
International Journal of Research in Engineering, Science and Management
Volume 8, Issue 11, November 2025
www.ijresm.com | E-ISSN: 2581-5792 | RESAIM Publishing (www.resaim.com)

*Corresponding author: ajeyaraj.upadhyaya@spit.ac.in

46

Abstract: The research proposes a comprehensive approach for

predicting stock prices over a 30-business-day horizon with an
accuracy of 98–99%. By incorporating multiple factors
influencing stock prices, the methodology ensures reliable and
well-rounded predictions. The base model employs a Univariate
Time Series Prediction using a 1D Convolutional Neural Network
(CNN-1D), which effectively captures seasonal patterns and
general trends. While CNN-1D excels in identifying seasonality, it
occasionally struggles with trends. To address this, the research
integrates a Kalman Forecaster, which is highly reliable for trend
prediction. The combined output of these models provides
predictions encompassing both seasonality and trend dynamics,
albeit with a slight reduction in accuracy compared to CNN-1D
alone. The study further utilizes a Long Short-Term Memory
(LSTM) network to predict market indices such as Sensex and
Nifty, which, along with CNN-1D and Kalman predictions, inform
a Random Forest regressor model trained over 320 days of a 365-
day dataset. Predictions for the final 45 days are refined using
mean error calculations over the first 15 days, which are then
corrected using sentiment scores derived from news analysis
powered by a large language model which in this case Gemini
Flash Model 1.5. This integrated approach achieves a minimal
error margin of 1–3%, successfully combining seasonality, trend,
and external market factors for accurate stock price forecasting.

Keywords: CNN-1D, Kalman Forecaster, LSTM, Time Series,

News Analysis, LLM (Gemini Flash Model 1.5).

1. Introduction
The system diagram illustrates the arrangement of models

that contribute to the final output. The models implemented are
described here

CNN-1D: For Univariate Time Series Forecasting on Stock
closing prices

Kalman: For Univariate Time Series Forecasting on Stock
Forecaster closing prices (for General Trend Forecasting)

LSTM : For Market Index Prediction using a Univariate
Time Series Forecasting manner

Random: Use output of LSTM and (CNN-1D and Forest
Kalman Forecaster Combination) to predict Regressor actual
Stock Prices

LLM : Gemini Flash 1.5 LLM is used to generate scores out
of news, this will be used for correction of Random Forest

regressor model values.

The architecture of the solution proposed is as follows:

Fig. 1. Architecture

A. CNN-1D (Convolutional Neural Network)
1) Date Pre-Processing

Data pre-processing is a critical step in preparing time series
data for modelling, ensuring that the input is suitable for the
learning algorithms. In this implementation, the process begins
with loading data where we retrieve historical stock price data
using the yfinance library, specifically focusing on the closing
prices within a specified date range.

The Raw data which we have loaded is then transformed into
a supervised learning format where we creates lagged features
(previous time steps) and corresponding target values for
prediction.

This transformation allows the model to utilize past
observations to forecast future values.

To stabilize the Time series and make it more amenable for

Stock Growth Forecast Through Sentiment
Analysis on Social Media and News with

Statistical Factors
Ajeyaraj Upadhyaya1*, Rahul Shinde2, Taha Shaikh3, Jyoti Ramteke4

1,2,3Student, Department of Computer Science and Engineering, Sardar Patel Institute of Technology, Mumbai, India
4Professor, Department of Computer Science and Engineering, Sardar Patel Institute of Technology, Mumbai, India

Upadhyaya et al. International Journal of Research in Engineering, Science and Management, VOL. 8, NO. 11, NOVEMBER 2025

47

modelling, the difference function computes the differences
between consecutive observations, effectively removing trends
and seasonality.

After the described step of differencing is applied, the values
are scaled to fit between the values of -1 and 1. This scaling is
done using the Minmax Scaler functionality which various
libraries provide.

B. Working of the CNN-1D Model
The training data from the data pre-processing steps as

described above are fed into the CNN-1D Model.
CNN-1D model is basically for learning from 1-D sequences

like Univariate Time Series. The CNN-1D Model is designed
as we see to process sequential data. A CNN-1D model is
created using convolutional filters across a single dimension.
This type of an architecture is particularly effective for time
series due to its ability to capture local patterns and
relationships within sequences.

The model begins with a convolutional layer that applies
multiple filters to extract features from the input sequences.
Each filter learns to recognize specific patterns over time, such
as trends or seasonal effects.

The flattened output is then passed through one or more
dense (fully connected) layers that learn complex
representations of the features extracted by the convolutional
layers.

Finally, a single neuron in the output layer predicts the next
value in the sequence based on learned features.
1) Program Implementation Particulars

In the Data Pre-Processing steps we had described a
difference operation to remove seasonality and trends and
another operation called Scaling. After the results from CNN-
1D Model are out we do perform inverse scaling and difference
operations so we retort back to the normal condition.

Also, in the Data Pre-Processing operation we create training
and testing datasets. For forecasting we use the last unit of
training dataset to predict the first value of stock prediction.
This prediction is incorporated in the input to the model for
predicting the second value. This is a recursive implementation
where the output of the model is incorporated to make the next
prediction.
2) Results of the CNN-1D Model

Fig. 2. HDFC bank stock price prediction

The MAPE value for the above forecast is: 0.90%.

Fig. 3. Reliance stock price prediction

 The MAPE value for the above forecast is 0.95%.

The CNN-1D Model makes a prediction over 365 Business

Days.

C. Kalman Forecaster
1) Data Pre-Processing

The Data Pre-Processing in Kalman Forecaster is minimal
here we just split the data into Training and Testing Datasets
Here the last 365 days of the date range are predicted.
2) Working of the Kalman Forecaster Model

The Kalman Forecaster operates through a recursive
algorithm that estimates the state of a system over time,
balancing predictions and observations.

It consists of two main phases: Prediction and Update.
Prediction Phase: The filter uses the previous state estimate and
a state transition model to predict the current state and its
uncertainty (covariance). This prediction incorporates the
expected dynamics of the system, which may include random
fluctuations.

Update Phase: Once a new measurement is obtained, the
Kalman filter computes the difference between the predicted
state and the actual measurement (innovation).

The innovation is weighted by the Kalman gain, which
adjusts how much influence the new measurement has on
updating the predicted state.

The updated state estimate combines the previous estimate
and the weighted innovation, refining it based on new
information.

The filter continuously iterates through these phases,
allowing it to adapt to changes in the system dynamics while
minimizing estimation errors.

It is particularly effective for systems with noise and
uncertainty, making it widely used in applications like
navigation and time series forecasting.

The Kalman filter's recursive nature means it does not require
storing all past measurements, making it efficient for real-time
applications.
3) Intuition Behind Kalman Forecaster

The CNN-1D Model is used which captures both trend and
seasonality, but in some cases, it may not capture the trends in
particular. Also, by only using the CNN-1D Model we cannot
consider other features which we may want to consider.
4) Results of the Kalman Forecaster Model

The Model as we will see bellow is good for predicting the
general linear trend.

Upadhyaya et al. International Journal of Research in Engineering, Science and Management, VOL. 8, NO. 11, NOVEMBER 2025

48

Fig. 4. HDFC bank stock price prediction

 The general trend as we see in the above case is linear.

Fig. 5. RELIANCE stock price prediction

 The general trend as we see in the above case is linear.

The Kalman Forecaster forecasts over 365 Business Days.

D. CNN-1D and Kalman Forecaster
Forecasts from the CNN-1D model are weighted at α=0.3,

and those from the Kalman Forecaster at β=0.7, creating a
blended forecast that captures seasonality and trends.

While this combined approach yields lower accuracy than the
CNN-1D alone, it facilitates the inclusion of additional features
in the time series forecasting process.

These features are the scores which the Gemini Flash Model
1.5 will give after News Analysis and the Market Index prices
which are predicted.

The Combination results in the following results as seen
below.

Fig. 6. HDFC bank stock price prediction

 The MAPE value for the above forecast is 6.78%.

Fig. 7. RELIANCE stock price prediction

 The MAPE value for the above forecast is 10%.

The Combination of CNN-1D and Kalman Forecaster also

forecasts over 365 Business Days.

E. LSTM for Market Index Prediction
Market Index is a very powerful metric which can be

leveraged for Stock Price Prediction.
Also as compared to other metrics like Volume. This metric

is easily predictable using the various Deep Learning
algorithms.
1) Data Pre-Processing

Data pre-processing is a critical step in preparing time series
data for modelling, ensuring that the input is suitable for the
learning algorithms. In this implementation, the process begins
with loading data where we retrieve historical stock price data
using the finance library, specifically focusing on the closing
prices within a specified date range.

The Raw data which we have loaded is then transformed into
a supervised learning format where we creates lagged features
(previous time steps) and corresponding target values for
prediction.

This transformation allows the model to utilize past
observations to forecast future values.

To stabilize the Time series and make it more amenable for
modelling, the difference function computes the differences
between consecutive observations, effectively removing trends
and seasonality.

After the described step of differencing is applied the values
are scaled to fit between the values of -1 and 1. This scaling is
done using the Minmax Scaler functionality which various
libraries provide.
2) LSTM Model Basic Information

Long Short-Term Memory (LSTM) networks are a
specialized type of recurrent neural network (RNN) designed to
effectively learn from sequential data and address the vanishing
gradient problem.

LSTMs address the limitations of traditional RNNs, which
struggle with long-term dependencies due to issues like
vanishing and exploding gradients.

This makes LSTMs particularly suitable for tasks where
context from earlier time steps is crucial for making accurate
predictions.
3) Architecture

LSTM has many components as described below.
1. Memory Cell: This is the core of the LSTM, capable

of retaining information for long periods.

Upadhyaya et al. International Journal of Research in Engineering, Science and Management, VOL. 8, NO. 11, NOVEMBER 2025

49

2. Gates: LSTMs use three gates to control
information:
• Forget Gate: Determines what information to

discard from the cell state.
• Input Gate: Decides what new information to add

to the cell state.
• Output Gate: Controls what information from the

cell state is output as the hidden state.
These gates use sigmoid activation functions to produce

values between 0 and 1, allowing the model to selectively retain
or discard information.
4) Working

1. Input Sequence Processing: At each time step, the
LSTM receives input data along with the previous
hidden state and cell state.

2. Information Flow:
• The forget gate evaluates which parts of the

previous cell state to keep or discard.
• The input gate updates the cell state with new

candidate values.
• The output gate generates the hidden state for the

next time step based on the updated cell state.
3. Long-Term Dependencies: By maintaining a cell state

that can be modified over time, LSTMs effectively
capture long-term dependencies in sequential data,
making them ideal for tasks like time series
forecasting.

4. Training: The model is trained using backpropagation
through time (BPTT), allowing it to learn patterns in
data sequences efficiently.

5) Program Implementation Particulars
In the Data Pre-Processing steps we had described a

difference operation to remove seasonality and trends and
another operation called Scaling. After the results from CNN-
1D Model are out we do perform inverse scaling and difference
operations so we retort back to the normal condition.

Also, in the Data Pre-Processing operation we create training
and testing datasets. For forecasting we use the last unit of
training dataset to predict the first value of stock prediction.
This prediction is incorporated in the input to the model for
predicting the second value. This is a recursive implementation
where the output of the model is incorporated to make the next
prediction.

Fig. 8. Results of the LSTM market index forecaster SENSEX market index

predictor

 MAPE of the above forecast is 0.54%.

Fig. 9. NIFTY market index predictor

 MAPE of the above forecast is 0.54%.

The LSTM Model as described here forecasts over 365

Business Days.

F. Random Forest Regressor
The Random Forest Regressor is used to combine the outputs

of the Combination of CNN-1D and Kalman Forecaster and the
LSTM Marker Index Model

All the above concerned models predict over a period of 365
days. We take Actual and Predicted values of the First 320 days
for the Combination of CNN-1D and Kalman.

Here Combination of CNN-1D and Kalman has Actual Stock
Prices as Actual values and Predicted Stock Prices as Predicted
values

Also, the LSTM Model will predict Market Indices over 365
Business Days. We will take the predicted market indexes from
this model.

Now we will train a Random Forest Regressor Model where
the model is trained to predict Actual Stock prices based on the
Predicted Stock Prices and Market Indices. All 3 entities are
derived from the above described models. The Model is trained
on the first 320 days and its corresponding data out of the 365
days. After this we predict for the last 45 days.
1) Random Forest Regressor Background and Working

A Random Forest Regressor is a machine learning model that
uses multiple decision trees to make predictions for regression
tasks. A decision tree works by splitting data into smaller
groups based on the values of input features, aiming to
minimize errors like Mean Squared Error (MSE). However, a
single tree often overfits the data, meaning it performs well on
the training set but poorly on unseen data. Random Forest
overcomes this by creating an ensemble of decision trees, where
each tree is trained on a random subset of the data (using a
method called bootstrapping) and only considers a random
subset of features at each split. This randomness ensures that
the trees are diverse, which helps in reducing overfitting and
improving generalization.

During prediction, the Random Forest combines the outputs
of all the individual trees to make a final prediction. For
regression tasks, it takes the average of all tree predictions. This
process makes the model more robust to noise and variations in
the data. Random Forest handles large datasets and high-
dimensional data efficiently and is less sensitive to missing data
compared to many other models. However, because it builds
multiple trees, it can require more computational resources and
may not perform ell if the trees are too similar to each other.

Upadhyaya et al. International Journal of Research in Engineering, Science and Management, VOL. 8, NO. 11, NOVEMBER 2025

50

Overall, Random Forest is a powerful and versatile model
widely used in machine learning due to its simplicity and strong
predictive performance.

Fig. 10. Results of the Random Forest regressor stock forecast HDFC bank

stock price prediction

 The MAPE of the above forecast is about 2.26%.

Fig. 11. RELIANCE stock price prediction

 The MAPE of the above forecast is about 2.33%.

The Above Forecasts of the Random Forest Regressor are

over a period of 45 days.

G. News Analysis Integration
In this Research Paper we get news from Google RSS these

are various articles and their headlines. After this we create a
custom prompt for the LLM Model Google Gemini Flash.

This result for this prompt would contain Textual
Information on various aspects like Sentiment Summarization,
Contextualization of Market Trends, Consideration of
Historical Data etc.

Here very importantly we get a score which is used for
making corrections.

From the Random Forest Model, the first 15 days of the 45
are compared with the actual values and a Mean Error is
calculated. The Score by LLM is operated upon and multiplied
to the Mean Error.

This Final result is added to the remaining 30 predicted
values. This operation reduces the error by about 1.5%. This
output is the final output of the research paper, the error is now
around 1.5 – 2 %.

.
Fig. 12. Results of the news analysis integration HDFC bank stock price

forecast

 MAPE of the Above Forecast is 1.87%.

Fig. 13. RELIANCE stock price forecast

 MAPE of the above forecast is 1.20%.

The Above Forecasts are the Final Results and this is a

prediction for 30 days.

2. Conclusion
By using various models like CNN-1D, Kalman forecaster

LSTM, Random Forest and LLM (Google Gemini Flash 1.5)
we have created a stock price predictor which on an average
gives an error of 1.5%.

These models have helped integrate 3 crucial factors to
predict stock prices one being previous stock prices, the second
one being stock market indices which give us an idea of the
larger market and its state and the third one being news and the
scores provided on its analysis

References
[1] K. Srilakshmi and Ch. Sai Sruthi, “Prediction of TCS stock prices using

deep learning models,” in Proc. 2021 7th Int. Conf. Adv. Comput.
Commun. Syst. (ICACCS), Coimbatore, India, Mar. 19–20, 2021, vol. 1,
pp. 1448–1455.

[2] S. Selvin, R. Vinayakumar, E. A. Gopalakrishnan, V. K. Menon, and K.
P. Soman, “Stock price prediction using LSTM, RNN and CNN-sliding
window model,” in Proc. 2017 Int. Conf. Adv. Comput., Commun.
Informat. (ICACCI), Udupi, India, Sept. 13–16, 2017, pp. 1643–1647.

[3] Y. Yan, X. Nie, M. Wang, and Y. Chen, “LSTM-based stock price
prediction model using news sentiments,” in Proc. Int. Symp. Econ.,
Social Develop. Trade (ISESDT), 2023.

[4] R. Akita, A. Yoshihara, T. Matsubara, and K. Uehara, “Deep learning for
stock prediction using numerical and textual information,” in Proc. 2016
IEEE/ACIS 15th Int. Conf. Comput. Inf. Sci. (ICIS), Okayama, Japan,
2016, pp. 1–6.

	1. Introduction
	A. CNN-1D (Convolutional Neural Network)
	1) Date Pre-Processing

	B. Working of the CNN-1D Model
	1) Program Implementation Particulars
	2) Results of the CNN-1D Model

	C. Kalman Forecaster
	1) Data Pre-Processing
	2) Working of the Kalman Forecaster Model
	3) Intuition Behind Kalman Forecaster
	4) Results of the Kalman Forecaster Model

	D. CNN-1D and Kalman Forecaster
	E. LSTM for Market Index Prediction
	1) Data Pre-Processing
	2) LSTM Model Basic Information
	3) Architecture
	4) Working
	5) Program Implementation Particulars

	F. Random Forest Regressor
	1) Random Forest Regressor Background and Working

	G. News Analysis Integration

	2. Conclusion
	References

