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Abstract: The continuing development and interest of
mathematical researchers, both from the purely theoretical and
the applied perspective, can still be seen in the field of sequence
spaces. One such sequence space is the Cesaro sequence of an
absolute space, which J. S. Shiue introduced for real sequences in
1970. Let 1 < p < o be real numbers. This space is defined to be
the set of all real sequences (x,,) such that >, (% Z;':llxkl)p <
oo, In R, the terms |x;|, relates to the standard metric dg(a, b) =
|a — b|,Va,b € R, thus |x;| = dr(xy, 0). Aiming to explore this
insight, we construct the definition of absolute Cesaro sequence
space on an arbitrary metric space (X, d) with a fixed point x, €
X, denoted by ces,(xo). Then, we define a metric on ces,(xo),
denoted by p,,. Also, we investigate the effect of the choice of x, €
X and the fundamental aspects of (cesp(xo), pp) such as
completeness, the inclusion relation of cesp(xo), the ordering of
pp on elements of ces, (x,) for various p, and the separability of
(cesp(xo),pp). The primary outcomes indicate that for 1 < p <
o, (cesp(xo), pp) is complete if (X, d) is complete; for 1 < p < oo,
(Cesp(xo),pp) is separable if and only if (X, d) is separable; and
(cesp(xo), pp) is not complete if (X, d) is not complete. Also, for
1<p<q<oo, cesp(xg) S cesq(xg). For p=1, we have
cesq(xg) = {(xg, xp, ...)}. Hence, (ces;(xy), p1) is separable for
any metric space (X, d).

Keywords: Metric Space, Cesaro Sequence Space, Absolute type
of sequence space, Completeness, Inclusion Relation.

1. Introduction

Sequence spaces refer to specific spaces in mathematics
which consist of sequences with added some mathematical
structure. Any sequence can also be considered to be a function
defined from the set of natural numbers to a given non-empty
set [1]. A classical example of a sequence space is the absolute
Cesaro sequence space, ces,, which consists of all real
sequences of the form (x,,) such that that satisfy the condition
S (258l ) < oo forall p € Rwith 1< p < oo.

This space has been a subject of great deal of study. The first
comprehensive study was done by Shiue [14], following a
problem that was posed by the Dutch Mathematical Society
concerning the dual of ces,, which was also a subject of
topological study by Jagers [4] and Leibowitz [9]. Asides from
the absolute case, Lee and Ng [12] pioneered the non-absolute
case, denoted X,,. For 1 < p < o0, X,, is the space of all real
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sequences (x,,) that satisfy Y., EZZ:l xk|zzJ < oo,

The Cesaro sequence space of absolute type has a rich
history, not only as a theory but also in various analysis related
fields. In the early works on ces,,, the objects studied were real
sequences (x;) with x; € R for all k € N. Consider real
numbers a, b. Their distance is given by the standard metric on
R defined by dg(a, b) = |a — b| [6]. Thus, the expression |x;|
in the definition of ces,, can be seen as the distance of x;, from
the zero element, that is |x| = dgr(xy, 0). In this regard,
Maligranda et al. [10] defined ||x||,, the Cesaro norm,

This norm s llx|l,, =

1

on ces,. given by

(S (28polaed)’)” for all x = (xy,) € ces,, which
Maligranda et al. used to capture other elements of ces,, that
are not present in P, namely the B-convex property. For any
real number p with 1 < p < o0, it is known that ces,, lacks the
B-convex property, in contrast to €7, which is B-convex. Also,
Hakim et al. [3] studied ces,, in the same setting as Maligranda
et al., that is, real sequences, and showed that ces,, is a Banach
space with the Cesaro norm. They also examined various
sequence-space characteristics such as solid, BK-space, FK-
space, and the AK-property.

Though some other studies take different perspectives on
sequence spaces related to Cesaro, they all seem to start from
sequences whose terms are real numbers, so the measurement
of distance is ultimately expressed through the absolute value
on R. For example, Malkowsky et al. [11] studied sequence
spaces generated by the Cesaro transformation of real
sequences, then through the use of norms and dual norms in the
construction of Wulff’s crystals, related them to
crystallography. In the context of machine learning and data
clustering, Khan et al. [5] distance measure proposed an
intuitionistic fuzzy distance measure related to a paranormed
Cesaro sequence space, and even though it is an applied context,
the distance measure is formulated in a numerical form which
is, from its essence, based on the absolute value of real numbers.

If we looked at the research above as a whole, we see that it
always starts from the case where the terms of the sequence are
numbers that belong to a universe which in this case is the set
of all real numbers, R. In this universe, we can always calculate
the distances between elements using the absolute value
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function defined on R. This case changes, however, when the
terms of the sequence are no longer real numbers, or objects
that can be represented by real numbers, but instead elements
of some general metric space, (X, d), where X is the underlying
set, and d is the metric on X, which gives some notion of
distance between its elements. In this particular case, the
expression |x| in the definition of ces,, is not defined and so
we need a new definition which is solely dependent on the
metric d. Because of the relation |x| = dg(xx, 0) on R, this
generalization intends to substitute |x;| with the distance to
some fixed point x, € X, that is, d (xy, xg).

Consequently, the purpose of this paper is constructing the
definition the absolute type of Cesaro sequence space on a
metric space (X, d) for a chosen fixed point x, € X, which we
will denote by ces,, (x,). This space is defined for all sequences
(x,) with x, €X for all n € N such that the series

(2
Y=t (%Zﬁzld(xk,xo)) converges for pER, 1<p < co.

This is followed with a discussion on the effect of the choice of
the fixed point on ces,, (x0). Then a function pp is constructed
such that (cesp (x0), pp) is a metric space. In addition, the study
of certain fundamental properties such as the relations of
completeness, inclusion for different values of p to verify that
the generalized space produced is of a desirable type with a
stable topology. This study extends the classical Cesaro
sequence theory and is the first of its type to go beyond R. It
also provides a base for further extensions beyond the real
numbers.

2. Literature Survey

Some basic concepts and properties used in this discussion
are presented as follows.

A. Metric Space

Definition 2.1 [6] Let X be any nonempty set. A function
d: X X X — Ris called a metric on X if for every x,y, z € X the
following hold:

a. d(x,y)=0

b. d(x,y) =0ifandonlyifx =y
c. d(x,y)=d(y,x)

d. dl,y) <d(x,z)+d(zy)

The set X equipped with d, written (X, d), is called a metric
space. The elements of X are called points, and d(x, y) is called
the distance from x to y.

Definition 2.2 [1] Let (X, d) be a metric space and let x, €
X. For areal number € > 0, the neighborhood of x, with radius
€, denoted by N (xg; €), is the set

N(xy; &) = {x € X:d(xp,x) < €}
Definition 2.3 [15] Let (X, d) be a metric space and A c X.
A point x € X is called a limit point of A if for every real
number &€ > 0, there exists a point x, € N(x; ) N A with x, #

x; equivalently, N(x; €) N A — {x} # 0.

Definition 2.4 [1] Let (x,) be a sequence in a metric space
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(X, d). The sequence (x,,) is said to converge to a point x € X
if for every real number & > 0, there exists a natural number K
such that for every n € N with n = K, we have x,, € N(x; €).

Definition 2.5 [1] Let (X, d) be a metric space. A sequence
(x,) in X is called a Cauchy sequence if for every real number
& > 0, there exists a natural number H such that for all natural
numbers m,n withm > H andn = H, we have d(x,, x,,) < €.

Definition 2.6 [1] A metric space (X, d) is called complete
if every Cauchy sequence in X converges to some element x €
X.

B. Infinite Series

Definition 2.7 [1] Let (x,) be a sequence of real numbers.
The infinite series generated by (x,) is a new sequence (si)
defined by s, = YX_, x,,. Furthermore, the infinite series is
written as Yo X, Where X, are called the terms of the series
and sy, is called the k-th partial sum of the series

Definition 2.8 [1] The series Y54 X, is said to converge if
the sequence of partial sums (s) converges, that is, if there
exists S € R such that }lim s, = S. In this case, S is called the

sum (value) of the series and it is written Y5 X, = S.

Theorem 2.9 [1] If the series Yo, X, converges, then we
have lim(x,) =0

Theorem 2.10 [1] If p > 1, then the series Z;’lenip
converges

C. Mikowski Inequality

Theorem 2.11 [2] Given real sequences (x,) and (y,). If
1 <p < oo, then

1 1 1
it p had p had p
it ) =( Yl ) + (Yo
n=1 n=1 n=1

D. Cesaro Sequence Space of Absolute Type
Definition 2.12 [8] The Cesaro sequence space of absolute
type, denoted by ces,, is the set of all real sequences (x;)
P
satisfyingd'n; (% Zﬁzllxkl) < oo for real number p with 1 <
p < co. Symbolically,

ces, = {(xn): i (%ilxﬂ)p < oo]
n k=1

=1

To understand this definition, several examples are given
below.

Example 2.13 The real sequence X = (E—L) is an

n n+1
element of ces,, for every real number p with 1 < p < co.
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Proof: Given any natural number n. For each k = 1,2,...,n

1 1 1

1 1 1
we have = > —, hence |— ——| = = ———. Thus, for every
kK~ k+1 kK k+1l Tk k+1

Llyn =1lyn |E_L|=l n (E_L)
n €N, SXhmabal =3 2k= [y — 3| = w2k T

_1(1 1+1 1+ +1 1)
n 2 2 3 n n+1
_1(1 1 )

“n n+1

1 n

_Z(n+1)

_ 1

Tn+1

. 1 1 L1 1
—_< = —_yn < =

Since — <= for every n € N, we obtain - Y1lx] < ~
vn € N. Therefore, for any real number p with 1 < p < oo,

Lym P =2

(n k=1|xk|) = (n) T
P

) (%Z;C‘:llxkl) < Vet nip‘ By Theorem 2.13, the series

Summing over n, we get

1 .
Z,"len—p converges for everyp > 1. Hence, we obtain

P
)iy (%Zﬁzllxkl) < oo. Thus, by definition, X € ces, for
every real number p with 1 < p < co.

Example 2.14 The constant sequence X = (c,¢,¢,...) for
some real number ¢ > 0 is not an element of ces,, for every real
number p with 1 < p < oo.

Proof: Given any natural number n. Since X = (¢, c,c, ...),
we have x;, = ¢ for each k = 1,2, ...,n. Hence, for every n €

Lymn =1lyn =1 =lc| =
N, ~Die=lXe| = 2 Xk=alel = -mle| = |c| = ¢, s0
1 .
;Z',ézllxkl =, Vn € N. Let p be any real number with 1 <
1 p .
p < 0. We have (;Zﬁ=1|xk|) = cP. Summing over n € N,

p
we obtain  Yp, GZﬁzllxkl) =Y, cP. Consider the
sequence of partial sums of the infinite series, namely (s,,) with
Sp = 2r=1 P =ncP. Then (s,) is unbounded, hence (s,)
diverges. So, the series Yao-,;cP diverges. Hence,

P
Ynet (% ﬁzllxkl) =Y ,cP diverges. Therefore, the
constant sequence X = (c,c,c,..) & ces, for every real
number p with 1 < p < oo.

3. Main Results

A. Cesaro Sequence Space of Absolute Type on A Metric
Space

In this section, (X, d) represents a metric space, with X being
the set and d being the metric. The classical absolute-type
Cesaro sequence space on R with the standard metric was stated
in Definition 2.12. The idea is here generalized to an arbitrary
metric space by substituting |x; | with d(xy, x,) for some fixed
reference point x, € X.
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Definition 3.1 Let (X, d) be a metric space, p € Rwhere 1 <
p < o0, and x, € X. The absolute-type Cesaro sequence space
on (X, d) with reference point x,, denoted by ces, (x,), is the
collection of all sequences (x,) with x,, € X for every n € N
such that

© n p
cesy(xo) = [(x,o: > (%Z A xo>> < oo}
n=1 k=1

Some examples will be provided. Keep in mind that if X =
R, d is the standard metric, and x, = 0, ces,(x,) coincides
with the classical ces, in Definition 2.12. Therefore, the
examples concentrate on other types of metric spaces.

Examples 3.2 Let (X, d) be a metric space with X = R and
the standard metric d(x,y) = |x —y| for all x,y € R. Fix a
reference point x, = 1 € R. Then the absolute-type of Cesaro
sequence space over (R,d) with reference point 1 is the
collection of all real sequences (x,) satisfying

© n p
1
ces, (1) = {(xn): > (;chk - 1|> < oo}
n k=1

=1

Where p is the real number statisfy 1 < p < co.

After providing the definition of ces,(1), we give some
examples of real sequences, in particular, those that are in
ces, (1) and those that are not.

a. The constant real sequence (c,c,c,..) belongs to
ces, (1) for every real number p with 1 < p < oo if
and only if c = 1.

Proof: Let (c,c,c,...) be a constant sequence with ¢ € R.

Given any natural number n. For each k = 1,2, ...,n, we have

X, = c. Hence for all n €N, %Zﬁzllxk -1 =% roqlc—
1| = %nlc — 1| = |c — 1|. Therefore, for every p € R with
P

1<p <o, (%z;;ﬂpck - 1|) =|c—1/P,vn € N.

Since ¢ € R, we consider the following cases
Case ¢ # 1: Then |c — 1| > 0, and consequently

co 1 p o) 1
i (Tl —11) =i, (SX_le - 11)
Yo ilc — 1|7 diverges. Thus, when ¢ # 1, the sequence
(c,c,c,...) & cesy(1)

P
Case ¢ = 1: Then [c-1]=0, so Yp—q (%ZZ:llxk — 1|) =

> 10 =0 < oo. Hence, for ¢ = 1, the sequence (¢, c,c, ...)
1

p

(1,1,1, ...) belongs to ces, (1) for every real number p with
p < oo.
_(0,nodd .
b. The real sequence (a,) where a,, = {2' n epen 1S 1Ot
an element of ces, (1) for every real number p with

1<p<oo.
Proof: Given any natural number n. Notice that for each k =
1,2,..,n,
la, — 1 ={|0—1| =1,k odd
k [2—-1] =1,k even
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Hence |a; — 1| =1,Vk =1,2,...
1 1
ne N,;Z}é:llak -1l ==

,n. Therefore, for every
h=11l= %n = 1. Letp be any real

P
number with 1 < p < oo, then we have (%Z}}:llak — 1|) =

P
17 = 1. Summing over n yields Yy (%ZZ:llak - 1|) =
Yn=11 = oo. Therefore (a,) & ces,(1) for every real number
pwith1l < p < co.

We now consider R with d(x,y) = min{1,|x — y|} and a
reference point x, = 2; the corresponding space is provided in
this example below.

Example 3.3 Let (X, d) be a metric space with X = R and
d(x,y) = min{1, |x — y|},Vx,y € R. Fix a reference point
Xo = 2 € R. Then the absolute-type of Cesaro sequence space
over (R, d) with reference point x, = 2 is the collection of all
real sequences (x,,) satisfying

oo n p
1
ces,(2) = ;(xn): Z (EZ min{1, |x; — 2|}> < OO]
k=1

n=1

Where p is the real number statisfy 1 < p < oo,
We will now discuss examples of both real sequences that
belong to this space and those which do not

a. The real sequence (2 +2in) belongs to ces,(2) for

every real number p with 1 < p < oo,
Proof: Let n € N be arbitrary. Foreach k = 1,2, ...

that min{1, |x, — 2|} = min{l, |2 + - 2|} =

min 13 = min 1.2
Since 2F > 2, Vk=1.2,..,

min {1, 1k] - Vk=12, ..,

, M notice

n, we have ik <2< 1. Hence
2k = 2

n. we know that the series
Y1 isa eometric series which converges to 1.

k=1 Zk, g g

Thus fOl‘ 0<Zk 1 k—zk 12k
Vn € N. Now let p be any

1
k=12_k) ==
n 1 )p
k=1 5k
1 . 1

Z;’{’zln—p. By Theorem 2.2, the series Z;‘{’_l—p converges for

1\P
klzk) =

every n €N,

Consequently, 0 < - Zk 155 S
real number with 1 < p < oo, then we have (;

nb’
Summing both sides over n yields Yoy (% <

every real number p > 1. Hence, Yp= 1(

1
Yne1 <o

Since,

S -2

p
It follows that Yooq (%Zﬁzl min{1, |x, — 2|}) <

p
min{lx |xk - 2|}>

International Journal of Research in Engineering, Science and Management, VOL. 9, NO. 1, JANUARY 2026 14

Therefore, the sequence (2 + zin) is an element of ces,(2) for

every real number p with 1 < p < oo.

3,neven .

n?,nodd !
not an element of ces,(2) for every real number p
withl <p < oo,

Proof: Let n € N be arbitrary. If n is even, then x,, = 3,
hence d(x,, 2) = min{1, |3 — 2|} = min{1,1} = 1. Ifnis odd,
then x,, = n?, so d(x,,2) = min{1, [n? — 2|}. We consider
odd n in the following cases.

Casen =1:

d(x,,2) = min{1, |12 — 2|} = min{1,1} =1

Casen = 3:

Sincen? > 9, wehaven? — 2 > 7, hence |n? — 2| > 7 > 1.
Therefore, d(x,,, 2) = min{1, |n? — 2|} = 1.

From both cases, for every odd n we obtain d(x,,2) = 1.
Together with the even case, it follows that d(x,,,2) = 1,Vn €
N. Hence, for every n € N,

n n n
1 1 , 1 1
—Z d(x,2) = —Z min{1, |x, — 2|} = —Z 1=—-n=1
n n n n

k=1 k=1 k=1

Tierefore, for ev_ery real number p wi;h 1<p<oo,
p
(% Y= d(xy, 2)) = 1P = 1. Summing both sides over n, we

obtain

b. The real sequence (x,) defined by x,, = {

Thus, the sequence (x,) is not an element of ces,(2) for
every real number p with 1 < p < oo.

Next, the focus is on X = R?, which means the objects of

study are sequences of ordered pairs (x(l) (2)) with
7(11)' ,(12) € R for alln € N. With a given reference point in R?,
an absolute Cesaro sequence space can be constructed in this

way.

Example 3.4 Given the metric space (R?, d) where d is the
Euclidean metric. For each x = (x,x;) and y = (y;,y,) in R,
the metric d is defined by d(x,y) =
\/(xl —v1)? + (x; — y,)?. Choose the reference point (1,1) €
R?. Then the absolute Cesaro-type sequence space built on
(R?%,d) with reference point (1,1) is is the collection of all

(x(l) (2)) on R? statisfying

sequences (x,) with x, =

ces,((1,1)) = [(xn): i Gzn: d(x, (1,1)))p < oo}

n=1 k=1
Where p is a real number that statisfy 1 < p < coand for1 <

k<nneN, dlx (D) = (0 - 1) + (P - 1)

Below are examples of sequences that fall within this space,
as well as sequences that do not.
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Sn)n,l) is

an element of Cesp((l,l)) for every real number p
with 1 < p < oo.
Proof: Let n € N be arbitrary. Notice that for each k =
1,2,..,n,

2
d(xe, (1,1)) =J(1+(_5—?k— 1) +(1-1)2

_J<(—1)k)2 _J(—l)Zk _1
- Sk - 52k 5k

Hence, for every n € N,

a. The sequence (x_n) defined by x,, = (1 +

1% 1o 1
Y a ) =23 L
nz (e, (11)) n £ 5k
k=1 k=1
We know that Y-, 1k is a geometric series with ratio
1

1
5
hence it converges to Z' Therefore foreachn €N, Y, = <

sk
SPi =150 2¥P, < —,vn€N. Now tak I
k=1gk — 5 SO k=1gk = ow take any rea
. 1 1\?
number p with 1 <p < oo, then we have (Z [ 15_k) <
1\P 11 . . o (lwn 1YP
(E) = pop> summing over nyields Y1 (; k=15_k) <

4%2;‘1‘;1 nip' By Theorem 2.2, Z,"{’:lnip converges for p > 1.

1an 1)\P
Hence,Z?{’:l(z k=15_k) < oo,

Since d (xk, (1,1)) = sik, we conclude from the definition of

P
cesp((l,l)) that Yoo, (% ﬁzld(xk, (1,1))) < o0, So the
sequence (x,) belongs to cesp((l,l)) for every p € R with
1<p<oo.

b. The sequence (y,,) defined by y,, = (n,n) is not an
element of cesp((l,l)) for every real number p with
1<p<oo.

Proof: Let n be any natural number. Note that for each k =
1,2,..,n,
d(y, (1,1) = d((k, k), (1,1)) = y/(k — D2 + (k — 1)2
=J2(k-1D2 =2k -1)

Hence, for everyn € N,

%Z d(ye (11)) = %kz V2(k - 1)
=1

ﬁ(n(n+1) )
=——-n
n 2
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(-

V2
=7(n—1)

Therefore, for real number p with pl < p < o, we have
(Ezpid(e D)) = (“z—i(n— 1)) - (& -
Summing over n yields Mg, (%Zﬁzld(yk, (1,1)))p =
51 (2) (-1

Let b, = (g)p (n — 1)P. Then (b,,) is an unbounded real

sequence, hence it does not converge to 0. By the contrapositive
of Theorem 2.2, the series Y.n—; b, diverges. Consequently,

o (1 P
T (320 d(e (1D))

diverges, so (y,) = (n,n) ¢ cesp((l,l)) for every real
number p with 1 < p < oo,

Let C[0,1] denote the set of all real-valued continuous
functions on [0, 1]. The metric on C[0, 1] allows us to define
the absolute-type Cesaro sequence space similarly to the
preceding examples. The complete definition can be found in
the following example.

Example 3.5 Let (C[0,1],d) be a metric space. For each
f,g € C[0,1], define the metric d by

d(f,g) = sup |f(x) — g(x)|
x€[0,1]

If we choose the reference point fy(x) = 0 € C[0,1], then
the absolute-type Cesaro sequence space built over (C[0,1],d)
with reference point given by the constant function fy(x) = 0

14
is cesp(0)={(fn):z;°=1(§ g[lopﬂvk(xn) <oo},

where p is a real number that statisfy 1 < p < oo,
Next, we will give examples of sequences that belong to this
sequence space.
a. The sequence of functions (f;,) defined by f,(x) =
1 . .
—sinx for every x € [0,1] and every n € N, is an
element of ces, (0) for every real number p with 1 <
p < oo.
Proof: Let n € N be arbitratry. Notice that for each =
1,2,..,n,

1 1
sup Ife (| = —Zsinx| = sup ||Isinx|
x€[0,1] xe[o] 1k
— sup |sinx]|
k2x€ Opl]

Since sinx = 0 and sinx is increasing on [0,1], we have

sup |sinx| = sup sinx =sin1l. Hence, sup |fr(x)|=
x€[0,1] x€[0,1] x€[0,1]
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sin1
k2’

Z sinl _ sinlqp
k=1"p2" n k=1

and therefore for every n € N, lZﬁzl sup |fi ()| =
n x€[0,1]

1
ﬁ.

Since the series ;- 1% converges there exists a constant
0 < C < oo such that Y}, Z=C.1In partlcular Y 1:=C
for all n € N. Multiplying both sides by LLEN 0, we obtain
sinlqp 1 Csin1

—Xk=17z = —, > let p be a real number statisfy 1 < p <

sin1 1\P Csin1
0 —_— — < = p —_
, the we have ( k—1 k2) = ( ) (C sin 1) >

i (T ) <
k2
© : 1 . © 1
anl(C sin 1)17 ) = (C sin 1)p Zn=1 o

Summing over n gives

Since Z;’{’_lip converges for every p > 1, it follows that

(Csin1)P ¥ 1— < o0, and hence Yoo 1(

sin1 1

p
k 1?) <OO

n

P
Finally, because Yy (127,;;1 sup |fx (x)l) =
n x€[0,1]
Yt (Sml he1 k12) < oo, by the definition of ces,(0) we
conclude that the function sequence (f;,) with f,,(x) = n—lz sin x
for x € [0,1] belongs to ces,(0) for every real number p with
1<p<oo.
b. The sequence of function (f;,) defined by f,,(t) = t"
for every t € [0,1] and every n € N is not an element
of ces,, (0) for every real number p with 1 < p < oo,
Proof: Let n € N be arbitrary. Notice that for each k =
1,2,..,n we have d(fy, fo) = d(f,0) = ts%pi]lfk(t) — 0]
€lo,

sup |fi,(t)| = sup |t¥|.Since 0 < t < 1, it follows that 0% <
tef0,1] t€f0,1]

tk < 1% hence 0 <tk <1 forall k = 1,2, ..., n. Moreover, at

t =1 we obtain f,(1) = 1% = 1. Therefore, sup |tF| =
te[0,1]

sup tk =1, so for k=12,..,n we have

telo,1]

sup |f(0)] = 1.
te[0,1]

every

Consequently, for all n € N we have

for any real number p with 1< p <oo we obtain

14
1
(;zzzl sup |fk(t)|) =
telo,1]

(o] 1 n
> (5 t:;;%]'fk“)') Z 1=
n=1 k=1 ’

It follows that the function sequence ( fn) w1th f(®) =t" on
[0,1] is not an element of ces,, (0) for every real number p with

1< p<oo.

P =1, hence
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B. The Fundamental Properties of the Absolute-Type Cesaro
Sequence Space on a Metric Space

Thus far absolute-type Cesaro sequence space cesy(x,) has
been constructed and illustrated with examples within several
metric spaces. In case constructions like these, the membership
condition for a sequence is based on the convergence of the

p
series Ypeq (%Zﬁzld(xk,xo)) , thus the
becomes an integral part of the construction of ces,(x,).

Consequently, even before delving into the deeper properties
and the structure of ces,(xp), one must analyze how the

point x, €EX

selection of this reference point shapes ces, (x,). This forms
the basis for the consideration of Theorem 3.1.

Theorem 3.1 Let (X, d) be a metric space and let p be a real
number with 1 < p <oo. If xo,x; € X with xy # x4, then
ces,(x) # ces,(xq).

Proof: Define the sequence 0 = (0,)pen in X by 0, = x,
for every n € N.

Then

S (28R dopx0) = S (S8R d(xo,x0))'

Since d(xg, xo) = 0, it follows that

> (23 o) =3 (23'0) =S 0-o<

n=1 k=1 n=1

P
Henee S71 (et A0 %)) < 0,500 = (20, %o, ) €
ces,(x,). Next, consider whether O belongs to ces,, (x;). Since

X1 # X, we have d(xg, x;) > 0.

Thus, 521 (2871 A0 1)) = Sizea (dCxo,x)-

Let (s,) be the sequence of partial sums of the series
PEECIENED) Sn = Zer(dCro, x1))" =
n(d(x, xl))p. Then (s,,) is unbounded, hence diverges.
Z%°=1(d(xo'x1))p =
Iy (%Zﬁzld(ok,xl))pdiverges, so the constant sequence
0 = (xg,Xg, -
p < oo.

Since O € ces,(xy) but O €& ces,(x;),
ces,(x) # ces,(xq).

where

Consequently, the series

) & cesy(x;) for every real number p with 1 <

it follows that

After explaining this dependence, we proceed to define basic
structure on ces,(xp), as we will show in the following
theorem.

Theorem 3.2 Let (X, d) be a metric space and let p € R with
1 <p <. Fix a point x, € X and define ces,(x,) as the
absolute-type Cesaro sequence space over (X, d) with reference
point x,. For any sequences A = (a,) and B = (b,) with
A,B € cesp(xy), define the function py:ces,(xo) X
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ces,(xo) = Rby

1
3 n P\p
1
Pp(4,B) = (Z (;Z d(a, bk)> )
n=1 k=1

Then (cesp (x0), pp) is a metric space.
Proof: To prove that (cesp(xo),pp) is a metric space, we
first show that p,, is well-defined on ces, (x,) X ces,(xo).

Let A= (a,) and B = (b,) be arbitrary elements of
ces, (x).

By definition,

1
p P .

po(A B) = (Zi, (i d(ay b)) ) Thus p,(4,B) is

well-defined if and only if the series
P

3y (% req d(ay, bk)) converges.

Let n be arbitrary a natural number. For each k = 1,2, ..., n,
since d is a metric on X, the triangle inequality gives
d(ay, by) < d(ag, xo) + d(by, xp). Summing overk = 1, ...,n

and dividing by mn, we obtain %Zﬁzl d(ay, by) <
= Tter (@ Xo) + - Bty by %),

Define a, =~ Y7 _; d(ay, xo) and B, =Y, d(by, xo).
Then, for every n € N, %Zﬁﬂ d(ay, by) < a, + B,. Raising
both sides to the power p with 1 < p < oo yields

(%Zﬁ:l d(ay, bk))p < (a, + B,)P. Summing over n gives
S (2501 d(a b)) < Si(an + B)P  Taking  the

1 . .
power - on both sides, we obtain

1 - 1
(Z (%Z d(ay, bk)>p>p < (Z(an + .Bn)p>p
n=1\ k=1 =1

En=ilan +
Substituting the

By Minkowski’s inequality for sequences,
1

BT < (S50 a2)P + (S5 BP)P.

definitions of a;, and f,,, we get

(2] )
(2 &) ]

n=1 k=1

+ (i <%i d(bk:x0)> )p
n=1\ k=1

Since A € ces,(x,), the first series on the right-hand side is
finite, and since B € ces,(x,), the second series is also finite.
Therefore, the right-hand side is finite, which implies

|
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h (%22=1 d(ay, bk))p <oo. Hence p,(4,B) is well-
defined for all A, B € ces,(x,).

Next, we show that p, is a metric on ces,(x,). By the
definition of a metric space, it suffices to verify that p,, satisfies
the following four properties.

a. For any A=(a,) and B = (b,) in ces,(xq),
pp(A,B) = 0.

Proof. Take arbitrary A = (a,)
ces,(x,).Let n be any natural number.

Since A, B € cesy(x,), we have ay, b, € X for each k =
1,2, ..., n. Because d is a metric on X, d(ay, b;,) = 0 for all such
k. Hence %ZLI d(ay, by) = 0. Raising both sides to the power

and B=(b,) in

P
p yields (% Yr=1d(ay, bk)) > 0 and summing over n gives
w (1
Zn:l (Z
1
.
Pp(4,B) = (X5 (3 Zher d(@ b)) ) 2 0.

P
req d(ay, bk)) = 0 and taking the p-th root shows

b. For any A= (a,) and B =(b,) in ces,(x,),
pp(A,B) = 0ifand only if A = B.
Proof. (=) Let A = (a,) and B = (b,) be in ces,(x,) and

P
assume p,(A4,B) =0. Then ¥, (%Z}c‘zld(ak, bk)) =0.
Each term in the series is nonnegative, hence for every n € N,
p
(%Zﬁ:l d(ay, bk)) =0, so %Zﬁﬂ d(ay, by) = 0. Since % *
0, it follows that Y7_, d(ay, b,) = 0. As each d(ay, b,) = 0,
we must have d(ay, b,) = 0 for every k = 1,2, ..., n. Because
d is a metric, d(ay, by) =0 implies a; = by. Since n is
arbitrary, a; = by, forall k € N, hence A = B.
(&) Conversely, assume A = B. Then a;, = by forallk € N,
so d(ay, by) = 0 for all k. Therefore,
1

pp(A,B) = (Z (%Z 0>p>5 = (Z 0)5 =

Thus p,, (4, B) = 0 if and only if A = B.

c. For any A= (a,) and B =(b,) in ces,(x,),

Pp(A, B) = pp(BIA)
Proof. Since d is a metric, d(ay, by) = d(by, a;) for all k.
Substituting into the definition of p,, yields

o n p %
pp(A,B) = (2 (%Z d(akﬂbk)> )
n=1 k=1
I 1 n p %
= (Z (ZZ d(bk,ak)> ) = ,Dp(B:A)
n=1 k=1

d. For any A= (a,), B=(b,), and C=(c,) in
ces,(x,), we have p,(4,B) < p,(A,C) + p,(C,B).
Proof. Let n be any arbitrary natural number. For each k =
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1,2, ...,n, by the triangle inequality for d, we have d(ay, by) <
d(ay, ci) + d(cy, by). Summing over k = 1, ..., n and dividing
by n gives

n n n

1 1 1

il E d il E hl E

- (ak, by) < - d(ag, cx) + - d(cy, by)
k=1 k=1 k=1

k=1d(cx, by)
Then %Zﬁzld(ak, by) < u, + v,. Raising both sides to the

power p and summing over n yields

i ( Z d(ay, bk)) Z(un + )P

n=1

—lyn —1
Define u, = ;Zkzld(ak,ck), dan v, =~

1

ot
Taking the p-th root gives (Z;’le G o1 d(ak,bk)) )p <

(5t + )PP

[

By M1nkowsk1 s mequahty we have oz, (u, + v,)P)P <

ey ufl)p + (T v )p. Substituting back the definitions of
u, and v, yields

1
P\p

(2]
(5

n=

T

i d(ay, Ck)) )

k=1

-~
Sl

-

1

' (Z( 3 d(ck,bk>) )

n= k=1

S

[y

That is, p, (A4, B) < p,(A,C) + p,(C, B).

From (i)—(iv), p, is a metric on ces,(x,). Hence
(cesp (x0), pp) is a metric space.

In Theorem 3.2 it was shown that (cesp (x0), pp) is a metric
space. Therefore, the notation ces,(x,) is the absolute-type
Cesaro sequence space constructed over the metric space (X, d)
with a point of reference x, € X, and p,, the metric on ces,, (x,)
as described in Theorem 3.2. Now we focus on the inclusion
relations for the ces,(x,) for various p, as we state the
following theorem.

Theorem 3.3 Let (X, d) be a metric space and let x, € X. If
p,q € Rsatisfy 1 < p < q < oo, then ces, (x,) € cesy(x).

Proof: Let (x,) be any member of ces,(x,). Since (x,,) is
an element of ces, (x,), it is a sequence in X, hence x,, € X for
every n € N. By the definition of ces,(x,), we have
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p
h (%Z}}:ld(xk,xo)) < . Let n be arbitrary natural

number. Because d is a metric on X and Xy, x, € X for all k =
1,2,..,n, we have d(x;,x,) =0. Consequently,

%Z’,;‘zl d(xy, xo) = 0. For any real number p with 1 < p < oo,

p
we have (% Yh=1d(xy, xo)) > 0. Thus, each term in the series

above is nonnegative. Since the series converges, every term is
bounded above by the total sum. In other words, for eachn € N

P p .
(GEposdGax)) < s (5 Ziy dCri %)) Taking

the p-th root on both sides %Zﬁzld(xk,xo)g

(Z?ﬁ:l (iZZLl d(xk,xo))p)%. Since (x,) € ces,(x,), the

P
series Ym—q (%Z?zld(xk,xo)) converges. Hence, by the

gives

definition of convergence of a series, there exists a real number

S with 0 < S < oo such that S = z,f;;zl( ym d(xk,xo))

Therefore, for every n € N, Zk 1 d(xg, x0) < SP Because
1
S=0and 1< p < o, the real number S? is well-defined. Set

1
M := 7. Then - ¥1_, (x4, %o) < M,¥n € N.
Now note that p < q implies g —p > 0. Hence, we get
q-p
(3Zr i d(xxp)) < MPP,yneN. Multiplying both

sides by (%ZQ:l d(xy, xo))llJ > 0 gives (%Zﬁ:l d(xy, xo))q <
e

P , .
hoq d(xy, xo)) . Summing over n we obtain

[oe]

Z( Zd(xk.xo)> < M9~ PZ( Zd(xk,xo)>

1

But the right-hand side is finite because M < co and
oo 1 4
Y=t (;Zﬁzl d(xk,xo)) = § < oo.Hence,

[ee)

z (%Zn: d(xy, x0)>q < o0
k=1

n=1

which shows (x,) € ces_q(x,). Since (x,,) was taken
arbitrary in ces, (o), it follows that ces, (x,) € cesq(xo).

This implies that for all sequences A € ces,(x,) also belongs
to cesq(xo). Consequently, for all 4, B € ces,(x,), py(A,B)
is well-defined. Next, we analyze the distance A and B obtain
using p,, and p,. In fact, the distance induced by p, is never
greater than that induced by p,,. This is stated in the following
theorem.

Theorem 3.4 Let (X, d) be a metric space and let x, € X. If
p,q ER satisfy 1<p<qg<oo and A= (a,),B=(b,)E
cesy(x,), then p, (4, B) < p,(4,B).

Proof: Let A = (a,) and B = (b,) arbitrary member of
ces,(x,). Since A, B € cesy(x,), both are sequences in X, so
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@y, by, € X for every n € N. By the definition of ces, (x,), we
Yn=1 (%ZZ=1 d(ay, xo))p < and
)3y (%23:1 d(bk,xo))p < oo. Let n be any natural number.
Since d is a metric on X and ay, by, x, € X, for each k =
1,2, ...,n we have d(ay, b;) = 0, hence (% ro1d(ay, bk))p >

0. Moreover, by the triangle inequality, d(ay,by) <
d(ay, xg) + d(xg, by), Vk = 1,2,...,n Summing over k and

dividing by n gives —Yi_; d(ay, b) < =Xy d(ax, xo) +
Y1 d(xo, ).

! 1
222:1 d(ay, x¢) and v, = -

have

Define, for each ne€N,
*=1d(xg, by). Then u,, v, =0

and %Zﬁzld(ak, by) < u, + v,. Raising both sides to the

Uy =

P
power p yields (% ﬁzld(ak,bk)) < (u, + v,)?. Summing
P
over n we obtain Yoo, (%Zﬁzld(ak,bk)) <> (u, +

v, )P. Taking the power% on both sides gives
1 1
&S 1 n P\p 00 )
(Z (— d(a, bk)> ) < (Z(un + vn)v>
n=1 nk:l n=1

By Minkowski’s inequality applied to the sequences (u,)
and (Un)a

Do(un‘l‘vn)p ﬁs ) ub 5+ N vy ’
2. IRV

n=1 n=1

Substituting the definitions of u,, and v, yields

1
oo n P )
1
E)
n=1 k=1
[e9) 1 n 14 5
< Z Ekzld(ak.xo)
o 1 n p %
+<Z (;kz d(xo,bk)> )

=1

[uy

Since A, B € cesy(x,), the two series on the right are finite;
hence the left-hand side is finite as well. In particular,

P
Y lznz d(ay,by)) < . Next, observe that the series
n=1\,, ~4k=1 k
defining p, (A, B) has nonnegative terms. Therefore, for every
1 p o 1 14
ne Na (527(;1 d(akl bk)) < Zm:l (;Z?:l d(akl bk)) =
P
(pp(A, B)) .Taking the power %gives %Zﬁzl d(ay, by) <
pp(4,B),¥n € N. Now take arbitrary p,q € R with 1 <p <

Y1 d(ai by) 2 0,
pp(A,B) = 0, raising the last inequality to the power g —p

qg<o. Since g—p>0 and
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q-p

yields (%Zﬁﬂ d(ay, bk)) < pp(A, B)7"P. Multiplying both
. n P q-p+p

sides by (%Zkﬂ d(ay, bk)) gives (%ZZ:l d(ay, bk))

P
pp(4,B)T7P (% reqd(ay, bk)) . Summing over n we obtain

i (%Z d(ak,bk)>q
n=1 k=1
<p,(ABYP Y (%Z a(a, bk)>p
k=1

n=1

P

But by definition, ¥%_, (%Zﬁzld(ak, b)) = pp(A,BYP
q

Hence, Yoy (%Zﬁzld(ak,bk)) < pp(A,B)?. Taking the

1 . .
power - on both sides gives

1
© n a\q
(Z (%Z (@, b@) ) < (4, B)
n k=1

=1

By the definition of pg, the left-hand side is exactly p, (4, B).
Therefore, pg(A,B) < p,(4A,B).

From Theorem 3.2, it follows that (cesp (x0), pp) is a metric
space. From neighborhood, convergence, Cauchy sequences,
and completeness definitions in previous definitions 2.2, 2.3,
24, and 2.5, we proceed to define these concepts in

(cesp (x0), pp).

Definition 3.2 Let Y € ces,(x,). For a real number £ > 0,

the neighborhood of Y with radius &, denoted by N(Y; €), is the
set

N(Y;¢e) = {X € cesp(xp): pp(X,Y) < s}

Definition 3.3 A sequence (Yy,)men in ces,(x,), where
Y, = (yr(,f ) wey 18 said to converge to some U € cesp(xo) if

for every real number € > 0 there exists K € N such that for
everym = K, Y, € N(U; ¢), or equivalently, p,(Yp,, U) < e.

Definition 3.4 A sequence (Yy,)men in ces,(x,), where
Yo = (yr(,f ) eN’ is called a Cauchy sequence if for every real

number & > 0 there exists H € N such that for all m,q = H,
Pp (Y, Yo) <&

Definition 3.5 The metric space (cesp(xo),pp) is called
complete if every Cauchy sequence in ces,(x,) converges to
some U € ces,(x,) with respect to the metric p,,.

Following the definition of completeness for the metric space
(cesp(xo), pp) in Definition 3.4, we will analyze the
interdependencies between the completeness of the original
space (X,d) and the completeness of (cesp(xo),pp). This is
captured in the following Theorem 3.5.
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Theorem 3.5 If (X,d) is a complete metric space, then
(cesp(xo), pp) is complete for every real number p with 1 <
p < .

Proof: Let (Y,,)en be an arbitrary Cauchy sequence in

(y(k) . Fix e>0and n € N.
Since (Yy)men is Cauchy in (ces, (xo), o). for £ 0 there

exists N (i) € N such that forallm,q = N (E),

pp (Y ¥y) = (i (%Zr: d(yﬂ‘),qu))> )

r=1 k=1

ces,(xy), Py ), Where Yy,
P p

=

Raising both sides to the

521 (2 8k d©,v))

series is nonnegative, for every t € N we have

t T p
1 E\P
k) . (k) r) (k)
(ZZ In 1Y )> 2( 2, d0n; ) <)

k=1 r=1 k=1
(—) and
n
since both sides are nonnegative, — (y,g‘ ), (k)) <£
()

Multiplying by n gives X3, d(yp ,qu)) < &. Because each

power p  gives

p
(Z) . Because each term in the

Taking t =n yields (%23:1 d(y,(nk),qu)))

summand is nonnegative, in particular d(y,(f ),yq") ) <

d(y(k),yék))<sThus for each fixed n €N, the

— (™ ) ()
meN ( Y2 Y3

sequence in (X, d). Since (X, d) is complete, for every n € N

sequence (i ,..) is a Cauchy
there exists u,, € X such that y,gn)
(uq, Uy, g, ... ). Next, fix € > 0. Because (Y;;,) ey is Cauchy in
(cesp (x0), pp), there exists N(g) € N such that for all m,q =
N(e), pp(Yin, ¥y) < €. Raising to the power p gives

i(%i (yf,i‘),qu))> <eP

r=1 k=1

— U, as q = oo, Define U =

For any fixed m = N(¢) and any r € N, since yék) - Uy as
we have d(y(k),qu)) - d(y,u).
1 .

;Zizld(y,;k),qu)) - ;Zk=1d(ym ,u;) as q - oo. Taking

the limit ¢ — oo in the inequality above yields

ORI

r=1 k=1

q — o, Hence

Taking the p-th root, we obtain
1

S5 <
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that is, p, (Y, U) < e forallm = N(¢). So Y;, » Uin p,,. It

remains to show that U € cesy(xo), ie.
P
Y (%Zﬁzld(uk,xo)) < oo, Fix n € N. By the triangle
inequality in (X,d), for each k =1,2,..,n, d(ug,xy) <
(k) (k) ; —

d(uk,ym )+d(ym ,xo). Summing over k=1,...
dividing by n gives

n n n
1 1 o 1 .
EZ d(u, xg) < ZZ d(uk,y,(n)) + Ez (yr(n),xo)
k=1 k=1 k=1

rord(wey) and B, =~ 30

Then %Z'}é::t d(ug, xo) < ap + By, s0

i (%Z d(uk.xo)>p < i(an + B

,n and

Set a,, == % 1 d(yr(nk),xo).

Taking p-th roots and using Minkowski’s inequality yields

(S (g | () +(Zee)

Now define the constant sequence O = (0,,) in X by 0,, = x,
for all n. Then O € ces,(x,), since d(0y, Xo) = d(x, %) = 0

14
Tt (32pe1 (0 x0)) = 0 <o,

(=1 an)? = pp(U, Yrn) dan (X5 7)P =
1

) n P\p
1
(Z (Z;d(ubxoo ) < pp(U,Yn) + pp(Yin, 0)

Since Y, » Uin p,, choose m large enough so that
pp(U,Yn) <1. Also, because Y, € ces,(x,) and O €

ces,(xg), we have Pp(Ym, 0) < oo, Therefore,
1

(2 (3ot A x0)) )7 < 1+ pp(H, 0) < o0,

implies Moreover

pp (Y, 0), Hence

which

Thus U €

implies (s (5 2her 1)) ) < o,

ces,(xy), and every Cauchy sequence in (cesp(xo), pp)
converges to an element of ces,(x,). Consequently,

(cesp (x0), pp) is complete.

Considering such a case when (X, d) is not complete and
understanding how it explains the non-completeness of
(cesp (x0), pp) is part of the next theorem.

Theorem 3.6 If (X, d) is not complete, then (cesp (x0), pp)
is not complete for every real number p with 1 < p < oo.

Proof: Since (X, d) is not complete, there exists a Cauchy
sequence (X)) men in X, but () men does not converge in X.
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To show that (Cesp(xo),pp) is not complete for every real
number p with 1 < p < oo, we construct a Cauchy sequence
(Y)men in cesy(x,) that does not converge in ces,(x,). For

each m € N, define Y,, = (yI™,y{™,..) = (y,ﬁm))keN by

Xm, k=1 .
Igm>={mk>2 ). Fix n € N. If

n =1, then ;Zk=1 d(ykm x0) = d(xm, xo). If n =2, then
yl(m) =X, and ylgm) =x, for k=2,
1
ro1d(y™, %) = = (d (s X0) + 0) = ~d (X, Xo)

Therefore,

Thus Y,,, = (X, X0, Xo, -

hence

d(xm, xg),n =1
d(xml xO) nz= 2

Zd( ™ o) = {

Let 1<p<oo. Then X2, (% 2=1d(3’1£m)'x0))p =

(A0 20))” + 5y (B ) = (d(xm,xo))” 1+

Yy ] Sincep > 1, the series Yoz 27, converges Moreover,

because (*m)men 1s Cauchy in (X, d), it is bounded, so there
exists M > 0 such that d (x,,, x,) < M for all m € N. Hence

(13- atitna) s 4572 <

n=1 k= n=2

Thus Y,,, € cesp(x,) for every m € N.
Next, we prove that (Y;)meny is @ Cauchy sequence in

(cesp(xo),pp) Take arbitrary m,n € N and r € N. Since
(m) n) (m) (n)

Vi = Xm, Yy =xpdany, =y, =xg forallk = 2, we
m) ) d(xm, x,), k=1
have d(y.™, ykn )= { ’61 ];‘> ) Therefore,

—Zr LAy, y) = d(xm,xn) By the definition of p,,,

(o0 r)) =Y (Faten ) = D 5 @)

r=1

o 1
= (dGem ) ) =

. . 1 1
Since p > 1, the series Y72 — converges; let § = Y = >

P
0, Then (pp(Ym, Yn)) = (d(xm, xn))pS, hence p, (Y, Yy) =

1 1 1

(At x))°S)P = d (X, %,)SP. Set K =S? >0. Thus
Pp (Y, ) = Kd(xp, x,). Given & > 0, define &* = % > 0.
Because (x,,)men 18 Cauchy in (X, d), there exists N € N such
that for all m,n = N,d(xp, x,) < €*. Consequently, for all
mn=N, p,(Y,,Y,) =Kd(xy,x,) <Ke*=e. Hence
(Ym)men is Cauchy in (cesp(xo),pp).

Now assume, for contradiction, that (cesp (x0), pp) is
complete. Then (Y;,)men converges in ces,(x,); that is, there
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exists Z = (zy)en € ces,(xo) such that ¥, - Z in p,,. Thus,
for every € > 0 there exists N € N such that for all m = N,
pp(Ym, Z) < &. By definition,

(o))" = i ( Z a(y™ zk)>p

r=1 k=1

Since each term in this series is nonnegative, for any t € N

we have
p p
( P 1d( o Zk)) < X G k=1 d(yﬁm),zk)) =
(m) Zk) <

(pp(Ym,Z)) .Taking p-th roots gives lZi_l d(y,
Pp (Y, Z),Vt EN. In pamcular for t=1, d(y, (m) ,7y) <
pp(Ym,Z). Because y1 =X, we obtain d(xp,,z;) <
pp(Ym, Z). Since p,, (Y, Z) — 0, it follows that d (xp,, z;) = 0,
i.e., X, = z; in (X, d). This contradicts the choice of (X;;)men
as a nonconvergent Cauchy sequence in X. Therefore
(cesp (x0), pp) is not complete for every 1 < p < oo,

The previous theorem proves that if (X, d) is not complete,
then for any real number p such that 1 < p < oo,
(cesp (x0), pp) is also not complete. However, the case p = 1
is different, because the membership condition for ces; (x,)
only holds for the constant sequence whose all terms are the
reference point x,. This is pointed out in the following
proposition.

Proposition 3.1 Let (X, d) be any metric space and let x, €
X. Then ces, (xy) = {(x,): X, = xo,Vn € N}.

Proof: Let (X,d) be a metric space and let x, € X. First
observe that the constant sequence X, = (x, X, Xo, ... ) belongs

to ces; (xq). Indeed, for every n € N, %Zﬁzl d(xg,x9) =0, so
h (% Y=t d(xo,xo)) = 0 < oo, Next, let (x_n) be arbitrary
member of ces; (x,). By the definition of ces; (x,),

)3y (% roq d(xy, xo)) < o, For eachn € N, define S, =
Dk=1d(xy, xo). Since d(x, x9) = 0 for all k, we have S, = 0
and (S,) is nondecreasing. The membership condition above
can be written as ),;—; S;" < 00.We claim that S, = 0 for every
n € N. Suppose not. Then there exists ny € N such that S,/ >

0. Because (S,) is nondecreasing, S, = Sy, for all n = n,.

Hence
(o] (o]
DI EER
n - n M n
n=ng n=ng n=ng

which diverges, a contradiction to Y- 1 2 < oo, Therefore

S, = 0 forall n. Since S, = Y7-; d(xy, xo) = 0 and each term
d(x, xg) = 0, it follows that d(xy,x,) = 0 for every k < n.
Because n is arbitrary, we obtain d(x, x,) = 0 for all k € N.
As d is a metric, d(xy, xo) = 0 implies x;, = x, for all k. Thus
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(x,) is the constant sequence (xg,Xg,...). Consequently,
cesy (xg) = {(x): %, = x0,Vn € N}.

Based on the previous proposition, we know that ces; (x,)
has only one member, which is the constant sequence
(x9, %, X, --- ). Since a singleton space is always complete for
any metric, it follows that (ces;(xy), p1) is complete metric
space even when (X, d) is not complete.

4. Conclusion
This study builds an absolute type Cesaro sequence space
over a metric space (X, d) for an arbitrary reference point x, €
P
X and defines ces, (x,) = {(xn): Yy (% o1 d(xk,xo)) <

oo}, 1<p<o. A metric p, is defined on this space by

1
pp(4,B) = (s (25her d(ae b)) ), VA = (a,),B =
(bn) € cesy(x,).The results establish that for all 1 < p < oo,
(cesp(xo),pp) becomes a metric space. If 1 < p < g < oo,
then ces,(x,) € ces,(x,) and p,(4,B) < p,(4,B) for all
A,B € cesy(x,). Finally, the metric space (cesp(xo),pp) is

complete if only if (X, d) is complete, and it is not complete if
only if (X, d) is not complete.

References

[11 R.G. Bartle and D. R. Sherbert, Introduction to Real Analysis. Hoboken,
NJ, USA: Wiley, 2011.

(2]

(11]

[12]

[13]
[14]

[15]

International Journal of Research in Engineering, Science and Management, VOL. 9, NO. 1, JANUARY 2026 22

L. Debnath and P. Mikusinski, Introduction to Hilbert Spaces with
Applications. San Diego, CA, USA: Academic Press, 1999.

A. R. Hakim, Manuharawati, and M. Jakfar, “Some properties regarding
Cesaro sequence space of an absolute type,” Int. J. Res. Eng., Sci.
Manage., vol. 5, no. 7, pp. 4449, 2022.

A. A. Jagers, “A note on Cesaro sequence spaces,” Nieuw Arch. Wisk.,
vol. 22, no. 3, pp. 113-124, 1974.

M. S. Khan, M. Kaushal, and Q. M. D. Lohani, “Cesaro paranormed
sequence space based intuitionistic fuzzy distance measure,” J. Inequal.
Spec. Funct., vol. 13, no. 1, pp. 1-13, 2022.

E. Kreyszig, Introductory Functional Analysis with Applications. New
York, NY, USA: Wiley, 1978.

J. Lebl, Basic Analysis I: Introduction to Real Analysis, vol. 1. Brno,
Czech Republic: Jifi Lebl, 2023.

P. Y. Lee, “Cesaro sequence spaces,” Math. Chronicle, vol. 13, pp. 29—
45, 1984.

G. M. Leibowitz, “A note on the Cesaro sequence spaces,” Tamkang J.
Math., vol. 2, pp. 151-157, 1971.

L. Maligranda, N. Petrot, and S. Suantai, “On the James constant and B-
convexity of Cesaro and Cesaro—Orlicz sequence spaces,” J. Math. Anal.
Appl., vol. 326, no. 1, pp. 312-331, 2007.

E. Malkowsky, F. Ozger, and V. Veli¢kovié, “Some spaces related to
Cesaro sequence spaces and an application to crystallography,” MATCH
Commun. Math. Comput. Chem., vol. 70, no. 3, pp. 867884, 2013.

N. N. Ng (Peng-Nung) and L. Y. Lee (Peng-Yee), “Cesaro sequence
spaces of nonabsolute type,” Comment. Math., vol. 20, no. 2, pp. 429—
433, 1978.

W. Rudin, Principles of Mathematical Analysis, 3rd ed. New York, NY,
USA: McGraw-Hill, 1986.

J. S. Shiue, “On the Cesaro sequence spaces,” Tamkang J. Math., vol. 1,
no. 1, pp. 19-25, 1970.

W. A. Sutherland, Introduction to Metric and Topological Spaces.
Oxford, U.K.: Oxford Univ. Press, 2009.



	1. Introduction
	2. Literature Survey
	A. Metric Space
	B. Infinite Series
	C. Mikowski Inequality
	D. Cesàro Sequence Space of Absolute Type

	3. Main Results
	A. Cesàro Sequence Space of Absolute Type on A Metric Space
	B. The Fundamental Properties of the Absolute-Type Cesaro Sequence Space on a Metric Space

	4. Conclusion
	References

