International Journal of Research in Engineering, Science and Management 39

Volume 8, Issue 12, December 2025

IJRESM www.ijresm.com | E-ISSN: 2581-5792 | RESAIM Publishing (www.resaim.com)

ArthiX — A Language Agnostic System for Real-
Time Text, Speech, and Programming Code
Translation

Mahi Paliwal'*, Kavita Lodhi®, Poorvi Sharma®, Sandhya Vishwakarma*
23Student, Department of Computer Science & Engineering (Artificial Intelligence and Machine Learning), Oriental Institute of Science &

Technology, Bhopal, India
*Professor, Department of Computer Science & Engineering (Artificial Intelligence and Machine Learning), Oriental Institute of Science &

Technology, Bhopal, India

Abstract: The rapid expansion of global communication and
collaborative software development has intensified the need for
translation systems that can operate across linguistic and technical
boundaries. Existing translators primarily focus on human
languages and often fail to address challenges related to voice
interaction, offline wusage, and programming language
understanding. This paper presents ArthiX, a language-agnostic
translation system designed to support real-time text and speech
translation with automatic language detection, local history
storage, and offline capabilities. In addition to natural language
translation, the system introduces logical translation of
programming code across different languages, followed by real-
time compilation to validate correctness. ArthiX is implemented as
a desktop application using Python-based Natural Language
Processing techniques and speech processing libraries.
Experimental evaluation demonstrates that the system provides
accurate translations, responsive performance, and improved
usability compared to conventional translators. The proposed
approach highlights the potential of unified translation platforms
in education, software development, and multilingual
communication.

Keywords: Language-agnostic translation, Natural Language
Processing, Speech translation, Code translation, Real-time
compilation, Multilingual systems.

1. Introduction

Language plays a central role in human interaction, yet it
remains a significant barrier in an increasingly globalized
digital environment. Students, professionals, and travellers
frequently encounter information written or spoken in
unfamiliar languages, which limits access to knowledge and
effective communication [1]. At the same time, software
developers face similar challenges when working with source
code written in different programming languages, despite the
fact that many programming languages share common logical
constructs.

Most existing translation systems focus on either text-based
or voice-based human language translation and often require
manual language selection. Furthermore, these systems
typically rely on continuous internet connectivity and do not

*Corresponding author: mahi2005paliwal@gmail.com

provide mechanisms to translate or validate programming code.
As a result, users must rely on multiple tools to meet different
translation needs [2].

To address these limitations, ArthiX is proposed as a unified
language-agnostic translation system. The system is designed
to translate text and speech in real time, automatically detect the
source language, operate in offline scenarios for selected
languages, and store translation history locally. A distinctive
feature of ArthiX is its ability to translate programming code
logically between languages and compile the translated output
instantly, allowing users to verify correctness and execution
behaviour [3].

2. Related Work and Background

Early machine translation systems were largely rule-based,
relying on manually crafted grammar rules and bilingual
dictionaries. While effective for limited domains, such systems
struggled with ambiguity and contextual interpretation [2]. The
introduction of Statistical Machine Translation improved
translation quality by learning probabilistic relationships from
bilingual corpora, but these systems still lacked fluency and
long-range context handling.

The emergence of Neural Machine Translation marked a
major advancement by enabling end-to-end learning of
translation tasks using deep neural networks. Encoder—decoder
architectures and attention mechanisms significantly improved
contextual understanding and translation accuracy.
Transformer-based models further enhanced performance by
enabling parallel processing and long-distance dependency
modelling [4], [5]. They were popularized by the work
Attention Is All You Need.

Recent studies have also explored speech-to-speech
translation by combining speech recognition and text-to-speech
synthesis. However, many existing solutions remain cloud-
dependent, lack offline functionality, and do not integrate
translation history or programming language support. ArthiX
builds upon these research directions by integrating multiple

Paliwal et al.

translation modalities into a single, practical system [1], [7].

3. Problem Statement

Despite significant progress in machine translation, users
continue to face several challenges:
e Lack of automatic language detection in many
systems.
e Limited support for voice-based interaction and accent
variations.
e Dependence on continuous internet connectivity.
e Absence of unified platforms for both human and
programming language translation.
e No immediate validation mechanism for translated
programming code.
These challenges highlight the need for a comprehensive,
language-agnostic system that supports text, speech, and code
translation while ensuring usability, accuracy, and reliability

(11, [2].

Table 1

Functional requirements of ArthiX
ID Requirement
FR-1 Accept text input
FR-2 Accept voice input
FR-3 Accept programming code input
FR-4 Auto language or syntax detection
FR-5 Translate content
FR-6 Generate voice output
FR-7 Validate translated code
FR-8 Store translation history

Table 2
Non-Functional requirements of ArthiX
Attribute Description
Performance Near real-time response
Usability Simple and intuitive UL
Scalability Extendable architecture
Reliability Stable processing
Privacy Local data storage

4. Proposed System

ArthiX is designed as a modular desktop-based translation
system that integrates natural language processing, speech
processing, and code translation within a single framework. The
system architecture consists of three primary layers: the user
interface layer, the processing layer, and the data storage layer.

The user interface provides an intuitive environment for
entering text, speaking voice input, or submitting programming
code. The processing layer handles language detection,
translation logic, speech processing, and code compilation. The
data storage layer maintains translation history locally to ensure
data privacy and persistent access [3].

A key innovation in the proposed system is the real-time code
compilation module, which executes or compiles translated
code and provides immediate feedback. This feature enables
users to validate translated programs and understand execution
behaviour without switching tools [7].

International Journal of Research in Engineering, Science and Management, VOL. 8, NO. 12, DECEMBER 2025

40

1] @ Language-Agnostic Translator = o x

® Text / Voice Translator Codle Translator

Enter Text or use Voice Input.

@ Translate To English v

& Translate # Voice Tnput Speak Output History

Translated Text

@

1 @ Language-Agnostic Translator = o X

Text/ Voice Translator Code Translator

@ Source Language Python v @ Target Language Python v

2 Input Code

& Translate Code > Run Output

Translated Code

== Program Output

(b
Fig. 1. ArthiX System Design: (a) Text & Voice Translator (b) Code
Translator & Output

User Input

l—»{ Language+Detection J—l
L TexI H Voije H Cofe }

Translation Engine

+ Natural Language Programming Logic
—> : -
Processing Processing

v v v

__’r Speech Processing j
v v
Text-to-Speech Speech-to-Text
v
Wssing & Validation F

Local Database

- Translation History - Offline Resources

v v
] (Voice } [CodeOutputj

(a)

v
[Text

Paliwal et al.

/grthlx System
R | @T&xD@vide Voice Input
User ,-f—_i- —
6 Submit CM Type

ke L@ransported 0@ . ‘

(b)
Fig. 2. System representation: (a) Overall Architecture, (b) Use-case
diagram
Table 3
Major modules of ArthiX system
Module Description

User Interface
Language Detection
Translation Engine
Speech Processing
Code Processing

Accepts text, voice, and code input

Identifies source language or syntax

Translates natural language and structured content
Handles speech-to-text and text-to-speech
Handles logical code transformation and
validation

History Stores all translation records
Management
Offline Support Enables limited translation without internet

5. Methodology

Receive User Input
{ Text)—»(Voite j—» Code

Identify Input Type

Language or Syntax Detection

v

Translation Processing

A(Output Generation
> Translation History

FStore Translation History]

v

Local Database

For code inputs

« Translation History
- Offline Resources

End

Fig. 3. Workflow of translation process in ArthiX

International Journal of Research in Engineering, Science and Management, VOL. 8, NO. 12, DECEMBER 2025 41

The development of ArthiX follows an incremental software
development approach. Initial development focuses on basic
text translation, followed by successive integration of language
detection, voice processing, offline support, history storage, and
code translation with compilation.

Each module is developed and tested independently before
integration, ensuring modularity and ease of maintenance. This
approach allows early delivery of functional components and
supports continuous improvement throughout the development
lifecycle [3].

6. Implementation Details

ArthiX is implemented using Python as the core
programming language due to its strong ecosystem for NLP,
speech processing, and rapid application development. The
graphical user interface is developed using PyQt5, providing a
responsive and user-friendly desktop experience [8].

Text translation and automatic language detection are
performed using NLP-based translation libraries. Speech-to-
text functionality enables voice input, while text-to-speech
synthesis generates spoken output. Translation history is stored
locally using SQLite, ensuring privacy and persistence [9].

For programming language translation, source code is first
converted into an intermediate logical representation. This
representation abstracts programming constructs such as loops
and conditional statements, allowing equivalent code
generation in the target language. The compiled output or
execution result is then presented to the user in real time [6].

Table 4
Technologies used in ArthiX

Component Technology
Frontend PyQts
Backend Python
Language Translation ~ NLP-based libraries
Speech Input Speech Recognition
Speech Output eTTS
Code Handling Interpreter / Compiler Interfaces
Database SQLite

Useri User Detection Translation || Speech | Code
Interface " Module Engine Processor

i Enter Text / Speak / Submit Code !

—p

i Request Language/Syntax Detection
T

i Translate Content

,,,,,,,,,, e

e ~
| — | Note: Process Speech or Validate Code |
'

1
i

i

f

|

|

|

|

|

|

|

I}

|

l v

! I i
o Translate Content 41 _________ —<d
| i
|

|

i

|

|

|

|

|

|

|

|

|

|

i

i
Process Speech or Validate Code

T >

;
:

:

3 : v

;

;

‘

i

\/ .‘
Display Output i
:

i

=Y
Database] (Database }

(a)

'
I
|
'
|
|
|
'
'
i
il
|
'
|
|
I
|
d
'
'
'
i
i
i
|
|
i
|
1
|
|
|
|
|
|

A

B

[User User Interface

Paliwal et al.

Translation_Record W

« Record_ID (PK)
1| » Source_Text
« Translated_Text

« Timestamp

(PK) Primary Key Attribute

(FK) Foreign Key Attribute !

v
Languages . @ N Content_Type

+ Language_ID (PK) O Text
+ Language_Name O Voice

+ Language_Code O Code

History Log

+ Log_ID (PK)
+ Record_ID (FK)
+ Execution_Feedback

+ Timestamp

(b)

Fig. 4. Translation and Processing: (a) Sequence diagram, (b) E-R diagram

7. Experimental Results

The system was evaluated using multiple human languages
and programming examples. Text translation tests
demonstrated accurate and contextually meaningful output with
low response time. Voice translation experiments showed
reliable speech recognition for clear and moderately accented
speech.

The real-time code compilation feature successfully
validated translated code in most test cases, providing
immediate error feedback when syntax or logical
inconsistencies were present. User feedback indicated
improved productivity and ease of use compared to traditional
translation tools [5], [4].

Table 5
Summary of experimental results
Test Case Input Type Outcome
TC-1 Text Accurate translation
TC-2 Voice Correct speech processing
TC-3 Code Correct output generation
TC-4 Offline Successful execution
TC-5 History Data stored correctly
8. Applications

ArthiX has broad applicability across various domains:

International Journal of Research in Engineering, Science and Management, VOL. 8, NO. 12, DECEMBER 2025 42

e FEducation: Assisting students in understanding
multilingual study materials and programming
concepts.

o Software Development: Supporting developers in
reading, translating, and validating code written in
different languages.

e Business Communication: Enabling efficient
multilingual communication with international
clients.

o Travel and Accessibility: Supporting real-time
voice translation for travellers and users with
reading or speaking difficulties [1], [7].

9. Conclusion and Future Work

This paper presented ArthiX, a language-agnostic translation
system that integrates text, speech, and programming code
translation within a single platform. By combining automatic
language detection, offline functionality, translation history
storage, and real-time code compilation, the system addresses
key limitations of existing translation tools.

Future work will focus on adding sign language translation
as a new feature along with expanding language and
programming support, integrating advanced neural translation
models for offline usage, and deploying the system on web and
mobile platforms. With continued development, ArthiX has the
potential to evolve into a comprehensive multilingual
communication and development assistant [4], [7].

References

[11 D. Jurafsky and J. H. Martin, Speech and Language Processing, 3rd ed.
Upper Saddle River, NJ, USA: Pearson Education, 2023.

[2]1 P. Koehn, Statistical Machine Translation, 1st ed. Cambridge, U.K.:
Cambridge University Press, 2010.

[31 S.J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
4th ed. Upper Saddle River, NJ, USA: Pearson Education, 2021.

[4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and 1. Polosukhin, “Attention is all you need,” in Proc.
Advances in Neural Information Processing Systems (NeurIPS), Long
Beach, CA, USA, 2017, pp. 5998-6008.

[51 I Goodfellow, Y. Bengio, and A. Courville, “Deep learning,” Nature, vol.
521, no. 7553, pp. 436-444, May 2015.

[6] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” in Proc. Int. Conf. Learning
Representations (ICLR), Scottsdale, AZ, USA, 2013.

[71 OpenAl, “Multilingual and cross-lingual models for natural language
processing,” OpenAl Research, San Francisco, CA, USA, 2023. [Online].
Auvailable: https://openai.com/research

[8] Python Software Foundation, Python Documentation, 2024. [Online].
Available: https://docs.python.org/

[91 Google LLC, Google Cloud Translation API Documentation, 2024.

[Online]. Available: https:/cloud.google.com/translate/docs

https://openai.com/research
https://docs.python.org/
https://cloud.google.com/translate/docs

	1. Introduction
	2. Related Work and Background
	3. Problem Statement
	4. Proposed System
	5. Methodology
	6. Implementation Details
	7. Experimental Results
	8. Applications
	9. Conclusion and Future Work
	References

