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Abstract: The research proposes a comprehensive approach for 

predicting stock prices over a 30-business-day horizon with an 
accuracy of 98–99%. By incorporating multiple factors 
influencing stock prices, the methodology ensures reliable and 
well-rounded predictions. The base model employs a Univariate 
Time Series Prediction using a 1D Convolutional Neural Network 
(CNN-1D), which effectively captures seasonal patterns and 
general trends. While CNN-1D excels in identifying seasonality, it 
occasionally struggles with trends. To address this, the research 
integrates a Kalman Forecaster, which is highly reliable for trend 
prediction. The combined output of these models provides 
predictions encompassing both seasonality and trend dynamics, 
albeit with a slight reduction in accuracy compared to CNN-1D 
alone. The study further utilizes a Long Short-Term Memory 
(LSTM) network to predict market indices such as Sensex and 
Nifty, which, along with CNN-1D and Kalman predictions, inform 
a Random Forest regressor model trained over 320 days of a 365-
day dataset. Predictions for the final 45 days are refined using 
mean error calculations over the first 15 days, which are then 
corrected using sentiment scores derived from news analysis 
powered by a large language model which in this case Gemini 
Flash Model 1.5. This integrated approach achieves a minimal 
error margin of 1–3%, successfully combining seasonality, trend, 
and external market factors for accurate stock price forecasting. 
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1. Introduction 
The system diagram illustrates the arrangement of models 

that contribute to the final output. The models implemented are 
described here 

CNN-1D: For Univariate Time Series Forecasting on Stock 
closing prices 

Kalman: For Univariate Time Series Forecasting on Stock 
Forecaster closing prices (for General Trend Forecasting) 

LSTM : For Market Index Prediction using a Univariate 
Time Series Forecasting manner 

Random: Use output of LSTM and (CNN-1D and Forest 
Kalman Forecaster Combination) to predict Regressor actual 
Stock Prices 

LLM : Gemini Flash 1.5 LLM is used to generate scores out 
of news, this will be used for correction of Random Forest  

 
regressor model values. 

The architecture of the solution proposed is as follows: 
 

 
Fig. 1.  Architecture 

A. CNN-1D (Convolutional Neural Network) 
1) Date Pre-Processing 

Data pre-processing is a critical step in preparing time series 
data for modelling, ensuring that the input is suitable for the 
learning algorithms. In this implementation, the process begins 
with loading data where we retrieve historical stock price data 
using the yfinance library, specifically focusing on the closing 
prices within a specified date range. 

The Raw data which we have loaded is then transformed into 
a supervised learning format where we creates lagged features 
(previous time steps) and corresponding target values for 
prediction. 

This transformation allows the model to utilize past 
observations to forecast future values. 

To stabilize the Time series and make it more amenable for 
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modelling, the difference function computes the differences 
between consecutive observations, effectively removing trends 
and seasonality. 

After the described step of differencing is applied, the values 
are scaled to fit between the values of -1 and 1. This scaling is 
done using the Minmax Scaler functionality which various 
libraries provide. 

B. Working of the CNN-1D Model 
The training data from the data pre-processing steps as 

described above are fed into the CNN-1D Model. 
CNN-1D model is basically for learning from 1-D sequences 

like Univariate Time Series. The CNN-1D Model is designed 
as we see to process sequential data. A CNN-1D model is 
created using convolutional filters across a single dimension. 
This type of an architecture is particularly effective for time 
series due to its ability to capture local patterns and 
relationships within sequences. 

The model begins with a convolutional layer that applies 
multiple filters to extract features from the input sequences. 
Each filter learns to recognize specific patterns over time, such 
as trends or seasonal effects. 

The flattened output is then passed through one or more 
dense (fully connected) layers that learn complex 
representations of the features extracted by the convolutional 
layers. 

Finally, a single neuron in the output layer predicts the next 
value in the sequence based on learned features. 
1) Program Implementation Particulars 

In the Data Pre-Processing steps we had described a 
difference operation to remove seasonality and trends and 
another operation called Scaling. After the results from CNN-
1D Model are out we do perform inverse scaling and difference 
operations so we retort back to the normal condition. 

Also, in the Data Pre-Processing operation we create training 
and testing datasets. For forecasting we use the last unit of 
training dataset to predict the first value of stock prediction. 
This prediction is incorporated in the input to the model for 
predicting the second value. This is a recursive implementation 
where the output of the model is incorporated to make the next 
prediction. 
2) Results of the CNN-1D Model 

 
Fig. 2.  HDFC bank stock price prediction 

 
The MAPE value for the above forecast is: 0.90%. 

 

 
Fig. 3.  Reliance stock price prediction 

 
 The MAPE value for the above forecast is 0.95%. 

 
The CNN-1D Model makes a prediction over 365 Business 

Days. 

C. Kalman Forecaster 
1) Data Pre-Processing 

The Data Pre-Processing in Kalman Forecaster is minimal 
here we just split the data into Training and Testing Datasets 
Here the last 365 days of the date range are predicted. 
2) Working of the Kalman Forecaster Model 

The Kalman Forecaster operates through a recursive 
algorithm that estimates the state of a system over time, 
balancing predictions and observations. 

It consists of two main phases: Prediction and Update. 
Prediction Phase: The filter uses the previous state estimate and 
a state transition model to predict the current state and its 
uncertainty (covariance). This prediction incorporates the 
expected dynamics of the system, which may include random 
fluctuations. 

Update Phase: Once a new measurement is obtained, the 
Kalman filter computes the difference between the predicted 
state and the actual measurement (innovation). 

The innovation is weighted by the Kalman gain, which 
adjusts how much influence the new measurement has on 
updating the predicted state. 

The updated state estimate combines the previous estimate 
and the weighted innovation, refining it based on new 
information. 

The filter continuously iterates through these phases, 
allowing it to adapt to changes in the system dynamics while 
minimizing estimation errors. 

It is particularly effective for systems with noise and 
uncertainty, making it widely used in applications like 
navigation and time series forecasting. 

The Kalman filter's recursive nature means it does not require 
storing all past measurements, making it efficient for real-time 
applications. 
3) Intuition Behind Kalman Forecaster 

The CNN-1D Model is used which captures both trend and 
seasonality, but in some cases, it may not capture the trends in 
particular. Also, by only using the CNN-1D Model we cannot 
consider other features which we may want to consider. 
4) Results of the Kalman Forecaster Model 

The Model as we will see bellow is good for predicting the 
general linear trend. 
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Fig. 4.  HDFC bank stock price prediction 

 
 The general trend as we see in the above case is linear. 

 

 
Fig. 5.  RELIANCE stock price prediction 

 
 The general trend as we see in the above case is linear. 

 
The Kalman Forecaster forecasts over 365 Business Days. 

D. CNN-1D and Kalman Forecaster 
Forecasts from the CNN-1D model are weighted at α=0.3, 

and those from the Kalman Forecaster at β=0.7, creating a 
blended forecast that captures seasonality and trends. 

While this combined approach yields lower accuracy than the 
CNN-1D alone, it facilitates the inclusion of additional features 
in the time series forecasting process. 

These features are the scores which the Gemini Flash Model 
1.5 will give after News Analysis and the Market Index prices 
which are predicted. 

The Combination results in the following results as seen 
below. 

 

 
Fig. 6.  HDFC bank stock price prediction 

 
 The MAPE value for the above forecast is 6.78%. 

 
Fig. 7.  RELIANCE stock price prediction 

 
 The MAPE value for the above forecast is 10%. 

 
The Combination of CNN-1D and Kalman Forecaster also 

forecasts over 365 Business Days. 

E. LSTM for Market Index Prediction 
Market Index is a very powerful metric which can be 

leveraged for Stock Price Prediction. 
Also as compared to other metrics like Volume. This metric 

is easily predictable using the various Deep Learning 
algorithms. 
1) Data Pre-Processing 

Data pre-processing is a critical step in preparing time series 
data for modelling, ensuring that the input is suitable for the 
learning algorithms. In this implementation, the process begins 
with loading data where we retrieve historical stock price data 
using the finance library, specifically focusing on the closing 
prices within a specified date range. 

The Raw data which we have loaded is then transformed into 
a supervised learning format where we creates lagged features 
(previous time steps) and corresponding target values for 
prediction. 

This transformation allows the model to utilize past 
observations to forecast future values. 

To stabilize the Time series and make it more amenable for 
modelling, the difference function computes the differences 
between consecutive observations, effectively removing trends 
and seasonality. 

After the described step of differencing is applied the values 
are scaled to fit between the values of -1 and 1. This scaling is 
done using the Minmax Scaler functionality which various 
libraries provide. 
2) LSTM Model Basic Information 

Long Short-Term Memory (LSTM) networks are a 
specialized type of recurrent neural network (RNN) designed to 
effectively learn from sequential data and address the vanishing 
gradient problem. 

LSTMs address the limitations of traditional RNNs, which 
struggle with long-term dependencies due to issues like 
vanishing and exploding gradients. 

This makes LSTMs particularly suitable for tasks where 
context from earlier time steps is crucial for making accurate 
predictions. 
3) Architecture 

LSTM has many components as described below. 
1. Memory Cell: This is the core of the LSTM, capable 

of retaining information for long periods. 
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2. Gates: LSTMs use three gates to control 
information: 
• Forget Gate: Determines what information to 

discard from the cell state. 
• Input Gate: Decides what new information to add 

to the cell state. 
• Output Gate: Controls what information from the 

cell state is output as the hidden state. 
These gates use sigmoid activation functions to produce 

values between 0 and 1, allowing the model to selectively retain 
or discard information. 
4) Working 

1. Input Sequence Processing: At each time step, the 
LSTM receives input data along with the previous 
hidden state and cell state. 

2. Information Flow: 
• The forget gate evaluates which parts of the 

previous cell state to keep or discard. 
• The input gate updates the cell state with new 

candidate values. 
• The output gate generates the hidden state for the 

next time step based on the updated cell state. 
3. Long-Term Dependencies: By maintaining a cell state 

that can be modified over time, LSTMs effectively 
capture long-term dependencies in sequential data, 
making them ideal for tasks like time series 
forecasting. 

4. Training: The model is trained using backpropagation 
through time (BPTT), allowing it to learn patterns in 
data sequences efficiently. 

5) Program Implementation Particulars 
In the Data Pre-Processing steps we had described a 

difference operation to remove seasonality and trends and 
another operation called Scaling. After the results from CNN-
1D Model are out we do perform inverse scaling and difference 
operations so we retort back to the normal condition. 

Also, in the Data Pre-Processing operation we create training 
and testing datasets. For forecasting we use the last unit of 
training dataset to predict the first value of stock prediction. 
This prediction is incorporated in the input to the model for 
predicting the second value. This is a recursive implementation 
where the output of the model is incorporated to make the next 
prediction. 
 

 
Fig. 8.  Results of the LSTM market index forecaster SENSEX market index 

predictor 
 

 MAPE of the above forecast is 0.54%. 

 
Fig. 9.  NIFTY market index predictor 

 
 MAPE of the above forecast is 0.54%. 

 
The LSTM Model as described here forecasts over 365 

Business Days.  

F. Random Forest Regressor 
The Random Forest Regressor is used to combine the outputs 

of the Combination of CNN-1D and Kalman Forecaster and the 
LSTM Marker Index Model 

All the above concerned models predict over a period of 365 
days. We take Actual and Predicted values of the First 320 days 
for the Combination of CNN-1D and Kalman. 

Here Combination of CNN-1D and Kalman has Actual Stock 
Prices as Actual values and Predicted Stock Prices as Predicted 
values 

Also, the LSTM Model will predict Market Indices over 365 
Business Days. We will take the predicted market indexes from 
this model. 

Now we will train a Random Forest Regressor Model where 
the model is trained to predict Actual Stock prices based on the 
Predicted Stock Prices and Market Indices. All 3 entities are 
derived from the above described models. The Model is trained 
on the first 320 days and its corresponding data out of the 365 
days. After this we predict for the last 45 days. 
1) Random Forest Regressor Background and Working 

A Random Forest Regressor is a machine learning model that 
uses multiple decision trees to make predictions for regression 
tasks. A decision tree works by splitting data into smaller 
groups based on the values of input features, aiming to 
minimize errors like Mean Squared Error (MSE). However, a 
single tree often overfits the data, meaning it performs well on 
the training set but poorly on unseen data. Random Forest 
overcomes this by creating an ensemble of decision trees, where 
each tree is trained on a random subset of the data (using a 
method called bootstrapping) and only considers a random 
subset of features at each split. This randomness ensures that 
the trees are diverse, which helps in reducing overfitting and 
improving generalization. 

During prediction, the Random Forest combines the outputs 
of all the individual trees to make a final prediction. For 
regression tasks, it takes the average of all tree predictions. This 
process makes the model more robust to noise and variations in 
the data. Random Forest handles large datasets and high-
dimensional data efficiently and is less sensitive to missing data 
compared to many other models. However, because it builds 
multiple trees, it can require more computational resources and 
may not perform ell if the trees are too similar to each other. 
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Overall, Random Forest is a powerful and versatile model 
widely used in machine learning due to its simplicity and strong 
predictive performance. 

 

 
Fig. 10.  Results of the Random Forest regressor stock forecast HDFC bank 

stock price prediction 
 

 The MAPE of the above forecast is about 2.26%. 
 

 
Fig. 11.  RELIANCE stock price prediction 

 
 The MAPE of the above forecast is about 2.33%. 

 
The Above Forecasts of the Random Forest Regressor are 

over a period of 45 days. 

G. News Analysis Integration 
In this Research Paper we get news from Google RSS these 

are various articles and their headlines. After this we create a 
custom prompt for the LLM Model Google Gemini Flash. 

This result for this prompt would contain Textual 
Information on various aspects like Sentiment Summarization, 
Contextualization of Market Trends, Consideration of 
Historical Data etc. 

Here very importantly we get a score which is used for 
making corrections. 

From the Random Forest Model, the first 15 days of the 45 
are compared with the actual values and a Mean Error is 
calculated. The Score by LLM is operated upon and multiplied 
to the Mean Error. 

This Final result is added to the remaining 30 predicted 
values. This operation reduces the error by about 1.5%. This 
output is the final output of the research paper, the error is now 
around 1.5 – 2 %. 
 

.  
Fig. 12.  Results of the news analysis integration HDFC bank stock price 

forecast 
 

 MAPE of the Above Forecast is 1.87%. 
 

 
Fig. 13.  RELIANCE stock price forecast 

 
 MAPE of the above forecast is 1.20%. 

 
The Above Forecasts are the Final Results and this is a 

prediction for 30 days. 

2. Conclusion 
By using various models like CNN-1D, Kalman forecaster 

LSTM, Random Forest and LLM (Google Gemini Flash 1.5) 
we have created a stock price predictor which on an average 
gives an error of 1.5%. 

These models have helped integrate 3 crucial factors to 
predict stock prices one being previous stock prices, the second 
one being stock market indices which give us an idea of the 
larger market and its state and the third one being news and the 
scores provided on its analysis  
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