belong to this space and those which do not 
a. The real sequence �2 + 1

2𝑛𝑛
� belongs to 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(2) for 

every real number 𝑝𝑝 with 1 < 𝑝𝑝 < ∞. 
Proof: Let 𝑛𝑛 ∈ ℕ be arbitrary. For each 𝑘𝑘 = 1,2, … ,𝑛𝑛 notice 

that min{1, |𝑥𝑥𝑘𝑘 − 2|} = min �1, �2 + 1
2𝑘𝑘
− 2�� =

min �1, � 1
2𝑘𝑘
�� = min �1, 1

2𝑘𝑘
�.  

Since 2𝑘𝑘 ≥ 2,∀𝑘𝑘 = 1,2, … ,𝑛𝑛, we have 1
2𝑘𝑘
≤ 1

2
< 1. Hence 

min �1, 1
2𝑘𝑘
� = 1

2𝑘𝑘
,∀𝑘𝑘 = 1,2, … ,𝑛𝑛. we know that the series 

∑ 1
2𝑘𝑘

∞
𝑘𝑘=1  is a geometric series which converges to 1.  

Thus, for every 𝑛𝑛 ∈ ℕ, 0 ≤ ∑ 1
2𝑘𝑘

𝑛𝑛
𝑘𝑘=1 ≤ ∑ 1

2𝑘𝑘
∞
𝑘𝑘=1 = 1. 

Consequently, 0 ≤ 1
𝑛𝑛
∑ 1

2𝑘𝑘
𝑛𝑛
𝑘𝑘=1 ≤ 1

𝑛𝑛
,∀𝑛𝑛 ∈ ℕ. Now let 𝑝𝑝 be any 

real number with 1 ≤ 𝑝𝑝 < ∞, then we have �1
𝑛𝑛
∑ 1

2𝑘𝑘
𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
≤ 1

𝑛𝑛𝑝𝑝
. 

Summing both sides over 𝑛𝑛 yields ∑ �1
𝑛𝑛
∑ 1

2𝑘𝑘
𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
∞
𝑛𝑛=1 ≤

∑ 1
𝑛𝑛𝑝𝑝

∞
𝑛𝑛=1  . By Theorem 2.2, the series ∑ 1

𝑛𝑛𝑝𝑝
∞
𝑛𝑛=1  converges for 

every real number 𝑝𝑝 > 1. Hence, ∑ �1
𝑛𝑛
∑ 1

2𝑘𝑘
𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
∞
𝑛𝑛=1 ≤

∑ 1
𝑛𝑛𝑝𝑝

∞
𝑛𝑛=1 < ∞.  
 
Since, 
 

��
1
𝑛𝑛
�

1
2𝑘𝑘

𝑛𝑛

𝑘𝑘=1

�
𝑝𝑝∞

𝑛𝑛=1

= ��
1
𝑛𝑛
�min{1, |𝑥𝑥𝑘𝑘 − 2|}
𝑛𝑛

𝑘𝑘=1

�
𝑝𝑝∞

𝑛𝑛=1

 

 
It follows that ∑ �1

𝑛𝑛
∑ min{1, |𝑥𝑥𝑘𝑘 − 2|}𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
∞
𝑛𝑛=1 < ∞. 

Therefore, the sequence �2 + 1
2𝑛𝑛
� is an element of 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(2) for 

every real number 𝑝𝑝 with 1 < 𝑝𝑝 < ∞. 

b. The real sequence (𝑥𝑥𝑛𝑛) defined by 𝑥𝑥𝑛𝑛 = �3,𝑛𝑛 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑛𝑛2,𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜 is 

not an element of 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(2) for every real number 𝑝𝑝 
with 1 ≤ 𝑝𝑝 < ∞. 

Proof: Let 𝑛𝑛 ∈ ℕ be arbitrary. If 𝑛𝑛 is even, then 𝑥𝑥𝑛𝑛 = 3, 
hence 𝑑𝑑(𝑥𝑥𝑛𝑛, 2) = min{1, |3 − 2|} = min{1,1} = 1. If 𝑛𝑛 is odd, 
then 𝑥𝑥𝑛𝑛 = 𝑛𝑛2, so 𝑑𝑑(𝑥𝑥𝑛𝑛, 2) = min{1, |𝑛𝑛2 − 2|}. We consider 
odd 𝑛𝑛 in the following cases. 

Case 𝒏𝒏 = 𝟏𝟏:  
𝑑𝑑(𝑥𝑥𝑛𝑛, 2) = min{1, |12 − 2|} = min{1, 1} = 1 

Case 𝒏𝒏 ≥ 𝟑𝟑: 
Since 𝑛𝑛2 ≥ 9, we have 𝑛𝑛2 − 2 ≥ 7, hence |𝑛𝑛2 − 2| ≥ 7 > 1. 

Therefore, 𝑑𝑑(𝑥𝑥𝑛𝑛, 2) = min{1, |𝑛𝑛2 − 2|} = 1. 
From both cases, for every odd 𝑛𝑛 we obtain 𝑑𝑑(𝑥𝑥𝑛𝑛, 2) = 1. 

Together with the even case, it follows that 𝑑𝑑(𝑥𝑥𝑛𝑛, 2) = 1,∀𝑛𝑛 ∈
ℕ. Hence, for every 𝑛𝑛 ∈ ℕ,  
1
𝑛𝑛
�𝑑𝑑(𝑥𝑥𝑘𝑘, 2)
𝑛𝑛

𝑘𝑘=1

=
1
𝑛𝑛
�min{1, |𝑥𝑥𝑘𝑘 − 2|}
𝑛𝑛

𝑘𝑘=1

=
1
𝑛𝑛
� 1
𝑛𝑛

𝑘𝑘=1

=
1
𝑛𝑛
𝑛𝑛 = 1 

Therefore, for every real number 𝑝𝑝 with 1 ≤ 𝑝𝑝 < ∞, 

�1
𝑛𝑛
∑ 𝑑𝑑(𝑥𝑥𝑘𝑘, 2)𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
= 1𝑝𝑝 = 1. Summing both sides over n, we 

obtain 

��
1
𝑛𝑛
�𝑑𝑑(𝑥𝑥𝑘𝑘, 2)
𝑛𝑛

𝑘𝑘=1

�
𝑝𝑝∞

𝑛𝑛=1

= � 1
∞

𝑛𝑛=1

= ∞ 

 
Thus, the sequence (𝑥𝑥𝑛𝑛) is not an element of 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(2) for 

every real number 𝑝𝑝 with 1 ≤ 𝑝𝑝 < ∞. 
 
Next, the focus is on  𝑋𝑋 = ℝ2, which means the objects of 

study are sequences of ordered pairs �𝑥𝑥𝑛𝑛
(1), 𝑥𝑥𝑛𝑛

(2)� with 
𝑥𝑥𝑛𝑛

(1), 𝑥𝑥𝑛𝑛
(2) ∈ ℝ for all 𝑛𝑛 ∈ ℕ. With a given reference point in ℝ2, 

an absolute Cesàro sequence space can be constructed in this 
way. 

 
Example 3.4 Given the metric space (ℝ2,𝑑𝑑) where 𝑑𝑑 is the 

Euclidean metric. For each 𝑥𝑥 = (𝑥𝑥1, 𝑥𝑥2) and 𝑦𝑦 = (𝑦𝑦1,𝑦𝑦2) in ℝ, 
the metric 𝑑𝑑 is defined by 𝑑𝑑(𝑥𝑥,𝑦𝑦) =
�(𝑥𝑥1 − 𝑦𝑦1)2 + (𝑥𝑥2 − 𝑦𝑦2)2. Choose the reference point (1,1) ∈
ℝ2. Then the absolute Cesàro-type sequence space built on 
(ℝ2,𝑑𝑑) with reference point (1,1) is is the collection of all 
sequences (𝑥𝑥𝑛𝑛) with 𝑥𝑥𝑛𝑛 = �𝑥𝑥𝑛𝑛

(1), 𝑥𝑥𝑛𝑛
(2)� on ℝ2 statisfying 

 

𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝�(1,1)� = �(𝑥𝑥𝑛𝑛): ��
1
𝑛𝑛
�𝑑𝑑�𝑥𝑥𝑘𝑘, (1,1)�
𝑛𝑛

𝑘𝑘=1

�
𝑝𝑝

< ∞
∞

𝑛𝑛=1

� 

 
Where 𝑝𝑝 is a real number that statisfy 1 ≤ 𝑝𝑝 < ∞ and for 1 ≤

𝑘𝑘 ≤ 𝑛𝑛,𝑛𝑛 ∈ ℕ , 𝑑𝑑�𝑥𝑥𝑘𝑘, (1,1)� ≔ ��𝑥𝑥𝑘𝑘
(1) − 1�

2
+ �𝑥𝑥𝑘𝑘

(2) − 1�
2
. 

Below are examples of sequences that fall within this space, 
as well as sequences that do not. 
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a. The sequence (x_n) defined by 𝑥𝑥𝑛𝑛 = �1 + (−1)𝑛𝑛

5𝑛𝑛
, 1� is 

an element of 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝�(1,1)� for every real number 𝑝𝑝 
with 1 < 𝑝𝑝 < ∞. 

Proof: Let 𝑛𝑛 ∈ ℕ be arbitrary. Notice that for each 𝑘𝑘 =
1,2, … ,𝑛𝑛,  

 

𝑑𝑑�𝑥𝑥𝑘𝑘, (1,1)� = ��1 +
(−1)𝑘𝑘

5𝑘𝑘
− 1�

2

+ (1 − 1)2

= ��
(−1)𝑘𝑘

5𝑘𝑘
�
2

= �(−1)2𝑘𝑘

52𝑘𝑘
=

1
5𝑘𝑘

 

 
Hence, for every 𝑛𝑛 ∈ ℕ,  
 

1
𝑛𝑛
�𝑑𝑑�𝑥𝑥𝑘𝑘, (1,1)�
𝑛𝑛

𝑘𝑘=1

=
1
𝑛𝑛
�

1
5𝑘𝑘

𝑛𝑛

𝑘𝑘=1

 

 
We know that ∑ 1

5𝑘𝑘
∞
𝑘𝑘=1  is a geometric series with ratio 1

5
, 

hence it converges to 1
4
. Therefore, for each 𝑛𝑛 ∈ ℕ, ∑ 1

5𝑘𝑘
𝑛𝑛
𝑘𝑘=1 ≤

∑ 1
5𝑘𝑘

∞
𝑘𝑘=1 = 1

4
, so 1

𝑛𝑛
∑ 1

5𝑘𝑘
𝑛𝑛
𝑘𝑘=1 ≤ 1

4𝑛𝑛
,∀𝑛𝑛 ∈ ℕ. Now take any real 

number 𝑝𝑝 with 1 < 𝑝𝑝 < ∞, then we have �1
𝑛𝑛
∑ 1

5𝑘𝑘
𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
≤

� 1
4𝑛𝑛
�
𝑝𝑝

= 1
4𝑝𝑝

1
𝑛𝑛𝑝𝑝

, summing over 𝑛𝑛 yields ∑ �1
𝑛𝑛
∑ 1

5𝑘𝑘
𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
∞
𝑛𝑛=1 ≤

1
4𝑝𝑝
∑ 1

𝑛𝑛𝑝𝑝
∞
𝑛𝑛=1 . By Theorem 2.2, ∑ 1

𝑛𝑛𝑝𝑝
∞
𝑛𝑛=1  converges for 𝑝𝑝 > 1. 

Hence, ∑ �1
𝑛𝑛
∑ 1

5𝑘𝑘
𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
∞
𝑛𝑛=1 < ∞. 

Since 𝑑𝑑�𝑥𝑥𝑘𝑘, (1,1)� = 1
5𝑘𝑘

, we conclude from the definition of 

𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝�(1,1)� that ∑ �1
𝑛𝑛
∑ 𝑑𝑑�𝑥𝑥𝑘𝑘, (1,1)�𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
∞
𝑛𝑛=1 < ∞. So the 

sequence (𝑥𝑥𝑛𝑛) belongs to 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝�(1,1)� for every 𝑝𝑝 ∈ ℝ with 
1 < 𝑝𝑝 < ∞. 

 
b. The sequence (𝑦𝑦𝑛𝑛) defined by 𝑦𝑦𝑛𝑛 = (𝑛𝑛,𝑛𝑛) is not an 

element of 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝�(1,1)� for every real number 𝑝𝑝 with 
1 ≤ 𝑝𝑝 < ∞. 

Proof: Let 𝑛𝑛 be any natural number. Note that for each 𝑘𝑘 =
1,2, … ,𝑛𝑛, 
𝑑𝑑�𝑦𝑦𝑘𝑘, (1,1)� = 𝑑𝑑�(𝑘𝑘, 𝑘𝑘), (1,1)� = �(𝑘𝑘 − 1)2 + (𝑘𝑘 − 1)2

= �2(𝑘𝑘 − 1)2 = √2(𝑘𝑘 − 1) 
Hence, for every 𝑛𝑛 ∈ ℕ,  
 

1
𝑛𝑛
�𝑑𝑑�𝑦𝑦𝑘𝑘, (1,1)�
𝑛𝑛

𝑘𝑘=1

=
1
𝑛𝑛
�√2(𝑘𝑘 − 1)
𝑛𝑛

𝑘𝑘=1

 

 

=
√2
𝑛𝑛
��𝑘𝑘

𝑛𝑛

𝑘𝑘=1

−� 1
𝑛𝑛

𝑘𝑘=1

� 

 

=
√2
𝑛𝑛
�
𝑛𝑛(𝑛𝑛 + 1)

2
− 𝑛𝑛� 

 

= √2 �
𝑛𝑛 + 1

2
− 1� 

 

=
√2
2

(𝑛𝑛 − 1) 

 
Therefore, for real number 𝑝𝑝 with 1 ≤  𝑝𝑝 < ∞, we have 

�1
𝑛𝑛
∑ 𝑑𝑑�𝑦𝑦𝑘𝑘, (1,1)�𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
= �√2

2
(𝑛𝑛 − 1)�

𝑝𝑝

= �√2
2
�
𝑝𝑝

(𝑛𝑛 − 1)𝑝𝑝. 

Summing over 𝑛𝑛 yields ∑ �1
𝑛𝑛
∑ 𝑑𝑑�𝑦𝑦𝑘𝑘, (1,1)�𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
∞
𝑛𝑛=1 =

∑ �√2
2
�
𝑝𝑝

(𝑛𝑛 − 1)𝑝𝑝∞
𝑛𝑛=1  

Let 𝑏𝑏𝑛𝑛 = �√2
2
�
𝑝𝑝

(𝑛𝑛 − 1)𝑝𝑝. Then (𝑏𝑏𝑛𝑛) is an unbounded real 
sequence, hence it does not converge to 0. By the contrapositive 
of Theorem 2.2, the series ∑ 𝑏𝑏𝑛𝑛∞

𝑛𝑛=1  diverges. Consequently, 
∑ �1

𝑛𝑛
∑ 𝑑𝑑�𝑦𝑦𝑘𝑘, (1,1)�𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
∞
𝑛𝑛=1  
diverges, so (𝑦𝑦𝑛𝑛) = (𝑛𝑛,𝑛𝑛) ∉ 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝�(1,1)� for every real 

number 𝑝𝑝 with 1 ≤  𝑝𝑝 < ∞. 
 
Let 𝐶𝐶[0,1] denote the set of all real-valued continuous 

functions on [0, 1]. The metric on 𝐶𝐶[0, 1] allows us to define 
the absolute-type Cesàro sequence space similarly to the 
preceding examples. The complete definition can be found in 
the following example. 

 
Example 3.5 Let (𝐶𝐶[0,1] ,𝑑𝑑) be a metric space. For each 

𝑓𝑓,𝑔𝑔 ∈ 𝐶𝐶[0,1], define the metric 𝑑𝑑 by  
 

𝑑𝑑(𝑓𝑓,𝑔𝑔) = sup
𝑥𝑥∈[0,1]

|𝑓𝑓(𝑥𝑥) − 𝑔𝑔(𝑥𝑥)| 

 
If we choose the reference point 𝑓𝑓0(𝑥𝑥) = 0 ∈ 𝐶𝐶[0,1], then 

the absolute-type Cesàro sequence space built over (𝐶𝐶[0,1] ,𝑑𝑑) 
with reference point given by the constant function 𝑓𝑓0(𝑥𝑥) = 0 

is 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(0) = �(𝑓𝑓𝑛𝑛): ∑ �1
𝑛𝑛
∑ sup

𝑥𝑥∈[0,1]
|𝑓𝑓𝑘𝑘(𝑥𝑥)|𝑛𝑛

𝑘𝑘=1 �
𝑝𝑝

< ∞∞
𝑛𝑛=1 �,  

 
where 𝑝𝑝 is a real number that statisfy 1 ≤ 𝑝𝑝 < ∞. 
Next, we will give examples of sequences that belong to this 

sequence space. 
a. The sequence of functions (𝑓𝑓𝑛𝑛) defined by 𝑓𝑓𝑛𝑛(𝑥𝑥) =

1
𝑛𝑛2

sin 𝑥𝑥 for every 𝑥𝑥 ∈ [0,1] and every 𝑛𝑛 ∈ ℕ, is an 
element of 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(0) for every real number 𝑝𝑝 with 1 <
𝑝𝑝 < ∞. 

Proof: Let 𝑛𝑛 ∈ ℕ be arbitratry. Notice that for each =
1,2, … ,𝑛𝑛,  

sup
𝑥𝑥∈[0,1]

|𝑓𝑓𝑘𝑘(𝑥𝑥)| = sup
𝑥𝑥∈[0,1]

�
1
𝑘𝑘2

sin 𝑥𝑥� = sup
𝑥𝑥∈[0,1]

�
1
𝑘𝑘2
� |sin 𝑥𝑥|

=
1
𝑘𝑘2

sup
𝑥𝑥∈[0,1]

|sin 𝑥𝑥| 

Since sin 𝑥𝑥 ≥ 0 and sin 𝑥𝑥 is increasing on [0,1], we have 
sup
𝑥𝑥∈[0,1]

|sin 𝑥𝑥| = sup
𝑥𝑥∈[0,1]

sin 𝑥𝑥 = sin 1. Hence, sup
𝑥𝑥∈[0,1]

|𝑓𝑓𝑘𝑘(𝑥𝑥)| =
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sin 1
𝑘𝑘2

, and therefore for every 𝑛𝑛 ∈ ℕ, 1
𝑛𝑛
∑ sup

𝑥𝑥∈[0,1]
|𝑓𝑓𝑘𝑘(𝑥𝑥)|𝑛𝑛

𝑘𝑘=1 =
1
𝑛𝑛
∑ sin1

𝑘𝑘2
𝑛𝑛
𝑘𝑘=1 = sin 1

𝑛𝑛
∑ 1

𝑘𝑘2
𝑛𝑛
𝑘𝑘=1 .  

 
Since the series ∑ 1

𝑘𝑘2
∞
𝑘𝑘=1  converges, there exists a constant 

0 < 𝐶𝐶 < ∞ such that ∑ 1
𝑘𝑘2

∞
𝑘𝑘=1 = 𝐶𝐶. In particular, ∑ 1

𝑘𝑘2
𝑛𝑛
𝑘𝑘=1 = 𝐶𝐶 

for all 𝑛𝑛 ∈ ℕ. Multiplying both sides by sin1
𝑛𝑛

> 0, we obtain 
sin 1
𝑛𝑛
∑ 1

𝑘𝑘2
𝑛𝑛
𝑘𝑘=1 ≤ 𝐶𝐶 sin1

𝑛𝑛
, let 𝑝𝑝 be a real number statisfy 1 < 𝑝𝑝 <

∞, the we have �sin1
𝑛𝑛
∑ 1

𝑘𝑘2
𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
≤ �𝐶𝐶 sin1

𝑛𝑛
�
𝑝𝑝

= (𝐶𝐶 sin 1)𝑝𝑝 1
𝑛𝑛𝑝𝑝

. 

Summing over 𝑛𝑛 gives ∑ �sin1
𝑛𝑛
∑ 1

𝑘𝑘2
𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
∞
𝑛𝑛=1 ≤

∑ (𝐶𝐶 sin 1)𝑝𝑝 1
𝑛𝑛𝑝𝑝

∞
𝑛𝑛=1 = (𝐶𝐶 sin 1)𝑝𝑝 ∑ 1

𝑛𝑛𝑝𝑝
∞
𝑛𝑛=1 .  

 
Since ∑ 1

𝑛𝑛𝑝𝑝
∞
𝑛𝑛=1  converges for every 𝑝𝑝 > 1, it follows that 

(𝐶𝐶 sin 1)𝑝𝑝 ∑ 1
𝑛𝑛𝑝𝑝

∞
𝑛𝑛=1 < ∞, and hence ∑ �sin1

𝑛𝑛
∑ 1

𝑘𝑘2
𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
∞
𝑛𝑛=1 < ∞. 

 

Finally, because ∑ �1
𝑛𝑛
∑ sup

𝑥𝑥∈[0,1]
|𝑓𝑓𝑘𝑘(𝑥𝑥)|𝑛𝑛

𝑘𝑘=1 �
𝑝𝑝

∞
𝑛𝑛=1 =

∑ �sin1
𝑛𝑛
∑ 1

𝑘𝑘2
𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
∞
𝑛𝑛=1 < ∞, by the definition of 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(0) we 

conclude that the function sequence (𝑓𝑓𝑛𝑛) with 𝑓𝑓𝑛𝑛(𝑥𝑥) = 1
𝑛𝑛2

sin 𝑥𝑥 
for 𝑥𝑥 ∈ [0,1] belongs to 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(0) for every real number 𝑝𝑝 with 
1 < 𝑝𝑝 < ∞.  

b. The sequence of function (𝑓𝑓𝑛𝑛) defined by 𝑓𝑓𝑛𝑛(𝑡𝑡) = 𝑡𝑡𝑛𝑛 
for every 𝑡𝑡 ∈ [0,1] and every 𝑛𝑛 ∈ ℕ is not an element 
of 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(0) for every real number 𝑝𝑝 with 1 ≤  𝑝𝑝 < ∞. 

Proof: Let 𝑛𝑛 ∈ ℕ be arbitrary. Notice that for each 𝑘𝑘 =
1,2, … ,𝑛𝑛 we have 𝑑𝑑(𝑓𝑓𝑘𝑘, 𝑓𝑓0) = 𝑑𝑑(𝑓𝑓𝑘𝑘, 0) = sup

𝑡𝑡∈[0,1]
|𝑓𝑓𝑘𝑘(𝑡𝑡) − 0| =

sup
𝑡𝑡∈[0,1]

|𝑓𝑓𝑘𝑘(𝑡𝑡)| = sup
𝑡𝑡∈[0,1]

|𝑡𝑡𝑘𝑘|. Since 0 ≤ 𝑡𝑡 ≤ 1, it follows that 0𝑘𝑘 ≤

𝑡𝑡𝑘𝑘 ≤ 1𝑘𝑘, hence 0 ≤ 𝑡𝑡𝑘𝑘 ≤ 1 for all 𝑘𝑘 = 1,2, … ,𝑛𝑛. Moreover, at 
𝑡𝑡 = 1 we obtain 𝑓𝑓𝑘𝑘(1) = 1𝑘𝑘 = 1. Therefore, sup

𝑡𝑡∈[0,1]
|𝑡𝑡𝑘𝑘| =

sup
𝑡𝑡∈[0,1]

𝑡𝑡𝑘𝑘 = 1, so for every 𝑘𝑘 = 1,2, … ,𝑛𝑛 we have 

sup
𝑡𝑡∈[0,1]

|𝑓𝑓𝑘𝑘(𝑡𝑡)| = 1.  

 
Consequently, for all 𝑛𝑛 ∈ ℕ we have 
 

1
𝑛𝑛
� sup

𝑡𝑡∈[0,1]
|𝑓𝑓𝑘𝑘(𝑡𝑡)|

𝑛𝑛

𝑘𝑘=1

=
1
𝑛𝑛
� 1
𝑛𝑛

𝑘𝑘=1

=
1
𝑛𝑛
𝑛𝑛 = 1 

 
for any real number 𝑝𝑝 with 1 ≤  𝑝𝑝 < ∞ we obtain 

�1
𝑛𝑛
∑ sup

𝑡𝑡∈[0,1]
|𝑓𝑓𝑘𝑘(𝑡𝑡)|𝑛𝑛

𝑘𝑘=1 �
𝑝𝑝

= 1𝑝𝑝 = 1, hence 

��
1
𝑛𝑛
� sup

𝑡𝑡∈[0,1]
|𝑓𝑓𝑘𝑘(𝑡𝑡)|

𝑛𝑛

𝑘𝑘=1

�
𝑝𝑝∞

𝑛𝑛=1

= � 1
∞

𝑛𝑛=1

= ∞ 

It follows that the function sequence (𝑓𝑓𝑛𝑛) with 𝑓𝑓𝑛𝑛(𝑡𝑡) = 𝑡𝑡𝑛𝑛 on 
[0,1] is not an element of 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(0) for every real number 𝑝𝑝 with 
1 ≤  𝑝𝑝 < ∞. 

B. The Fundamental Properties of the Absolute-Type Cesaro 
Sequence Space on a Metric Space 

Thus far absolute-type Cesàro sequence space 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0) has 
been constructed and illustrated with examples within several 
metric spaces. In case constructions like these, the membership 
condition for a sequence is based on the convergence of the 
series ∑ �1

𝑛𝑛
∑ 𝑑𝑑(𝑥𝑥𝑘𝑘, 𝑥𝑥0)𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
∞
𝑛𝑛=1 , thus the point 𝑥𝑥0 ∈ 𝑋𝑋 

becomes an integral part of the construction of 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0). 
Consequently, even before delving into the deeper properties 
and the structure of 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0), one must analyze how the 
selection of this reference point shapes 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0). This forms 
the basis for the consideration of Theorem 3.1. 

 
Theorem 3.1 Let (𝑋𝑋,𝑑𝑑) be a metric space and let 𝑝𝑝 be a real 

number with 1 ≤  𝑝𝑝 < ∞. If 𝑥𝑥0, 𝑥𝑥1 ∈ 𝑋𝑋 with 𝑥𝑥0 ≠ 𝑥𝑥1, then 
𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0) ≠ 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥1). 

Proof: Define the sequence 𝑂𝑂 = (𝑜𝑜𝑛𝑛)𝑛𝑛∈ℕ in 𝑋𝑋 by 𝑜𝑜𝑛𝑛 = 𝑥𝑥0 
for every 𝑛𝑛 ∈ ℕ.  

Then  
∑ �1

𝑛𝑛
∑ 𝑑𝑑(𝑜𝑜𝑘𝑘, 𝑥𝑥0)𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
∞
𝑛𝑛=1 = ∑ �1

𝑛𝑛
∑ 𝑑𝑑(𝑥𝑥0, 𝑥𝑥0)𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
∞
𝑛𝑛=1 .  

 
Since 𝑑𝑑(𝑥𝑥0, 𝑥𝑥0) = 0, it follows that  
 

��
1
𝑛𝑛
�𝑑𝑑(𝑜𝑜𝑘𝑘, 𝑥𝑥0)
𝑛𝑛

𝑘𝑘=1

�
𝑝𝑝∞

𝑛𝑛=1

= ��
1
𝑛𝑛
� 0
𝑛𝑛

𝑘𝑘=1

�
𝑝𝑝∞

𝑛𝑛=1

= � 0
∞

𝑛𝑛=1

= 0 < ∞ 

 
Hence ∑ �1

𝑛𝑛
∑ 𝑑𝑑(𝑜𝑜𝑘𝑘, 𝑥𝑥0)𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
∞
𝑛𝑛=1 < ∞, so 𝑂𝑂 = (𝑥𝑥0, 𝑥𝑥0, … ) ∈

 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0). Next, consider whether 𝑂𝑂 belongs to 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥1). Since 
𝑥𝑥1 ≠ 𝑥𝑥0, we have 𝑑𝑑(𝑥𝑥0, 𝑥𝑥1) > 0.  

Thus, ∑ �1
𝑛𝑛
∑ 𝑑𝑑(𝑜𝑜𝑘𝑘, 𝑥𝑥1)𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
∞
𝑛𝑛=1 = ∑ �𝑑𝑑(𝑥𝑥0, 𝑥𝑥1)�𝑝𝑝∞

𝑛𝑛=1 . 
 
Let (𝑠𝑠𝑛𝑛) be the sequence of partial sums of the series 

∑ �𝑑𝑑(𝑥𝑥0, 𝑥𝑥1)�𝑝𝑝∞
𝑛𝑛=1 , where 𝑠𝑠𝑛𝑛 = ∑ �𝑑𝑑(𝑥𝑥0, 𝑥𝑥1)�𝑝𝑝𝑛𝑛

𝑘𝑘=1 =
𝑛𝑛�𝑑𝑑(𝑥𝑥0, 𝑥𝑥1)�𝑝𝑝. Then (𝑠𝑠𝑛𝑛) is unbounded, hence diverges.  

Consequently, the series ∑ �𝑑𝑑(𝑥𝑥0, 𝑥𝑥1)�𝑝𝑝∞
𝑛𝑛=1 =

∑ �1
𝑛𝑛
∑ 𝑑𝑑(𝑜𝑜𝑘𝑘, 𝑥𝑥1)𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
∞
𝑛𝑛=1 diverges, so the constant sequence 

𝑂𝑂 = (𝑥𝑥0, 𝑥𝑥0, … ) ∉ 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥1) for every real number 𝑝𝑝 with 1 ≤
𝑝𝑝 < ∞.  

Since 𝑂𝑂 ∈ 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0) but 𝑂𝑂 ∉ 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥1), it follows that 
𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0) ≠ 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥1). 

 
After explaining this dependence, we proceed to define basic 

structure on 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0), as we will show in the following 
theorem. 

 
Theorem 3.2 Let (𝑋𝑋,𝑑𝑑) be a metric space and let 𝑝𝑝 ∈ ℝ with 

1 ≤ 𝑝𝑝 < ∞. Fix a point 𝑥𝑥0 ∈ 𝑋𝑋 and define 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0) as the 
absolute-type Cesàro sequence space over (𝑋𝑋,𝑑𝑑) with reference 
point 𝑥𝑥0. For any sequences 𝐴𝐴 = (𝑎𝑎𝑛𝑛) and 𝐵𝐵 = (𝑏𝑏𝑛𝑛) with 
𝐴𝐴,𝐵𝐵 ∈ 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0), define the function 𝜌𝜌𝑝𝑝: 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0) ×
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𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0) → ℝ by 

𝜌𝜌𝑝𝑝(𝐴𝐴,𝐵𝐵) ≔ ���
1
𝑛𝑛
�𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘)
𝑛𝑛

𝑘𝑘=1

�
𝑝𝑝∞

𝑛𝑛=1

�

1
𝑝𝑝

 

 
Then �𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0),𝜌𝜌𝑝𝑝� is a metric space. 
Proof: To prove that �𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0),𝜌𝜌𝑝𝑝� is a metric space, we 

first show that 𝜌𝜌𝑝𝑝 is well-defined on 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0) × 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0).   
Let 𝐴𝐴 = (𝑎𝑎𝑛𝑛) and 𝐵𝐵 = (𝑏𝑏𝑛𝑛) be arbitrary elements of 

𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0).  
By definition,  

𝜌𝜌𝑝𝑝(𝐴𝐴,𝐵𝐵) ≔ �∑ �1
𝑛𝑛
∑ 𝑑𝑑(𝑎𝑎𝑘𝑘,𝑏𝑏𝑘𝑘)𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
∞
𝑛𝑛=1 �

1
𝑝𝑝Thus 𝜌𝜌𝑝𝑝(𝐴𝐴,𝐵𝐵) is 

well-defined if and only if the series 
∑ �1

𝑛𝑛
∑ 𝑑𝑑(𝑎𝑎𝑘𝑘,𝑏𝑏𝑘𝑘)𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
∞
𝑛𝑛=1 converges. 
 
Let 𝑛𝑛 be arbitrary a natural number. For each 𝑘𝑘 = 1,2, … ,𝑛𝑛, 

since 𝑑𝑑 is a metric on 𝑋𝑋, the triangle inequality gives 
𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘) ≤ 𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑥𝑥0) + 𝑑𝑑(𝑏𝑏𝑘𝑘, 𝑥𝑥0). Summing over 𝑘𝑘 = 1, … ,𝑛𝑛 
and dividing by 𝑛𝑛, we obtain 1

𝑛𝑛
∑ 𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘)𝑛𝑛
𝑘𝑘=1 ≤

1
𝑛𝑛
∑ 𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑥𝑥0)𝑛𝑛
𝑘𝑘=1 + 1

𝑛𝑛
∑ 𝑑𝑑(𝑏𝑏𝑘𝑘, 𝑥𝑥0)𝑛𝑛
𝑘𝑘=1 .  

Define 𝛼𝛼𝑛𝑛 = 1
𝑛𝑛
∑ 𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑥𝑥0)𝑛𝑛
𝑘𝑘=1  and 𝛽𝛽𝑛𝑛 = 1

𝑛𝑛
∑ 𝑑𝑑(𝑏𝑏𝑘𝑘, 𝑥𝑥0)𝑛𝑛
𝑘𝑘=1 . 

Then, for every 𝑛𝑛 ∈ ℕ, 1
𝑛𝑛
∑ 𝑑𝑑(𝑎𝑎𝑘𝑘,𝑏𝑏𝑘𝑘)𝑛𝑛
𝑘𝑘=1 ≤ 𝛼𝛼𝑛𝑛 + 𝛽𝛽𝑛𝑛. Raising 

both sides to the power 𝑝𝑝 with 1 ≤ 𝑝𝑝 < ∞ yields 

�1
𝑛𝑛
∑ 𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘)𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
≤ (𝛼𝛼𝑛𝑛 + 𝛽𝛽𝑛𝑛)𝑝𝑝. Summing over 𝑛𝑛 gives 

∑ �1
𝑛𝑛
∑ 𝑑𝑑(𝑎𝑎𝑘𝑘,𝑏𝑏𝑘𝑘)𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
∞
𝑛𝑛=1 ≤ ∑ (𝛼𝛼𝑛𝑛 + 𝛽𝛽𝑛𝑛)𝑝𝑝∞

𝑛𝑛=1  Taking the 

power 1
𝑝𝑝
 on both sides, we obtain  

���
1
𝑛𝑛
�𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘)
𝑛𝑛

𝑘𝑘=1

�
𝑝𝑝∞

𝑛𝑛=1

�

1
𝑝𝑝

≤ ��(𝛼𝛼𝑛𝑛 + 𝛽𝛽𝑛𝑛)𝑝𝑝
∞

𝑛𝑛=1

�

1
𝑝𝑝

 

 
By Minkowski’s inequality for sequences, (∑ (𝛼𝛼𝑛𝑛 +∞

𝑛𝑛=1

𝛽𝛽𝑛𝑛)𝑝𝑝)
1
𝑝𝑝 ≤ �∑ 𝛼𝛼𝑛𝑛

𝑝𝑝∞
𝑛𝑛=1 �

1
𝑝𝑝 + �∑ 𝛽𝛽𝑛𝑛

𝑝𝑝∞
𝑛𝑛=1 �

1
𝑝𝑝. Substituting the 

definitions of 𝛼𝛼𝑛𝑛 and 𝛽𝛽𝑛𝑛, we get 
 

���
1
𝑛𝑛
�𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘)
𝑛𝑛

𝑘𝑘=1

�
𝑝𝑝∞

𝑛𝑛=1

�

1
𝑝𝑝

≤ ���
1
𝑛𝑛
�𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑥𝑥0)
𝑛𝑛

𝑘𝑘=1

�
𝑝𝑝∞

𝑛𝑛=1

�

1
𝑝𝑝

+ ���
1
𝑛𝑛
�𝑑𝑑(𝑏𝑏𝑘𝑘, 𝑥𝑥0)
𝑛𝑛

𝑘𝑘=1

�
𝑝𝑝∞

𝑛𝑛=1

�

1
𝑝𝑝

 

 
Since 𝐴𝐴 ∈ 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0), the first series on the right-hand side is 

finite, and since 𝐵𝐵 ∈ 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0), the second series is also finite. 
Therefore, the right-hand side is finite, which implies 

∑ �1
𝑛𝑛
∑ 𝑑𝑑(𝑎𝑎𝑘𝑘,𝑏𝑏𝑘𝑘)𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
∞
𝑛𝑛=1 < ∞. Hence 𝜌𝜌𝑝𝑝(𝐴𝐴,𝐵𝐵) is well-

defined for all 𝐴𝐴,𝐵𝐵 ∈ 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0). 
Next, we show that 𝜌𝜌𝑝𝑝 is a metric on 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0). By the 

definition of a metric space, it suffices to verify that 𝜌𝜌𝑝𝑝 satisfies 
the following four properties. 

a. For any 𝐴𝐴 = (𝑎𝑎𝑛𝑛) and 𝐵𝐵 = (𝑏𝑏𝑛𝑛) in 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0), 
𝜌𝜌𝑝𝑝(𝐴𝐴,𝐵𝐵) ≥ 0. 

Proof. Take arbitrary 𝐴𝐴 = (𝑎𝑎𝑛𝑛) and 𝐵𝐵 = (𝑏𝑏𝑛𝑛) in 
𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0).Let 𝑛𝑛 be any natural number.  

Since 𝐴𝐴,𝐵𝐵 ∈ 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0), we have 𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘 ∈ 𝑋𝑋 for each 𝑘𝑘 =
1,2, … ,𝑛𝑛. Because 𝑑𝑑 is a metric on 𝑋𝑋, 𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘) ≥ 0 for all such 
𝑘𝑘. Hence 1

𝑛𝑛
∑ 𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘) ≥ 0𝑛𝑛
𝑘𝑘=1 . Raising both sides to the power 

𝑝𝑝 yields �1
𝑛𝑛
∑ 𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘)𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
≥ 0 and  summing over 𝑛𝑛 gives 

∑ �1
𝑛𝑛
∑ 𝑑𝑑(𝑎𝑎𝑘𝑘,𝑏𝑏𝑘𝑘)𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
∞
𝑛𝑛=1 ≥ 0 and taking the 𝑝𝑝-th root shows 

𝜌𝜌𝑝𝑝(𝐴𝐴,𝐵𝐵) = �∑ �1
𝑛𝑛
∑ 𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘)𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
∞
𝑛𝑛=1 �

1
𝑝𝑝 ≥ 0.  

 
b. For any 𝐴𝐴 = (𝑎𝑎𝑛𝑛) and 𝐵𝐵 = (𝑏𝑏𝑛𝑛) in 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0), 

𝜌𝜌𝑝𝑝(𝐴𝐴,𝐵𝐵) = 0 if and only if 𝐴𝐴 = 𝐵𝐵. 
Proof. (⇒) Let 𝐴𝐴 = (𝑎𝑎𝑛𝑛) and 𝐵𝐵 = (𝑏𝑏𝑛𝑛) be in 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0) and 

assume 𝜌𝜌𝑝𝑝(𝐴𝐴,𝐵𝐵) = 0. Then ∑ �1
𝑛𝑛
∑ 𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘)𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
= 0∞

𝑛𝑛=1 . 
Each term in the series is nonnegative, hence for every 𝑛𝑛 ∈ ℕ,

�1
𝑛𝑛
∑ 𝑑𝑑(𝑎𝑎𝑘𝑘,𝑏𝑏𝑘𝑘)𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
= 0, so 1

𝑛𝑛
∑ 𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘)𝑛𝑛
𝑘𝑘=1 = 0. Since 1

𝑛𝑛
≠

0, it follows that ∑ 𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘)𝑛𝑛
𝑘𝑘=1 = 0. As each 𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘) ≥ 0, 

we must have 𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘) = 0 for every 𝑘𝑘 = 1,2, … ,𝑛𝑛. Because 
𝑑𝑑 is a metric, 𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘) = 0 implies 𝑎𝑎𝑘𝑘 = 𝑏𝑏𝑘𝑘. Since 𝑛𝑛 is 
arbitrary, 𝑎𝑎𝑘𝑘 = 𝑏𝑏𝑘𝑘 for all 𝑘𝑘 ∈ ℕ, hence 𝐴𝐴 = 𝐵𝐵. 

(⇐) Conversely, assume 𝐴𝐴 = 𝐵𝐵. Then 𝑎𝑎𝑘𝑘 = 𝑏𝑏𝑘𝑘 for all 𝑘𝑘 ∈ ℕ, 
so 𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘) = 0 for all 𝑘𝑘. Therefore, 

𝜌𝜌𝑝𝑝(𝐴𝐴,𝐵𝐵) = ���
1
𝑛𝑛
� 0
𝑛𝑛

𝑘𝑘=1

�
𝑝𝑝∞

𝑛𝑛=1

�

1
𝑝𝑝

= �� 0
∞

𝑛𝑛=1

�

1
𝑝𝑝

= 0 

 
Thus 𝜌𝜌𝑝𝑝(𝐴𝐴,𝐵𝐵) = 0 if and only if 𝐴𝐴 = 𝐵𝐵. 
 

c. For any 𝐴𝐴 = (𝑎𝑎𝑛𝑛) and 𝐵𝐵 = (𝑏𝑏𝑛𝑛) in 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0), 
𝜌𝜌𝑝𝑝(𝐴𝐴,𝐵𝐵) = 𝜌𝜌𝑝𝑝(𝐵𝐵,𝐴𝐴). 

Proof. Since 𝑑𝑑 is a metric, 𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘) = 𝑑𝑑(𝑏𝑏𝑘𝑘,𝑎𝑎𝑘𝑘) for all 𝑘𝑘. 
Substituting into the definition of 𝜌𝜌𝑝𝑝 yields 

 

𝜌𝜌𝑝𝑝(𝐴𝐴,𝐵𝐵) = ���
1
𝑛𝑛
�𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘)
𝑛𝑛

𝑘𝑘=1

�
𝑝𝑝∞

𝑛𝑛=1

�

1
𝑝𝑝

= ���
1
𝑛𝑛
�𝑑𝑑(𝑏𝑏𝑘𝑘,𝑎𝑎𝑘𝑘)
𝑛𝑛

𝑘𝑘=1

�
𝑝𝑝∞

𝑛𝑛=1

�

1
𝑝𝑝

= 𝜌𝜌𝑝𝑝(𝐵𝐵,𝐴𝐴) 

 
d. For any 𝐴𝐴 = (𝑎𝑎𝑛𝑛), 𝐵𝐵 = (𝑏𝑏𝑛𝑛), and 𝐶𝐶 = (𝑐𝑐𝑛𝑛) in 

𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0), we have 𝜌𝜌𝑝𝑝(𝐴𝐴,𝐵𝐵) ≤ 𝜌𝜌𝑝𝑝(𝐴𝐴,𝐶𝐶) + 𝜌𝜌𝑝𝑝(𝐶𝐶,𝐵𝐵). 
Proof. Let 𝑛𝑛 be any arbitrary natural number. For each 𝑘𝑘 =
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1,2, … ,𝑛𝑛, by the triangle inequality for 𝑑𝑑, we have 𝑑𝑑(𝑎𝑎𝑘𝑘,𝑏𝑏𝑘𝑘) ≤
𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑐𝑐𝑘𝑘) + 𝑑𝑑(𝑐𝑐𝑘𝑘, 𝑏𝑏𝑘𝑘). Summing over 𝑘𝑘 = 1, … ,𝑛𝑛 and dividing 
by 𝑛𝑛 gives 

 
1
𝑛𝑛
�𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘)
𝑛𝑛

𝑘𝑘=1

≤
1
𝑛𝑛
�𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑐𝑐𝑘𝑘)
𝑛𝑛

𝑘𝑘=1

+
1
𝑛𝑛
�𝑑𝑑(𝑐𝑐𝑘𝑘,𝑏𝑏𝑘𝑘)
𝑛𝑛

𝑘𝑘=1

 

 
Define 𝑢𝑢𝑛𝑛 ≔

1
𝑛𝑛
∑ 𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑐𝑐𝑘𝑘)𝑛𝑛
𝑘𝑘=1 , dan 𝑣𝑣𝑛𝑛 ≔

1
𝑛𝑛
∑ 𝑑𝑑(𝑐𝑐𝑘𝑘,𝑏𝑏𝑘𝑘)𝑛𝑛
𝑘𝑘=1  

Then 1
𝑛𝑛
∑ 𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘)𝑛𝑛
𝑘𝑘=1 ≤ 𝑢𝑢𝑛𝑛 + 𝑣𝑣𝑛𝑛. Raising both sides to the 

power 𝑝𝑝 and summing over 𝑛𝑛 yields 
 

��
1
𝑛𝑛
�𝑑𝑑(𝑎𝑎𝑘𝑘,𝑏𝑏𝑘𝑘)
𝑛𝑛

𝑘𝑘=1

�
𝑝𝑝∞

𝑛𝑛=1

≤ �(𝑢𝑢𝑛𝑛 + 𝑣𝑣𝑛𝑛)𝑝𝑝
∞

𝑛𝑛=1

 

Taking the 𝑝𝑝-th root gives �∑ �1
𝑛𝑛
∑ 𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘)𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
∞
𝑛𝑛=1 �

1
𝑝𝑝 ≤

(∑ (𝑢𝑢𝑛𝑛 + 𝑣𝑣𝑛𝑛)𝑝𝑝∞
𝑛𝑛=1 )

1
𝑝𝑝 

 

By Minkowski’s inequality we have (∑ (𝑢𝑢𝑛𝑛 + 𝑣𝑣𝑛𝑛)𝑝𝑝∞
𝑛𝑛=1 )

1
𝑝𝑝 ≤

�∑ 𝑢𝑢𝑛𝑛
𝑝𝑝∞

𝑛𝑛=1 �
1
𝑝𝑝 + �∑ 𝑣𝑣𝑛𝑛

𝑝𝑝∞
𝑛𝑛=1 �

1
𝑝𝑝. Substituting back the definitions of 

𝑢𝑢𝑛𝑛 and 𝑣𝑣𝑛𝑛 yields 
 

���
1
𝑛𝑛
�𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘)
𝑛𝑛

𝑘𝑘=1

�
𝑝𝑝∞

𝑛𝑛=1

�

1
𝑝𝑝

≤ ���
1
𝑛𝑛
�𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑐𝑐𝑘𝑘)
𝑛𝑛

𝑘𝑘=1

�
𝑝𝑝∞

𝑛𝑛=1

�

1
𝑝𝑝

+ ���
1
𝑛𝑛
�𝑑𝑑(𝑐𝑐𝑘𝑘,𝑏𝑏𝑘𝑘)
𝑛𝑛

𝑘𝑘=1

�
𝑝𝑝∞

𝑛𝑛=1

�

1
𝑝𝑝

 

 
That is, 𝜌𝜌𝑝𝑝(𝐴𝐴,𝐵𝐵) ≤ 𝜌𝜌𝑝𝑝(𝐴𝐴,𝐶𝐶) + 𝜌𝜌𝑝𝑝(𝐶𝐶,𝐵𝐵). 
 
From (i)–(iv), 𝜌𝜌𝑝𝑝 is a metric on 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0). Hence 

�𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0),𝜌𝜌𝑝𝑝� is a metric space. 
 
In Theorem 3.2 it was shown that �𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0),𝜌𝜌𝑝𝑝� is a metric 

space. Therefore, the notation 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0) is the absolute-type 
Cesàro sequence space constructed over the metric space (X, d) 
with a point of reference 𝑥𝑥0 ∈ 𝑋𝑋, and 𝜌𝜌𝑝𝑝 the metric on 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0) 
as described in Theorem 3.2. Now we focus on the inclusion 
relations for the 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0) for various 𝑝𝑝, as we state the 
following theorem. 

 
Theorem 3.3 Let (𝑋𝑋,𝑑𝑑) be a metric space and let 𝑥𝑥0 ∈ 𝑋𝑋. If 

𝑝𝑝, 𝑞𝑞 ∈ ℝ satisfy 1 ≤ 𝑝𝑝 <  𝑞𝑞 < ∞, then 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0) ⊆ 𝑐𝑐𝑐𝑐𝑠𝑠𝑞𝑞(𝑥𝑥0). 
 
Proof: Let (𝑥𝑥𝑛𝑛) be any member of 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0). Since (𝑥𝑥𝑛𝑛) is 

an element of 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0), it is a sequence in 𝑋𝑋, hence 𝑥𝑥𝑛𝑛 ∈ 𝑋𝑋 for 
every 𝑛𝑛 ∈ ℕ. By the definition of 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0), we have 

∑ �1
𝑛𝑛
∑ 𝑑𝑑(𝑥𝑥𝑘𝑘, 𝑥𝑥0)𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
< ∞∞

𝑛𝑛=1 . Let 𝑛𝑛 be arbitrary natural 
number. Because 𝑑𝑑 is a metric on 𝑋𝑋 and 𝑥𝑥𝑘𝑘, 𝑥𝑥0 ∈ 𝑋𝑋 for all 𝑘𝑘 =
1,2, … ,𝑛𝑛, we have 𝑑𝑑(𝑥𝑥𝑘𝑘, 𝑥𝑥0) ≥ 0. Consequently, 
1
𝑛𝑛
∑ 𝑑𝑑(𝑥𝑥𝑘𝑘, 𝑥𝑥0)𝑛𝑛
𝑘𝑘=1 ≥ 0. For any real number 𝑝𝑝 with 1 ≤ 𝑝𝑝 < ∞, 

we have �1
𝑛𝑛
∑ 𝑑𝑑(𝑥𝑥𝑘𝑘, 𝑥𝑥0)𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
≥ 0. Thus, each term in the series 

above is nonnegative. Since the series converges, every term is 
bounded above by the total sum. In other words, for each 𝑛𝑛 ∈ ℕ 

�1
𝑛𝑛
∑ 𝑑𝑑(𝑥𝑥𝑘𝑘, 𝑥𝑥0)𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
≤ ∑ �1

𝑚𝑚
∑ 𝑑𝑑(𝑥𝑥𝑘𝑘, 𝑥𝑥0)𝑚𝑚
𝑘𝑘=1 �

𝑝𝑝
∞
𝑚𝑚=1 Taking 

the 𝑝𝑝-th root on both sides gives 1
𝑛𝑛
∑ 𝑑𝑑(𝑥𝑥𝑘𝑘, 𝑥𝑥0)𝑛𝑛
𝑘𝑘=1 ≤

�∑ �1
𝑚𝑚
∑ 𝑑𝑑(𝑥𝑥𝑘𝑘, 𝑥𝑥0)𝑚𝑚
𝑘𝑘=1 �

𝑝𝑝
∞
𝑚𝑚=1 �

1
𝑝𝑝. Since (𝑥𝑥𝑛𝑛) ∈ 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0), the 

series ∑ �1
𝑚𝑚
∑ 𝑑𝑑(𝑥𝑥𝑘𝑘, 𝑥𝑥0)𝑚𝑚
𝑘𝑘=1 �

𝑝𝑝
∞
𝑚𝑚=1 converges. Hence, by the 

definition of convergence of a series, there exists a real number 
𝑆𝑆 with 0 ≤ 𝑆𝑆 < ∞ such that 𝑆𝑆 = ∑ �1

𝑚𝑚
∑ 𝑑𝑑(𝑥𝑥𝑘𝑘, 𝑥𝑥0)𝑚𝑚
𝑘𝑘=1 �

𝑝𝑝
∞
𝑚𝑚=1 . 

Therefore, for every 𝑛𝑛 ∈ ℕ, 1
𝑛𝑛
∑ 𝑑𝑑(𝑥𝑥𝑘𝑘, 𝑥𝑥0)𝑛𝑛
𝑘𝑘=1 ≤ 𝑆𝑆

1
𝑝𝑝. Because 

𝑆𝑆 ≥ 0 and 1 ≤ 𝑝𝑝 < ∞, the real number 𝑆𝑆
1
𝑝𝑝 is well-defined. Set 

𝑀𝑀 ≔ 𝑆𝑆
1
𝑝𝑝. Then 1

𝑛𝑛
∑ 𝑑𝑑(𝑥𝑥𝑘𝑘, 𝑥𝑥0)𝑛𝑛
𝑘𝑘=1 ≤ 𝑀𝑀,∀𝑛𝑛 ∈ ℕ. 

 
Now note that 𝑝𝑝 < 𝑞𝑞 implies 𝑞𝑞 − 𝑝𝑝 > 0. Hence, we get 

�1
𝑛𝑛
∑ 𝑑𝑑(𝑥𝑥𝑘𝑘, 𝑥𝑥0)𝑛𝑛
𝑘𝑘=1 �

𝑞𝑞−𝑝𝑝
≤ 𝑀𝑀𝑞𝑞−𝑝𝑝,∀𝑛𝑛 ∈ ℕ. Multiplying both 

sides by �1
𝑛𝑛
∑ 𝑑𝑑(𝑥𝑥𝑘𝑘, 𝑥𝑥0)𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
≥ 0 gives �1

𝑛𝑛
∑ 𝑑𝑑(𝑥𝑥𝑘𝑘, 𝑥𝑥0)𝑛𝑛
𝑘𝑘=1 �

𝑞𝑞
≤

𝑀𝑀𝑞𝑞−𝑝𝑝 �1
𝑛𝑛
∑ 𝑑𝑑(𝑥𝑥𝑘𝑘, 𝑥𝑥0)𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
. Summing over 𝑛𝑛 we obtain 

 

��
1
𝑛𝑛
�𝑑𝑑(𝑥𝑥𝑘𝑘, 𝑥𝑥0)
𝑛𝑛

𝑘𝑘=1

�
𝑞𝑞∞

𝑛𝑛=1

≤ 𝑀𝑀𝑞𝑞−𝑝𝑝��
1
𝑛𝑛
�𝑑𝑑(𝑥𝑥𝑘𝑘, 𝑥𝑥0)
𝑛𝑛

𝑘𝑘=1

�
𝑝𝑝∞

𝑛𝑛=1

 

 
But the right-hand side is finite because 𝑀𝑀 < ∞ and 

∑ �1
𝑛𝑛
∑ 𝑑𝑑(𝑥𝑥𝑘𝑘, 𝑥𝑥0)𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
∞
𝑛𝑛=1 = 𝑆𝑆 < ∞.Hence, 
 

��
1
𝑛𝑛
�𝑑𝑑(𝑥𝑥𝑘𝑘, 𝑥𝑥0)
𝑛𝑛

𝑘𝑘=1

�
𝑞𝑞∞

𝑛𝑛=1

< ∞ 

 
which shows (𝑥𝑥𝑛𝑛) ∈ 𝑐𝑐𝑐𝑐𝑐𝑐_𝑞𝑞(𝑥𝑥0). Since (𝑥𝑥𝑛𝑛) was taken 

arbitrary in 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0), it follows that 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0) ⊆ 𝑐𝑐𝑐𝑐𝑠𝑠𝑞𝑞(𝑥𝑥0).  
This implies that for all sequences 𝐴𝐴 ∈ 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0) also belongs 

to 𝑐𝑐𝑐𝑐𝑠𝑠𝑞𝑞(𝑥𝑥0). Consequently, for all 𝐴𝐴,𝐵𝐵 ∈ 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0),  𝜌𝜌𝑞𝑞(𝐴𝐴,𝐵𝐵) 
is well-defined. Next, we analyze the distance 𝐴𝐴 and 𝐵𝐵 obtain 
using 𝜌𝜌𝑝𝑝 and 𝜌𝜌𝑞𝑞. In fact, the distance induced by 𝜌𝜌𝑞𝑞 is never 
greater than that induced by 𝜌𝜌𝑝𝑝. This is stated in the following 
theorem. 

Theorem 3.4 Let (𝑋𝑋,𝑑𝑑) be a metric space and let 𝑥𝑥0 ∈ 𝑋𝑋. If 
𝑝𝑝, 𝑞𝑞 ∈ ℝ satisfy 1 ≤ 𝑝𝑝 < 𝑞𝑞 < ∞ and 𝐴𝐴 = (𝑎𝑎𝑛𝑛),𝐵𝐵 = (𝑏𝑏𝑛𝑛) ∈
𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0), then 𝜌𝜌𝑞𝑞(𝐴𝐴,𝐵𝐵) ≤ 𝜌𝜌𝑝𝑝(𝐴𝐴,𝐵𝐵). 

Proof: Let 𝐴𝐴 = (𝑎𝑎𝑛𝑛) and 𝐵𝐵 = (𝑏𝑏𝑛𝑛) arbitrary member of 
𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0). Since 𝐴𝐴,𝐵𝐵 ∈ 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0), both are sequences in 𝑋𝑋, so 
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𝑎𝑎𝑛𝑛,𝑏𝑏𝑛𝑛 ∈ 𝑋𝑋 for every 𝑛𝑛 ∈ ℕ. By the definition of 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0), we 

have ∑ �1
𝑛𝑛
∑ 𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑥𝑥0)𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
< ∞∞

𝑛𝑛=1  and 

∑ �1
𝑛𝑛
∑ 𝑑𝑑(𝑏𝑏𝑘𝑘, 𝑥𝑥0)𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
< ∞∞

𝑛𝑛=1 . Let 𝑛𝑛 be any natural number. 
Since 𝑑𝑑 is a metric on 𝑋𝑋 and 𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘, 𝑥𝑥0 ∈ 𝑋𝑋, for each 𝑘𝑘 =
1,2, … ,𝑛𝑛 we have 𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘) ≥ 0, hence �1

𝑛𝑛
∑ 𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘)𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
≥

0. Moreover, by the triangle inequality, 𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘) ≤
𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑥𝑥0) + 𝑑𝑑(𝑥𝑥0, 𝑏𝑏𝑘𝑘),∀𝑘𝑘 = 1,2, … ,𝑛𝑛 Summing over 𝑘𝑘 and 
dividing by 𝑛𝑛 gives 1

𝑛𝑛
∑ 𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘)𝑛𝑛
𝑘𝑘=1 ≤ 1

𝑛𝑛
∑ 𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑥𝑥0)𝑛𝑛
𝑘𝑘=1 +

1
𝑛𝑛
∑ 𝑑𝑑(𝑥𝑥0,𝑏𝑏𝑘𝑘)𝑛𝑛
𝑘𝑘=1 . Define, for each 𝑛𝑛 ∈ ℕ, 𝑢𝑢𝑛𝑛 ≔

1
𝑛𝑛
∑ 𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑥𝑥0)𝑛𝑛
𝑘𝑘=1  and 𝑣𝑣𝑛𝑛 ≔

1
𝑛𝑛
∑ 𝑑𝑑(𝑥𝑥0, 𝑏𝑏𝑘𝑘)𝑛𝑛
𝑘𝑘=1 . Then 𝑢𝑢𝑛𝑛,𝑣𝑣𝑛𝑛 ≥ 0 

and 1
𝑛𝑛
∑ 𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘)𝑛𝑛
𝑘𝑘=1 ≤ 𝑢𝑢𝑛𝑛 + 𝑣𝑣𝑛𝑛. Raising both sides to the 

power 𝑝𝑝 yields �1
𝑛𝑛
∑ 𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘)𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
≤ (𝑢𝑢𝑛𝑛 + 𝑣𝑣𝑛𝑛)𝑝𝑝. Summing 

over 𝑛𝑛 we obtain ∑ �1
𝑛𝑛
∑ 𝑑𝑑(𝑎𝑎𝑘𝑘,𝑏𝑏𝑘𝑘)𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
∞
𝑛𝑛=1 ≤ ∑ (𝑢𝑢𝑛𝑛 +∞

𝑛𝑛=1

𝑣𝑣𝑛𝑛)𝑝𝑝. Taking the power 1
𝑝𝑝
  on both sides gives 

���
1
𝑛𝑛
�𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘)
𝑛𝑛

𝑘𝑘=1

�
𝑝𝑝∞

𝑛𝑛=1

�

1
𝑝𝑝

≤ ��(𝑢𝑢𝑛𝑛 + 𝑣𝑣𝑛𝑛)𝑝𝑝
∞

𝑛𝑛=1

�

1
𝑝𝑝

 

 
By Minkowski’s inequality applied to the sequences (𝑢𝑢𝑛𝑛) 

and (𝑣𝑣𝑛𝑛), 
 

��(𝑢𝑢𝑛𝑛 + 𝑣𝑣𝑛𝑛)𝑝𝑝
∞

𝑛𝑛=1

�

1
𝑝𝑝

≤ ��𝑢𝑢𝑛𝑛
𝑝𝑝

∞

𝑛𝑛=1

�

1
𝑝𝑝

+ ��𝑣𝑣𝑛𝑛
𝑝𝑝

∞

𝑛𝑛=1

�

1
𝑝𝑝

 

 
Substituting the definitions of 𝑢𝑢𝑛𝑛 and 𝑣𝑣𝑛𝑛 yields 
 

���
1
𝑛𝑛
�𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘)
𝑛𝑛

𝑘𝑘=1

�
𝑝𝑝∞

𝑛𝑛=1

�

1
𝑝𝑝

≤ ���
1
𝑛𝑛
�𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑥𝑥0)
𝑛𝑛

𝑘𝑘=1

�
𝑝𝑝∞

𝑛𝑛=1

�

1
𝑝𝑝

+ ���
1
𝑛𝑛
�𝑑𝑑(𝑥𝑥0,𝑏𝑏𝑘𝑘)
𝑛𝑛

𝑘𝑘=1

�
𝑝𝑝∞

𝑛𝑛=1

�

1
𝑝𝑝

 

 
Since 𝐴𝐴,𝐵𝐵 ∈ 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0), the two series on the right are finite; 

hence the left-hand side is finite as well. In particular, 
∑ �1

𝑛𝑛
∑ 𝑑𝑑(𝑎𝑎𝑘𝑘,𝑏𝑏𝑘𝑘)𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
∞
𝑛𝑛=1 < ∞. Next, observe that the series 

defining 𝜌𝜌𝑝𝑝(𝐴𝐴,𝐵𝐵) has nonnegative terms. Therefore, for every 

𝑛𝑛 ∈ ℕ, �1
𝑛𝑛
∑ 𝑑𝑑(𝑎𝑎𝑘𝑘,𝑏𝑏𝑘𝑘)𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
≤ ∑ �1

𝑚𝑚
∑ 𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘)𝑚𝑚
𝑘𝑘=1 �

𝑝𝑝
∞
𝑚𝑚=1 =

�𝜌𝜌𝑝𝑝(𝐴𝐴,𝐵𝐵)�
𝑝𝑝
.Taking the power 1

𝑝𝑝
 gives 1

𝑛𝑛
∑ 𝑑𝑑(𝑎𝑎𝑘𝑘,𝑏𝑏𝑘𝑘)𝑛𝑛
𝑘𝑘=1 ≤

𝜌𝜌𝑝𝑝(𝐴𝐴,𝐵𝐵),∀𝑛𝑛 ∈ ℕ. Now take arbitrary 𝑝𝑝, 𝑞𝑞 ∈ ℝ with 1 ≤ 𝑝𝑝 <
𝑞𝑞 < ∞. Since 𝑞𝑞 − 𝑝𝑝 > 0 and  1

𝑛𝑛
∑ 𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘)𝑛𝑛
𝑘𝑘=1 ≥ 0, 

𝜌𝜌𝑝𝑝(𝐴𝐴,𝐵𝐵) ≥ 0, raising the last inequality to the power 𝑞𝑞 − 𝑝𝑝 

yields �1
𝑛𝑛
∑ 𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘)𝑛𝑛
𝑘𝑘=1 �

𝑞𝑞−𝑝𝑝
≤ 𝜌𝜌𝑝𝑝(𝐴𝐴,𝐵𝐵)𝑞𝑞−𝑝𝑝. Multiplying both 

sides by �1
𝑛𝑛
∑ 𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘)𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
gives �1

𝑛𝑛
∑ 𝑑𝑑(𝑎𝑎𝑘𝑘,𝑏𝑏𝑘𝑘)𝑛𝑛
𝑘𝑘=1 �

𝑞𝑞−𝑝𝑝+𝑝𝑝
≤

𝜌𝜌𝑝𝑝(𝐴𝐴,𝐵𝐵)𝑞𝑞−𝑝𝑝 �1
𝑛𝑛
∑ 𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘)𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
. Summing over 𝑛𝑛 we obtain 

��
1
𝑛𝑛
�𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘)
𝑛𝑛

𝑘𝑘=1

�
𝑞𝑞∞

𝑛𝑛=1

≤ 𝜌𝜌𝑝𝑝(𝐴𝐴,𝐵𝐵)𝑞𝑞−𝑝𝑝��
1
𝑛𝑛
�𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘)
𝑛𝑛

𝑘𝑘=1

�
𝑝𝑝∞

𝑛𝑛=1

 

 
But by definition, ∑ �1

𝑛𝑛
∑ 𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘)𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
∞
𝑛𝑛=1 = 𝜌𝜌𝑝𝑝(𝐴𝐴,𝐵𝐵)𝑝𝑝 

Hence, ∑ �1
𝑛𝑛
∑ 𝑑𝑑(𝑎𝑎𝑘𝑘,𝑏𝑏𝑘𝑘)𝑛𝑛
𝑘𝑘=1 �

𝑞𝑞
∞
𝑛𝑛=1 ≤ 𝜌𝜌𝑝𝑝(𝐴𝐴,𝐵𝐵)𝑞𝑞. Taking the 

power 1
𝑞𝑞
 on both sides gives  

���
1
𝑛𝑛
�𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘)
𝑛𝑛

𝑘𝑘=1

�
𝑞𝑞∞

𝑛𝑛=1

�

1
𝑞𝑞

≤ 𝜌𝜌𝑝𝑝(𝐴𝐴,𝐵𝐵) 

 
By the definition of 𝜌𝜌𝑞𝑞, the left-hand side is exactly 𝜌𝜌𝑞𝑞(𝐴𝐴,𝐵𝐵). 

Therefore, 𝜌𝜌𝑞𝑞(𝐴𝐴,𝐵𝐵) ≤ 𝜌𝜌𝑝𝑝(𝐴𝐴,𝐵𝐵).  
 
From Theorem 3.2, it follows that �𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0),𝜌𝜌𝑝𝑝� is a metric 

space. From neighborhood, convergence, Cauchy sequences, 
and completeness definitions in previous definitions 2.2, 2.3, 
2.4, and 2.5, we proceed to define these concepts in 
�𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0),𝜌𝜌𝑝𝑝�. 

 
Definition 3.2 Let 𝑌𝑌 ∈ 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0). For a real number 𝜀𝜀 > 0, 

the neighborhood of 𝑌𝑌 with radius 𝜀𝜀, denoted by 𝑁𝑁(𝑌𝑌; 𝜀𝜀), is the 
set 

𝑁𝑁(𝑌𝑌; 𝜀𝜀) = �𝑋𝑋 ∈ 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0): 𝜌𝜌𝑝𝑝(𝑋𝑋,𝑌𝑌) < 𝜀𝜀� 
 
Definition 3.3 A sequence (𝑌𝑌𝑚𝑚)𝑚𝑚∈ℕ in 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0), where 

𝑌𝑌𝑚𝑚 = �𝑦𝑦𝑚𝑚
(𝑘𝑘)�

𝑘𝑘∈ℕ
, is said to converge to some 𝑈𝑈 ∈ 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0) if 

for every real number 𝜀𝜀 > 0 there exists 𝐾𝐾 ∈ ℕ such that for 
every 𝑚𝑚 ≥ 𝐾𝐾, 𝑌𝑌𝑚𝑚 ∈ 𝑁𝑁(𝑈𝑈; 𝜀𝜀), or equivalently, 𝜌𝜌𝑝𝑝(𝑌𝑌𝑚𝑚,𝑈𝑈) < 𝜀𝜀. 

 
Definition 3.4 A sequence (𝑌𝑌𝑚𝑚)𝑚𝑚∈ℕ in 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0), where 

𝑌𝑌𝑚𝑚 = �𝑦𝑦𝑚𝑚
(𝑘𝑘)�

𝑘𝑘∈ℕ
, is called a Cauchy sequence if for every real 

number 𝜀𝜀 > 0 there exists 𝐻𝐻 ∈ ℕ such that for all 𝑚𝑚, 𝑞𝑞 ≥ 𝐻𝐻, 
𝜌𝜌𝑝𝑝(𝑌𝑌𝑚𝑚,𝑌𝑌𝑞𝑞) < 𝜀𝜀. 

 
Definition 3.5 The metric space �𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0),𝜌𝜌𝑝𝑝� is called 

complete if every Cauchy sequence in 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0) converges to 
some 𝑈𝑈 ∈ 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0) with respect to the metric 𝜌𝜌𝑝𝑝. 

 
Following the definition of completeness for the metric space 

�𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0),𝜌𝜌𝑝𝑝� in Definition 3.4, we will analyze the 
interdependencies between the completeness of the original 
space (𝑋𝑋,𝑑𝑑) and the completeness of �𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0),𝜌𝜌𝑝𝑝�. This is 
captured in the following Theorem 3.5. 
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Theorem 3.5 If (𝑋𝑋,𝑑𝑑) is a complete metric space, then 

�𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0),𝜌𝜌𝑝𝑝� is complete for every real number 𝑝𝑝 with 1 ≤
𝑝𝑝 < ∞. 

Proof: Let (𝑌𝑌𝑚𝑚)𝑚𝑚∈ℕ be an arbitrary Cauchy sequence in 
�𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0),𝜌𝜌𝑝𝑝�, where 𝑌𝑌𝑚𝑚 = �𝑦𝑦𝑚𝑚

(𝑘𝑘)�
𝑘𝑘∈ℕ

. Fix 𝜀𝜀 > 0 and 𝑛𝑛 ∈ ℕ. 
Since (𝑌𝑌𝑚𝑚)𝑚𝑚∈ℕ is Cauchy in �𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0),𝜌𝜌𝑝𝑝�, for 𝜀𝜀

𝑛𝑛
> 0 there 

exists 𝑁𝑁 �𝜀𝜀
𝑛𝑛
� ∈ ℕ such that for all 𝑚𝑚, 𝑞𝑞 ≥ 𝑁𝑁 �𝜀𝜀

𝑛𝑛
�, 

𝜌𝜌𝑝𝑝�𝑌𝑌𝑚𝑚,𝑌𝑌𝑞𝑞� = ���
1
𝑟𝑟
�𝑑𝑑�𝑦𝑦𝑚𝑚

(𝑘𝑘),𝑦𝑦𝑞𝑞
(𝑘𝑘)�

𝑟𝑟

𝑘𝑘=1

�
𝑝𝑝∞

𝑟𝑟=1

�

1
𝑝𝑝

<
𝜀𝜀
𝑛𝑛

 

 
Raising both sides to the power 𝑝𝑝 gives 

∑ �1
𝑟𝑟
∑ 𝑑𝑑�𝑦𝑦𝑚𝑚

(𝑘𝑘),𝑦𝑦𝑞𝑞
(𝑘𝑘)�𝑟𝑟

𝑘𝑘=1 �
𝑝𝑝

∞
𝑟𝑟=1 < �𝜀𝜀

𝑛𝑛
�
𝑝𝑝
. Because each term in the 

series is nonnegative, for every 𝑡𝑡 ∈ ℕ we have 
 

�
1
𝑡𝑡
�𝑑𝑑�𝑦𝑦𝑚𝑚

(𝑘𝑘),𝑦𝑦𝑞𝑞
(𝑘𝑘)�

𝑡𝑡

𝑘𝑘=1

�

𝑝𝑝

≤��
1
𝑟𝑟
�𝑑𝑑�𝑦𝑦𝑚𝑚

(𝑘𝑘),𝑦𝑦𝑞𝑞
(𝑘𝑘)�

𝑟𝑟

𝑘𝑘=1

�
𝑝𝑝

< �
𝜀𝜀
𝑛𝑛�

𝑝𝑝
∞

𝑟𝑟=1

 

 
Taking 𝑡𝑡 = 𝑛𝑛 yields �1

𝑛𝑛
∑ 𝑑𝑑�𝑦𝑦𝑚𝑚

(𝑘𝑘),𝑦𝑦𝑞𝑞
(𝑘𝑘)�𝑛𝑛

𝑘𝑘=1 �
𝑝𝑝

< �𝜀𝜀
𝑛𝑛
�
𝑝𝑝
and 

since both sides are nonnegative, 1
𝑛𝑛
∑ 𝑑𝑑�𝑦𝑦𝑚𝑚

(𝑘𝑘),𝑦𝑦𝑞𝑞
(𝑘𝑘)�𝑛𝑛

𝑘𝑘=1 < 𝜀𝜀
𝑛𝑛
. 

Multiplying by 𝑛𝑛 gives ∑ 𝑑𝑑�𝑦𝑦𝑚𝑚
(𝑘𝑘),𝑦𝑦𝑞𝑞

(𝑘𝑘)�𝑛𝑛
𝑘𝑘=1 < 𝜀𝜀. Because each 

summand is nonnegative, in particular 𝑑𝑑�𝑦𝑦𝑚𝑚
(𝑛𝑛),𝑦𝑦𝑞𝑞

(𝑛𝑛)� ≤
∑ 𝑑𝑑�𝑦𝑦𝑚𝑚

(𝑘𝑘),𝑦𝑦𝑞𝑞
(𝑘𝑘)�𝑛𝑛

𝑘𝑘=1 < 𝜀𝜀.Thus, for each fixed 𝑛𝑛 ∈ ℕ, the 
sequence �𝑦𝑦𝑚𝑚

(𝑛𝑛)�
𝑚𝑚∈ℕ

= �𝑦𝑦1
(𝑛𝑛),𝑦𝑦2

(𝑛𝑛),𝑦𝑦3
(𝑛𝑛), … � is a Cauchy 

sequence in (𝑋𝑋,𝑑𝑑). Since (𝑋𝑋,𝑑𝑑) is complete, for every 𝑛𝑛 ∈ ℕ 
there exists 𝑢𝑢𝑛𝑛 ∈ 𝑋𝑋 such that 𝑦𝑦𝑞𝑞

(𝑛𝑛) → 𝑢𝑢𝑛𝑛 as 𝑞𝑞 → ∞. Define 𝑈𝑈 =
(𝑢𝑢1,𝑢𝑢2,𝑢𝑢3, … ). Next, fix 𝜀𝜀 > 0. Because (𝑌𝑌𝑚𝑚)𝑚𝑚∈ℕ is Cauchy in 
�𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0),𝜌𝜌𝑝𝑝�, there exists 𝑁𝑁(𝜀𝜀) ∈ ℕ such that for all 𝑚𝑚, 𝑞𝑞 ≥
𝑁𝑁(𝜀𝜀), 𝜌𝜌𝑝𝑝(𝑌𝑌𝑚𝑚,𝑌𝑌𝑞𝑞) < 𝜀𝜀. Raising to the power 𝑝𝑝 gives 

 

��
1
𝑟𝑟
�𝑑𝑑�𝑦𝑦𝑚𝑚

(𝑘𝑘),𝑦𝑦𝑞𝑞
(𝑘𝑘)�

𝑟𝑟

𝑘𝑘=1

�
𝑝𝑝∞

𝑟𝑟=1

< 𝜀𝜀𝑝𝑝 

 
For any fixed 𝑚𝑚 ≥ 𝑁𝑁(𝜀𝜀) and any 𝑟𝑟 ∈ ℕ, since 𝑦𝑦𝑞𝑞

(𝑘𝑘) → 𝑢𝑢𝑘𝑘 as 
𝑞𝑞 → ∞, we have 𝑑𝑑�𝑦𝑦𝑚𝑚

(𝑘𝑘),𝑦𝑦𝑞𝑞
(𝑘𝑘)� → 𝑑𝑑�𝑦𝑦𝑚𝑚

(𝑘𝑘),𝑢𝑢𝑘𝑘�. Hence 
1
𝑟𝑟
∑ 𝑑𝑑�𝑦𝑦𝑚𝑚

(𝑘𝑘),𝑦𝑦𝑞𝑞
(𝑘𝑘)�𝑟𝑟

𝑘𝑘=1 → 1
𝑟𝑟
∑ 𝑑𝑑�𝑦𝑦𝑚𝑚

(𝑘𝑘),𝑢𝑢𝑘𝑘�𝑟𝑟
𝑘𝑘=1  as 𝑞𝑞 → ∞. Taking 

the limit 𝑞𝑞 → ∞ in the inequality above yields 
 

��
1
𝑟𝑟
�𝑑𝑑�𝑦𝑦𝑚𝑚

(𝑘𝑘),𝑢𝑢𝑘𝑘�
𝑟𝑟

𝑘𝑘=1

�
𝑝𝑝∞

𝑟𝑟=1

< 𝜀𝜀𝑝𝑝 

 
Taking the 𝑝𝑝-th root, we obtain 

���
1
𝑟𝑟
�𝑑𝑑�𝑦𝑦𝑚𝑚

(𝑘𝑘),𝑢𝑢𝑘𝑘�
𝑟𝑟

𝑘𝑘=1

�
𝑝𝑝∞

𝑟𝑟=1

�

1
𝑝𝑝

< 𝜀𝜀 

 

that is, 𝜌𝜌𝑝𝑝(𝑌𝑌𝑚𝑚,𝑈𝑈) < 𝜀𝜀 for all 𝑚𝑚 ≥ 𝑁𝑁(𝜀𝜀). So 𝑌𝑌𝑚𝑚 → 𝑈𝑈 in 𝜌𝜌𝑝𝑝. It 
remains to show that 𝑈𝑈 ∈ 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0), i.e. 

∑ �1
𝑛𝑛
∑ 𝑑𝑑(𝑢𝑢𝑘𝑘, 𝑥𝑥0)𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
< ∞∞

𝑛𝑛=1 . Fix 𝑛𝑛 ∈ ℕ. By the triangle 
inequality in (𝑋𝑋,𝑑𝑑), for each 𝑘𝑘 = 1,2, … ,𝑛𝑛, 𝑑𝑑(𝑢𝑢𝑘𝑘, 𝑥𝑥0) ≤
𝑑𝑑�𝑢𝑢𝑘𝑘,𝑦𝑦𝑚𝑚

(𝑘𝑘)� + 𝑑𝑑�𝑦𝑦𝑚𝑚
(𝑘𝑘), 𝑥𝑥0�. Summing over 𝑘𝑘 = 1, … ,𝑛𝑛 and 

dividing by 𝑛𝑛 gives 
 

1
𝑛𝑛
�𝑑𝑑(𝑢𝑢𝑘𝑘, 𝑥𝑥0)
𝑛𝑛

𝑘𝑘=1

≤
1
𝑛𝑛
�𝑑𝑑�𝑢𝑢𝑘𝑘,𝑦𝑦𝑚𝑚

(𝑘𝑘)�
𝑛𝑛

𝑘𝑘=1

+
1
𝑛𝑛
�𝑑𝑑�𝑦𝑦𝑚𝑚

(𝑘𝑘), 𝑥𝑥0�
𝑛𝑛

𝑘𝑘=1

 

 
Set 𝛼𝛼𝑛𝑛 ≔

1
𝑛𝑛
∑ 𝑑𝑑�𝑢𝑢𝑘𝑘,𝑦𝑦𝑚𝑚

(𝑘𝑘)�𝑛𝑛
𝑘𝑘=1  and 𝛽𝛽𝑛𝑛 ≔

1
𝑛𝑛
∑ 𝑑𝑑�𝑦𝑦𝑚𝑚

(𝑘𝑘), 𝑥𝑥0�𝑛𝑛
𝑘𝑘=1 . 

Then 1
𝑛𝑛
∑ 𝑑𝑑(𝑢𝑢𝑘𝑘, 𝑥𝑥0)𝑛𝑛
𝑘𝑘=1 ≤ 𝛼𝛼𝑛𝑛 + 𝛽𝛽𝑛𝑛, so 

 

��
1
𝑛𝑛
�𝑑𝑑(𝑢𝑢𝑘𝑘, 𝑥𝑥0)
𝑛𝑛

𝑘𝑘=1

�
𝑝𝑝∞

𝑛𝑛=1

≤ �(𝛼𝛼𝑛𝑛 + 𝛽𝛽𝑛𝑛)𝑝𝑝
∞

𝑛𝑛=1

 

 
Taking 𝑝𝑝-th roots and using Minkowski’s inequality yields 
 

���
1
𝑛𝑛
�𝑑𝑑(𝑢𝑢𝑘𝑘, 𝑥𝑥0)
𝑛𝑛

𝑘𝑘=1

�
𝑝𝑝∞

𝑛𝑛=1

�

1
𝑝𝑝

≤ ��𝛼𝛼𝑛𝑛
𝑝𝑝

∞

𝑛𝑛=1

�

1
𝑝𝑝

+ ��𝛽𝛽𝑛𝑛
𝑝𝑝

∞

𝑛𝑛=1

�

1
𝑝𝑝

 

 
Now define the constant sequence 𝑂𝑂 = (𝑜𝑜𝑛𝑛) in 𝑋𝑋 by 𝑜𝑜𝑛𝑛 = 𝑥𝑥0 

for all 𝑛𝑛. Then 𝑂𝑂 ∈ 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0), since 𝑑𝑑(𝑜𝑜𝑘𝑘, 𝑥𝑥0) = 𝑑𝑑(𝑥𝑥0, 𝑥𝑥0) = 0 

implies ∑ �1
𝑛𝑛
∑ 𝑑𝑑(𝑜𝑜𝑘𝑘, 𝑥𝑥0)𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
∞
𝑛𝑛=1 = 0 < ∞. Moreover 

�∑ 𝛼𝛼𝑛𝑛
𝑝𝑝∞

𝑛𝑛=1 �
1
𝑝𝑝 = 𝜌𝜌𝑝𝑝(𝑈𝑈,𝑌𝑌𝑚𝑚) dan �∑ 𝛽𝛽𝑛𝑛

𝑝𝑝∞
𝑛𝑛=1 �

1
𝑝𝑝 = 𝜌𝜌𝑝𝑝(𝑌𝑌𝑚𝑚,𝑂𝑂), Hence 

���
1
𝑛𝑛
�𝑑𝑑(𝑢𝑢𝑘𝑘, 𝑥𝑥0)
𝑛𝑛

𝑘𝑘=1

�
𝑝𝑝∞

𝑛𝑛=1

�

1
𝑝𝑝

≤ 𝜌𝜌𝑝𝑝(𝑈𝑈,𝑌𝑌𝑚𝑚) + 𝜌𝜌𝑝𝑝(𝑌𝑌𝑚𝑚,𝑂𝑂) 

 
Since 𝑌𝑌𝑚𝑚 → 𝑈𝑈 in 𝜌𝜌𝑝𝑝 , choose 𝑚𝑚 large enough so that 

𝜌𝜌𝑝𝑝(𝑈𝑈,𝑌𝑌𝑚𝑚) < 1. Also, because 𝑌𝑌𝑚𝑚 ∈ 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0) and 𝑂𝑂 ∈
𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0), we have 𝜌𝜌𝑝𝑝(𝑌𝑌𝑚𝑚,𝑂𝑂) < ∞. Therefore, 

�∑ �1
𝑛𝑛
∑ 𝑑𝑑(𝑢𝑢𝑘𝑘, 𝑥𝑥0)𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
∞
𝑛𝑛=1 �

1
𝑝𝑝 ≤ 1 + 𝜌𝜌𝑝𝑝(𝑌𝑌𝑚𝑚,𝑂𝑂) < ∞, which 

implies �∑ �1
𝑛𝑛
∑ 𝑑𝑑(𝑢𝑢𝑘𝑘, 𝑥𝑥0)𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
∞
𝑛𝑛=1 �

1
𝑝𝑝 < ∞. Thus 𝑈𝑈 ∈

𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0), and every Cauchy sequence in �𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0),𝜌𝜌𝑝𝑝� 
converges to an element of 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0). Consequently, 
�𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0),𝜌𝜌𝑝𝑝� is complete. 

 
Considering such a case when (𝑋𝑋,𝑑𝑑) is not complete and 

understanding how it explains the non-completeness of 
�𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0),𝜌𝜌𝑝𝑝� is part of the next theorem. 

 
Theorem 3.6 If (𝑋𝑋,𝑑𝑑) is not complete, then �𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0),𝜌𝜌𝑝𝑝� 

is not complete for every real number 𝑝𝑝 with 1 < 𝑝𝑝 < ∞. 
Proof: Since (𝑋𝑋,𝑑𝑑) is not complete, there exists a Cauchy 

sequence (𝑥𝑥𝑚𝑚)𝑚𝑚∈ℕ in 𝑋𝑋, but (𝑥𝑥𝑚𝑚)𝑚𝑚∈ℕ does not converge in 𝑋𝑋. 
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To show that �𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0),𝜌𝜌𝑝𝑝� is not complete for every real 
number 𝑝𝑝 with 1 < 𝑝𝑝 < ∞, we construct a Cauchy sequence 
(𝑌𝑌𝑚𝑚)𝑚𝑚∈ℕ in 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0) that does not converge in 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0). For 
each 𝑚𝑚 ∈ ℕ, define 𝑌𝑌𝑚𝑚 = �𝑦𝑦1

(𝑚𝑚),𝑦𝑦2
(𝑚𝑚), … � = �𝑦𝑦𝑘𝑘

(𝑚𝑚)�
𝑘𝑘∈ℕ

 by 

𝑦𝑦𝑘𝑘
(𝑚𝑚) = �𝑥𝑥𝑚𝑚, 𝑘𝑘 = 1

𝑥𝑥0, 𝑘𝑘 ≥ 2 . Thus 𝑌𝑌𝑚𝑚 = (𝑥𝑥𝑚𝑚, 𝑥𝑥0, 𝑥𝑥0, … ). Fix 𝑛𝑛 ∈ ℕ. If 

𝑛𝑛 = 1, then 1
𝑛𝑛
∑ 𝑑𝑑�𝑦𝑦𝑘𝑘

(𝑚𝑚), 𝑥𝑥0�𝑛𝑛
𝑘𝑘=1 = 𝑑𝑑(𝑥𝑥𝑚𝑚, 𝑥𝑥0). If 𝑛𝑛 ≥ 2, then 

𝑦𝑦1
(𝑚𝑚) = 𝑥𝑥𝑚𝑚 and 𝑦𝑦𝑘𝑘

(𝑚𝑚) = 𝑥𝑥0 for 𝑘𝑘 ≥ 2, hence 
1
𝑛𝑛
∑ 𝑑𝑑�𝑦𝑦𝑘𝑘

(𝑚𝑚), 𝑥𝑥0�𝑛𝑛
𝑘𝑘=1 = 1

𝑛𝑛
(𝑑𝑑(𝑥𝑥𝑚𝑚, 𝑥𝑥0) + 0) = 1

𝑛𝑛
𝑑𝑑(𝑥𝑥𝑚𝑚, 𝑥𝑥0) 

Therefore,  
 

1
𝑛𝑛
�𝑑𝑑�𝑦𝑦𝑘𝑘

(𝑚𝑚), 𝑥𝑥0�
𝑛𝑛

𝑘𝑘=1

= �
 𝑑𝑑(𝑥𝑥𝑚𝑚, 𝑥𝑥0),𝑛𝑛 = 1

1
𝑛𝑛
𝑑𝑑(𝑥𝑥𝑚𝑚, 𝑥𝑥0),𝑛𝑛 ≥ 2

 

 
Let 1 < 𝑝𝑝 < ∞. Then ∑ �1

𝑛𝑛
∑ 𝑑𝑑�𝑦𝑦𝑘𝑘

(𝑚𝑚), 𝑥𝑥0�𝑛𝑛
𝑘𝑘=1 �∞

𝑛𝑛=1
𝑝𝑝

=

�𝑑𝑑(𝑥𝑥𝑚𝑚, 𝑥𝑥0)�𝑝𝑝 + ∑ �1
𝑛𝑛
𝑑𝑑(𝑥𝑥𝑚𝑚, 𝑥𝑥0)�∞

𝑛𝑛=2

𝑝𝑝
= �𝑑𝑑(𝑥𝑥𝑚𝑚, 𝑥𝑥0)�𝑝𝑝 �1 +

∑ 1
𝑛𝑛𝑝𝑝

∞
𝑛𝑛=2 �. Since 𝑝𝑝 > 1, the series ∑ 1

𝑛𝑛𝑝𝑝
∞
𝑛𝑛=2  converges. Moreover, 

because (𝑥𝑥𝑚𝑚)𝑚𝑚∈ℕ is Cauchy in (𝑋𝑋,𝑑𝑑), it is bounded, so there 
exists 𝑀𝑀 > 0 such that 𝑑𝑑(𝑥𝑥𝑚𝑚, 𝑥𝑥0) ≤ 𝑀𝑀 for all 𝑚𝑚 ∈ ℕ. Hence 

 

��
1
𝑛𝑛
�𝑑𝑑�𝑦𝑦𝑘𝑘

(𝑚𝑚), 𝑥𝑥0�
𝑛𝑛

𝑘𝑘=1

�
∞

𝑛𝑛=1

𝑝𝑝

≤ 𝑀𝑀𝑝𝑝 �1 + �
1
𝑛𝑛𝑝𝑝

∞

𝑛𝑛=2

� < ∞ 

 
Thus 𝑌𝑌𝑚𝑚 ∈ 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0) for every 𝑚𝑚 ∈ ℕ. 
Next, we prove that (𝑌𝑌𝑚𝑚)𝑚𝑚∈ℕ is a Cauchy sequence in 

�𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0),𝜌𝜌𝑝𝑝�. Take arbitrary 𝑚𝑚,𝑛𝑛 ∈ ℕ and 𝑟𝑟 ∈ ℕ. Since 
𝑦𝑦1

(𝑚𝑚) = 𝑥𝑥𝑚𝑚, 𝑦𝑦1
(𝑛𝑛) = 𝑥𝑥𝑛𝑛 dan 𝑦𝑦𝑘𝑘

(𝑚𝑚) = 𝑦𝑦𝑘𝑘
(𝑛𝑛) = 𝑥𝑥0 for all 𝑘𝑘 ≥ 2, we 

have 𝑑𝑑�𝑦𝑦𝑘𝑘
(𝑚𝑚),𝑦𝑦𝑘𝑘

(𝑛𝑛)� = �𝑑𝑑(𝑥𝑥𝑚𝑚, 𝑥𝑥𝑛𝑛), 𝑘𝑘 = 1
0, 𝑘𝑘 ≥ 2 . Therefore, 

1
𝑟𝑟
∑ 𝑑𝑑�𝑦𝑦𝑘𝑘

(𝑚𝑚),𝑦𝑦𝑘𝑘
(𝑛𝑛)�𝑟𝑟

𝑘𝑘=1 = 1
𝑟𝑟
𝑑𝑑(𝑥𝑥𝑚𝑚, 𝑥𝑥𝑛𝑛). By the definition of 𝜌𝜌𝑝𝑝, 

 

�𝜌𝜌𝑝𝑝(𝑌𝑌𝑚𝑚,𝑌𝑌𝑛𝑛)�
𝑝𝑝

= ��
1
𝑟𝑟
𝑑𝑑(𝑥𝑥𝑚𝑚, 𝑥𝑥𝑛𝑛)�

𝑝𝑝∞

𝑟𝑟=1

= �
1
𝑟𝑟𝑝𝑝
�𝑑𝑑(𝑥𝑥𝑚𝑚, 𝑥𝑥𝑛𝑛)�𝑝𝑝

∞

𝑟𝑟=1

= �𝑑𝑑(𝑥𝑥𝑚𝑚, 𝑥𝑥𝑛𝑛)�𝑝𝑝�
1
𝑟𝑟𝑝𝑝

∞

𝑟𝑟=1

 

 
Since 𝑝𝑝 > 1, the series ∑ 1

𝑟𝑟𝑝𝑝
∞
𝑟𝑟=1  converges; let 𝑆𝑆 = ∑ 1

𝑟𝑟𝑝𝑝
∞
𝑟𝑟=1 >

0, Then �𝜌𝜌𝑝𝑝(𝑌𝑌𝑚𝑚,𝑌𝑌𝑛𝑛)�
𝑝𝑝

= �𝑑𝑑(𝑥𝑥𝑚𝑚, 𝑥𝑥𝑛𝑛)�𝑝𝑝𝑆𝑆, hence 𝜌𝜌𝑝𝑝(𝑌𝑌𝑚𝑚,𝑌𝑌𝑛𝑛) =

��𝑑𝑑(𝑥𝑥𝑚𝑚, 𝑥𝑥𝑛𝑛)�𝑝𝑝𝑆𝑆�
1
𝑝𝑝 = 𝑑𝑑(𝑥𝑥𝑚𝑚, 𝑥𝑥𝑛𝑛)𝑆𝑆

1
𝑝𝑝. Set 𝐾𝐾 = 𝑆𝑆

1
𝑝𝑝 > 0. Thus 

𝜌𝜌𝑝𝑝(𝑌𝑌𝑚𝑚,𝑌𝑌𝑛𝑛) = 𝐾𝐾𝐾𝐾(𝑥𝑥𝑚𝑚, 𝑥𝑥𝑛𝑛). Given 𝜀𝜀 > 0, define 𝜀𝜀∗ ≔ 𝜀𝜀
𝐾𝐾

> 0. 
Because (𝑥𝑥𝑚𝑚)𝑚𝑚∈ℕ is Cauchy in (𝑋𝑋,𝑑𝑑), there exists 𝑁𝑁 ∈ ℕ such 
that for all 𝑚𝑚,𝑛𝑛 ≥ 𝑁𝑁,𝑑𝑑(𝑥𝑥𝑚𝑚, 𝑥𝑥𝑛𝑛) < 𝜀𝜀∗. Consequently, for all 
𝑚𝑚,𝑛𝑛 ≥ 𝑁𝑁, 𝜌𝜌𝑝𝑝(𝑌𝑌𝑚𝑚,𝑌𝑌𝑛𝑛) = 𝐾𝐾𝐾𝐾(𝑥𝑥𝑚𝑚, 𝑥𝑥𝑛𝑛) < 𝐾𝐾𝜀𝜀∗ = 𝜀𝜀. Hence 
(𝑌𝑌𝑚𝑚)𝑚𝑚∈ℕ is Cauchy in �𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0),𝜌𝜌𝑝𝑝�. 

Now assume, for contradiction, that �𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0),𝜌𝜌𝑝𝑝� is 
complete. Then (𝑌𝑌𝑚𝑚)𝑚𝑚∈ℕ converges in 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0); that is, there 

exists 𝑍𝑍 = (𝑧𝑧𝑘𝑘)𝑘𝑘∈ℕ ∈ 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0) such that 𝑌𝑌𝑚𝑚 →  𝑍𝑍 in 𝜌𝜌𝑝𝑝. Thus, 
for every 𝜀𝜀 > 0 there exists 𝑁𝑁 ∈ ℕ such that for all 𝑚𝑚 ≥ 𝑁𝑁, 
𝜌𝜌𝑝𝑝(𝑌𝑌𝑚𝑚,𝑍𝑍) < 𝜀𝜀. By definition,  

 

�𝜌𝜌𝑝𝑝(𝑌𝑌𝑚𝑚,𝑍𝑍)�
𝑝𝑝

= ��
1
𝑟𝑟
�𝑑𝑑�𝑦𝑦𝑘𝑘

(𝑚𝑚), 𝑧𝑧𝑘𝑘�
𝑟𝑟

𝑘𝑘=1

�
𝑝𝑝∞

𝑟𝑟=1

 

 
Since each term in this series is nonnegative, for any 𝑡𝑡 ∈ ℕ 

we have  
�1
𝑡𝑡
∑ 𝑑𝑑�𝑦𝑦𝑘𝑘

(𝑚𝑚), 𝑧𝑧𝑘𝑘�𝑡𝑡
𝑘𝑘=1 �

𝑝𝑝
≤ ∑ �1

𝑟𝑟
∑ 𝑑𝑑�𝑦𝑦𝑘𝑘

(𝑚𝑚), 𝑧𝑧𝑘𝑘�𝑟𝑟
𝑘𝑘=1 �

𝑝𝑝
∞
𝑟𝑟=1 =

�𝜌𝜌𝑝𝑝(𝑌𝑌𝑚𝑚,𝑍𝑍)�
𝑝𝑝
.Taking 𝑝𝑝-th roots gives 1

𝑡𝑡
∑ 𝑑𝑑�𝑦𝑦𝑘𝑘

(𝑚𝑚), 𝑧𝑧𝑘𝑘�𝑡𝑡
𝑘𝑘=1 ≤

𝜌𝜌𝑝𝑝(𝑌𝑌𝑚𝑚,𝑍𝑍),∀𝑡𝑡 ∈ ℕ. In particular, for 𝑡𝑡 = 1, 𝑑𝑑�𝑦𝑦1
(𝑚𝑚), 𝑧𝑧1� ≤

𝜌𝜌𝑝𝑝(𝑌𝑌𝑚𝑚,𝑍𝑍). Because 𝑦𝑦1
(𝑚𝑚) = 𝑥𝑥𝑚𝑚, we obtain 𝑑𝑑(𝑥𝑥𝑚𝑚, 𝑧𝑧1) ≤

𝜌𝜌𝑝𝑝(𝑌𝑌𝑚𝑚,𝑍𝑍). Since 𝜌𝜌𝑝𝑝(𝑌𝑌𝑚𝑚,𝑍𝑍) → 0, it follows that 𝑑𝑑(𝑥𝑥𝑚𝑚, 𝑧𝑧1) → 0, 
i.e., 𝑥𝑥𝑚𝑚 → 𝑧𝑧1 in (𝑋𝑋,𝑑𝑑). This contradicts the choice of (𝑥𝑥𝑚𝑚)𝑚𝑚∈ℕ 
as a nonconvergent Cauchy sequence in 𝑋𝑋. Therefore 
�𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0),𝜌𝜌𝑝𝑝� is not complete for every 1 < 𝑝𝑝 < ∞. 

 
The previous theorem proves that if (𝑋𝑋,𝑑𝑑) is not complete, 

then for any real number 𝑝𝑝 such that 1 <  𝑝𝑝 < ∞, 
�𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0),𝜌𝜌𝑝𝑝� is also not complete. However, the case 𝑝𝑝 = 1 
is different, because the membership condition for 𝑐𝑐𝑐𝑐𝑠𝑠1(𝑥𝑥0) 
only holds for the constant sequence whose all terms are the 
reference point 𝑥𝑥0. This is pointed out in the following 
proposition. 

 
Proposition 3.1 Let (𝑋𝑋,𝑑𝑑) be any metric space and let 𝑥𝑥0 ∈

𝑋𝑋. Then 𝑐𝑐𝑐𝑐𝑠𝑠1(𝑥𝑥0) = {(𝑥𝑥𝑛𝑛): 𝑥𝑥𝑛𝑛 = 𝑥𝑥0,∀𝑛𝑛 ∈ ℕ}. 
Proof: Let (𝑋𝑋,𝑑𝑑) be a metric space and let 𝑥𝑥0 ∈ 𝑋𝑋. First 

observe that the constant sequence 𝑋𝑋0 = (𝑥𝑥0, 𝑥𝑥0, 𝑥𝑥0, … ) belongs 
to 𝑐𝑐𝑐𝑐𝑠𝑠1(𝑥𝑥0). Indeed, for every 𝑛𝑛 ∈ ℕ, 1

𝑛𝑛
∑ 𝑑𝑑(𝑥𝑥0, 𝑥𝑥0)𝑛𝑛
𝑘𝑘=1 = 0, so 

∑ �1
𝑛𝑛
∑ 𝑑𝑑(𝑥𝑥0, 𝑥𝑥0)𝑛𝑛
𝑘𝑘=1 �∞

𝑛𝑛=1 = 0 < ∞. Next, let (x_n) be arbitrary 
member of 𝑐𝑐𝑐𝑐𝑠𝑠1(𝑥𝑥0). By the definition of 𝑐𝑐𝑐𝑐𝑠𝑠1(𝑥𝑥0), 
∑ �1

𝑛𝑛
∑ 𝑑𝑑(𝑥𝑥𝑘𝑘, 𝑥𝑥0)𝑛𝑛
𝑘𝑘=1 �∞

𝑛𝑛=1 < ∞. For each 𝑛𝑛 ∈ ℕ, define 𝑆𝑆𝑛𝑛 ≔
∑ 𝑑𝑑(𝑥𝑥𝑘𝑘, 𝑥𝑥0)𝑛𝑛
𝑘𝑘=1 . Since 𝑑𝑑(𝑥𝑥𝑘𝑘, 𝑥𝑥0) ≥ 0 for all 𝑘𝑘, we have 𝑆𝑆𝑛𝑛 ≥ 0 

and (𝑆𝑆𝑛𝑛) is nondecreasing. The membership condition above 
can be written as ∑ 𝑆𝑆𝑛𝑛

𝑛𝑛
∞
𝑛𝑛=1 < ∞.We claim that 𝑆𝑆𝑛𝑛 = 0 for every 

𝑛𝑛 ∈ ℕ. Suppose not. Then there exists 𝑛𝑛0 ∈ ℕ such that 𝑆𝑆𝑛𝑛0 >
0. Because (𝑆𝑆𝑛𝑛) is nondecreasing, 𝑆𝑆𝑛𝑛 ≥  𝑆𝑆𝑛𝑛0 for all 𝑛𝑛 ≥ 𝑛𝑛0. 
Hence 

 

�
𝑆𝑆𝑛𝑛
𝑛𝑛

∞

𝑛𝑛=𝑛𝑛0

≥ �
𝑆𝑆𝑛𝑛0
𝑛𝑛

∞

𝑛𝑛=𝑛𝑛0

= 𝑆𝑆𝑛𝑛0 �
1
𝑛𝑛

∞

𝑛𝑛=𝑛𝑛0

 

 
which diverges, a contradiction to ∑ 𝑆𝑆𝑛𝑛

𝑛𝑛
∞
𝑛𝑛=1 < ∞. Therefore 

𝑆𝑆𝑛𝑛 = 0 for all 𝑛𝑛. Since 𝑆𝑆𝑛𝑛 = ∑ 𝑑𝑑(𝑥𝑥𝑘𝑘, 𝑥𝑥0)𝑛𝑛
𝑘𝑘=1 = 0 and each term 

𝑑𝑑(𝑥𝑥𝑘𝑘, 𝑥𝑥0) ≥ 0, it follows that 𝑑𝑑(𝑥𝑥𝑘𝑘, 𝑥𝑥0) = 0 for every 𝑘𝑘 ≤ 𝑛𝑛. 
Because 𝑛𝑛 is arbitrary, we obtain 𝑑𝑑(𝑥𝑥𝑘𝑘, 𝑥𝑥0) = 0 for all 𝑘𝑘 ∈ ℕ. 
As 𝑑𝑑 is a metric, 𝑑𝑑(𝑥𝑥𝑘𝑘, 𝑥𝑥0) = 0 implies 𝑥𝑥𝑘𝑘 = 𝑥𝑥0 for all 𝑘𝑘. Thus 
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(𝑥𝑥𝑛𝑛) is the constant sequence (𝑥𝑥0, 𝑥𝑥0, … ). Consequently, 
𝑐𝑐𝑐𝑐𝑠𝑠1(𝑥𝑥0) = {(𝑥𝑥𝑛𝑛): 𝑥𝑥𝑛𝑛 = 𝑥𝑥0,∀𝑛𝑛 ∈ ℕ}. 

 
Based on the previous proposition, we know that 𝑐𝑐𝑐𝑐𝑠𝑠1(𝑥𝑥0) 

has only one member, which is the constant sequence 
(𝑥𝑥0, 𝑥𝑥0, 𝑥𝑥0, … ). Since a singleton space is always complete for 
any metric, it follows that (𝑐𝑐𝑐𝑐𝑠𝑠1(𝑥𝑥0),𝜌𝜌1) is complete metric 
space even when (𝑋𝑋,𝑑𝑑) is not complete. 

4. Conclusion 
This study builds an absolute type Cesàro sequence space 

over a metric space (𝑋𝑋,𝑑𝑑) for an arbitrary reference point 𝑥𝑥0 ∈
𝑋𝑋 and defines 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0) ≔ �(𝑥𝑥𝑛𝑛): ∑ �1

𝑛𝑛
∑ 𝑑𝑑(𝑥𝑥𝑘𝑘, 𝑥𝑥0)𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
<∞

𝑛𝑛=1

∞� , 1 ≤ 𝑝𝑝 < ∞. A metric 𝜌𝜌𝑝𝑝 is defined on this space by 

𝜌𝜌𝑝𝑝(𝐴𝐴,𝐵𝐵) ≔ �∑ �1
𝑛𝑛
∑ 𝑑𝑑(𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘)𝑛𝑛
𝑘𝑘=1 �

𝑝𝑝
∞
𝑛𝑛=1 �

1
𝑝𝑝 , ∀𝐴𝐴 = (𝑎𝑎𝑛𝑛),𝐵𝐵 =

(𝑏𝑏𝑛𝑛) ∈ 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0).The results establish that for all 1 ≤ 𝑝𝑝 < ∞, 
�𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0),𝜌𝜌𝑝𝑝� becomes a metric space. If 1 ≤ 𝑝𝑝 < 𝑞𝑞 < ∞, 
then 𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0) ⊆ 𝑐𝑐𝑐𝑐𝑠𝑠𝑞𝑞(𝑥𝑥0) and 𝜌𝜌𝑞𝑞(𝐴𝐴,𝐵𝐵) ≤ 𝜌𝜌𝑝𝑝(𝐴𝐴,𝐵𝐵) for all 
𝐴𝐴,𝐵𝐵 ∈  𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0). Finally, the metric space �𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝(𝑥𝑥0),𝜌𝜌𝑝𝑝� is 
complete if only if (𝑋𝑋,𝑑𝑑) is complete, and it is not complete if 
only if (𝑋𝑋,𝑑𝑑) is not complete. 
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