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Abstract: Urban waste management represents a critical
challenge for modern smart cities, where traditional collection
methods prove increasingly inadequate due to rapid population
growth and environmental concerns. This research presents the
development and implementation of an innovative IoT-enabled
autonomous waste segregation system that integrates real-time
monitoring capabilities for enhanced municipal waste
management operations. The proposed system utilizes ESP32-
based microcontroller architecture combined with multiple sensor
technologies including ultrasonic distance sensors, load cells, and
optical classification modules to automatically categorize waste
into biodegradable, non-biodegradable, and hazardous categories.
Through comprehensive experimental validation, the system
demonstrates 92.4% classification accuracy while providing
continuous waste level monitoring with alert generation
capabilities. The implementation incorporates cloud-based data
analytics and a centralized dashboard interface that enables
municipal authorities to optimize collection routes and make data-
driven operational decisions. Field testing across multiple
deployment scenarios reveals significant improvements in
collection efficiency, reducing unnecessary trips by 38% and
operational costs by 24%. The system's modular design ensures
scalability for city-wide deployment while maintaining low power
consumption through optimized embedded programming
techniques. Results indicate substantial potential for transforming
conventional waste management practices through intelligent
automation and real-time data insights, contributing to
sustainable urban development goals.

Keywords: Internet of Things (IoT), waste management, smart
cities, autonomous segregation, real-time monitoring, embedded
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1. Introduction

A. Background

Rapid urbanization has transformed global population
distribution, with over 68% of the world's population expected
to reside in urban areas by 2050, creating unprecedented
challenges for municipal waste management systems [1]. This
demographic shift has resulted in exponential growth of waste
generation, with metropolitan areas producing approximately
2.01 billion tonnes of municipal solid waste annually, a figure
projected to increase by 70% by 2050 [2]. The environmental
consequences of improper waste segregation extend beyond
local pollution, contributing to greenhouse gas emissions, soil
contamination, and marine plastic pollution that affects global
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ecosystems [3]. Traditional waste management approaches,
characterized by scheduled collection and centralized
processing, have proven inadequate for addressing the
complexity and scale of modern urban waste streams. The
integration of Internet of Things (IoT) technologies and
automation presents  transformative opportunities for
enhancing waste management efficiency through real-time
monitoring, predictive analytics, and autonomous processing
capabilities that can fundamentally reshape how cities manage
their waste infrastructure [4].

B. Problem Statement and Motivation

Manual waste segregation processes in current systems
demonstrate significant inefficiencies, with sorting accuracy
rates typically below 70%, while exposing workers to
hazardous materials and creating substantial health risks
through direct contact with contaminated waste streams [5].

|0T-Enabled Autonmous Waste Segretation for Smart Cities

Fig. 1. Overview of proposed System

Traditional waste collection systems operate without real-
time monitoring capabilities, resulting in collection trucks
visiting containers that are only partially filled while
simultaneously missing bins that have reached capacity, leading
to operational inefficiencies and customer service issues [6].

Suboptimal waste collection routes based on predetermined
schedules rather than actual demand patterns contribute to
unnecessary fuel consumption, increased vehicle emissions,
and inefficient resource allocation that can waste up to 40% of
operational capacity [7].

C. Objectives and Contributions

Design and implement an autonomous waste segregation



Kadyan et al.

system utilizing advanced IoT sensor technologies, computer
vision algorithms, and mechanical actuators to achieve accurate
real-time classification and sorting of waste materials into
biodegradable, non-biodegradable, and hazardous categories
[8].

Develop a  comprehensive real-time  monitoring
infrastructure incorporating ultrasonic sensors, load cells, and
wireless communication protocols to provide continuous waste
level tracking with intelligent alert generation capabilities for
optimized collection scheduling [9].

Create an integrated centralized dashboard platform that
aggregates multi-source sensor data, implements predictive
analytics algorithms, and provides municipal authorities with
actionable insights for data-driven waste management decision-
making and policy formulation [10].

2. Literature Review

A. Traditional Waste Management Systems

For decades, the conventional waste collection and
segregation methods have remained mostly the same, being
mainly dependent on manpower and scheduled collection
routes, which are not flexible to the actual waste generation
patterns of the area [6]. These traditional methods usually
involve the workers at the source or processing facilities
manually sorting the waste materials, which leads to the risk of
diseases and low efficiency from human error and fatigue.
Manual sorting has its problems, the most important of which
are the low accuracy of sorting, high labor costs, and the
inability to determine the operator standards that are not
consistent and they are different in the locations of the facilities.
The scheduled collection systems that are followed do not
include the time and different routes at which containers are
picked up causing the frequent transport of the containers that
are not yet filled and the simultaneously skipped containers that
are already full earlier than expected [7]. Aside from
environmental concerns, the financial damage caused by the
currently used methods is substantial, as the municipalities
allocate 60-70% of their total waste management budgets for
the collection activities only. The environmental costs with the
respect to the traditional systems are the increased fuel
consumption because of the bad routing, the more greenhouse
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gas emissions as a result of more frequent unnecessary trips,
and the reduced recycling rate from the initial poor quality of
segregation [8]. These systemic inefficiencies have generated a
critical opportunity for innovations that target both the
environmental foot print and the limitations in urban waste
management operations.

B. IoT-Based Smart Waste Management Solutions

Sensors that can detect the fill levels of a waste bin and also
classify the waste type have been developed by the profound
research done in the field of sensor technologies like ultrasonic
sensors that can accurately measure the fill-level and weight
sensors that provide additional verification mechanisms for
waste characterization [9]. Several waste management
applications delight in various wireless communication
protocols which are internet protocols adapted specifically for
the applications, including LoRaWAN for long distance
wireless communication, Zigbee for mesh networks, and
cellular technologies for data transmission from far areas
without a problem. These communication methods are required
to save the energy power while providing reliable signals for
data transmission, which is especially in the cases when there
are battery-operated deployments. The monitoring and
inspection of clouds along with the application of data analytics
on them is a very important resource for the processing of
sensor data that are in large quantities, something that is only
possible through the provision of predictive analytics and
optimization algorithms that are notably responsible for the
increase in collection efficiency. The integration of machine
learning algorithms within these platforms allows for pattern
recognition in the waste generation behaviors, which are, in
turn, helpful for better forecasting of the resources and planning
of the waste management program.

C. Automated Waste Segregation Technologies

Seeing through a computer and machine learning techniques
in waste classification have found a place and shown promising
results in the controlled laboratory environments, with the
positive impact of convolutional neural networks which have
already achieved classification accuracies of above 85% for
common waste categories when trained on extensive datasets
[10]. Although, in reality, one may encounter difficulties with

Table 1
Literature review: Smart waste management systems
Ref Study Title Authors Study Key Findings
no. Year
[1] Smart waste management systems for Kumar, S., et 2020 Analyzed existing smart waste systems, identifying 65% efficiency
sustainable cities: A comprehensive review al. improvement potential through IoT integration and real-time monitoring
capabilities.
[5] Deep learning approaches for automated Nakamura, T., 2021 Developed CNN-based waste classification achieving 87% accuracy on
waste classification using computer vision et al. mixed waste datasets, demonstrating feasibility of automated sorting
systems.
9] Edge computing framework for real-time Kim, H., et al. 2022 Implemented edge computing solution reducing cloud dependency by
waste segregation using embedded systems 78% while maintaining real-time processing capabilities for waste
classification.
[13] Predictive analytics for optimized waste Petrov,I.,etal. 2023 Applied machine learning algorithms for route optimization, achieving
collection routing in smart cities 24% reduction in collection time and 31% decrease in fuel consumption.
[17] Al-driven route optimization algorithms for ~ Taylor, B., et 2024 Introduced hybrid optimization algorithms combining genetic algorithms
municipal waste collection systems al. with reinforcement learning, improving collection efficiency by 35%.
[21] Economic impact analysis of loT-enabled Rosenberg, A., 2025 Conducted comprehensive cost-benefit analysis showing average ROI of

Waste management systems in urban et al.

environments

18 months and 42% operational cost reduction for IoT-based systems.
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different lighting conditions, objects being obfuscated, and
contamination that all have a significant impact on the
performance of the classification. Mechanical sorting and
actuator systems which are the killing components to
actualizing sorting are two aspects that introduce problems like
timing coordination and reliability of operation under different
conditions. Servo motor-driven compartment systems,
pneumatic sorting mechanisms, and conveyor belt-based
separation technologies have been the contemporary research
topics that each of them has brought unique challenges and
benefits including categorization, efficiency, and upkeep. The
problems with integration are introduced by the need for
sensing, processing, and actuation to work together, while the
tests to gauge performance have to contemplate not only
classifier performance but also the system's reliability, available
energy budget, and the duration of operations in real
deployment tests.

3. Methodology

A. System Overview and Design Framework

loT-Enabled Smart Waste Management System Architecture

Sensor Layer (Physical)

e © & &
v

Communication Layer (Network)

LoBswiAN wMarT
Long Rangs: Mesaging

Fig. 2. System architecture of the system

This proposed system is a multi-tier architecture built on
three layers: sensor layer for physical data acquisition,
communication layer for data transmission, and application
layer for processing and visualization [11]. This structure is
hierarchical and provides modularity, scalability, and efficiency
in terms of reliability across different scenarios of deployment.
The hardware component selection strategy is based on
economic and environmental priorities through commercial
sensors and custom mechanical actuators [12]. The software
architecture is distributed where edge processing decreases
cloud computational load while keeping real-time responses.

The data flow strategy uses asynchronous communication
protocols which guarantee the effortless information exchange
between the system component without any performance loss
[13].

B. Hardware Implementation

The main unit of processing makes use of ESP32-WROOM-
32 microcontroller which offers dual-core processing
capabilities and integrated Wi-Fi/Bluetooth connectivity for
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IoT applications [14]. Multi-sensor integration consists of HC-
SR04 ultrasonic sensors for accurate distance reading, HX711
load cell amplifiers connected to strain gauge sensors for proper
weight detection, and ESP32-CAM modules fed with computer
vision codes for the optical waste classification. Sensor fusion
is an approach that combines multiple sensor modalities to
achieve a higher classification accuracy than what individual
sensors are capable of [15]. Automated segregation
mechanisms are designed with motor-driven compartment
doors in serial with the classification logic, thus allowing waste
to be disposed of in the right bins. The power management
circuit is embedded with solar charge options and built-in
lithium-ion batteries so that it can run off-grid and deploy
outdoors sustainably [16].

C. Software Development and Algorithms

Embedded programming through FreeRTOSmulti-tasking
architecture enables the acquisition of sensor data, local
processing, and communication tasks to be performed
concurrently without causing conflicts in the system [17]. The
classification algorithm is realized using the hybrid method
which integrates traditional feature extraction techniques along
with lightweight convolutional neural networks that have been
optimized for deployment on microcontrollers. Training
datasets encompass diverse waste categories with data
augmentation techniques improving model robustness against
environmental variations. Real-time data transmission
protocols utilize MQTT messaging over LoORaWAN networks
for long-range communication, while local Wi-Fi connectivity
provides backup communication channels [18]. Cloud
integration employs RESTful APIs facilitating seamless data
synchronization with centralized monitoring systems, enabling
remote system management and predictive analytics
capabilities.

4. Experimental Results and Evaluation

A. System Implementation and Testing Setup

1) Prototype Development and Component Integration

The complete prototype was developed using ESP32-
WROOM-32 microcontroller as the central processing unit,
integrated with HC-SR04 ultrasonic sensors for distance
measurement, HX711 load cell amplifier with 10kg capacity
sensors for weight detection, and ESP32-CAM module for
optical waste classification. The mechanical segregation system
employed three servo motors (SG90) controlling automated
compartment doors. Power management was achieved through
a 12V 5Ah lithium-ion battery with solar charging capability,
ensuring 72-hour continuous operation without external power
supply.
2) Testing Environment Configuration and Data Collection
Methodology

Testing was conducted across three distinct environments:
controlled laboratory conditions, outdoor campus deployment,
and real municipal waste collection points in collaboration with
local authorities. The data collection methodology involved
1,200 waste items across 15 different categories, with each item
tested 5 times to ensure statistical significance. Environmental
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parameters including temperature (15°C to 45°C), humidity
(30% to 85%), and lighting conditions (200 to 50,000 lux) were
systematically varied to evaluate system robustness.
3) Performance Metrics Definition

Key performance indicators were established as:
classification accuracy (percentage of correctly identified waste
types), response time (duration from item placement to
segregation completion), system reliability (uptime percentage
over 30-day continuous operation), communication latency
(delay between sensor data generation and cloud update), and
power consumption efficiency (operational hours per battery
cycle).

B. Waste Classification Performance Evaluation

1) Classification Accuracy for Different Waste Types

The system achieved overall classification accuracy of
94.3% across all waste categories. Specifically, biodegradable
waste classification reached 96.7% accuracy (paper: 98.2%,
food waste: 95.1%), non-biodegradable materials achieved
92.8% accuracy (plastic bottles: 94.5%, metal cans: 91.2%),
and hazardous waste detection demonstrated 91.4% accuracy
(batteries: 89.8%, electronic components: 93.1%). These results
represent a 28% improvement over traditional manual sorting
accuracy of 66.3% observed in baseline studies.
2) Sensor Fusion Results and Multi-Modal Classification
Improvement

Average Classification Accuracy by Waste Category Detailed Classification Arcuracy by Waste Typs

- -

i

Specific Waste Types

Fig. 3. Comparative analysis of the propped system
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Implementation of sensor fusion algorithms combining
weight, size, and optical data resulted in 12% accuracy
improvement over single-sensor classification approaches. The
weighted decision fusion model assigned coefficients of 0.4 for
optical recognition, 0.35 for weight analysis, and 0.25 for
dimensional measurements. This multi-modal approach
reduced false positive rates from 8.7% to 4.2% and false
negative rates from 6.9% to 3.8%.
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Fig. 3. Comparative analysis of the propped system

3) Comparison with Manual Segregation Baseline and Error
Analysis

Comparative analysis revealed that the proposed system
outperformed manual segregation by 28% in accuracy and
achieved 340% faster processing time (average 3.2 seconds per
item versus 10.9 seconds manually). Error analysis identified
that 67% of misclassifications occurred due to heavily
contaminated items, 22% from unusual item shapes, and 11%
from lighting conditions below 500 lux.

C. Real-Time Monitoring System Validation

1) Waste Level Detection Accuracy and Alert Generation
Performance

Ultrasonic sensor-based fill level detection achieved 97.8%
accuracy with £2cm precision across various waste types. The
three-tier alert system (70% yellow warning, 85% orange alert,
95% red critical) demonstrated 99.2% reliability in alert
generation. Average response time for critical alerts was 18
seconds from detection to municipal dashboard notification.
2) Communication Latency and Data Transmission Reliability

LoRaWAN communication protocol achieved average
transmission latency of 1.7 seconds with 99.6% packet delivery
success rate over 2.5km range. Wi-Fi backup connectivity
maintained 98.9% uptime during primary network failures.
Data synchronization between edge devices and cloud servers
demonstrated 15ms average delay with 99.8% data integrity.
3) Dashboard Functionality and User Interface Evaluation

The centralized web dashboard processed real-time data from
25 simultaneous bin connections with <200ms response time.
Municipal operators reported 89% satisfaction with interface
usability, highlighting real-time mapping visualization and
predictive analytics features. Route optimization algorithms
generated 23% more efficient collection paths, reducing
average collection time from 4.2 hours to 3.2 hours per route
cycle.

Table 2
Comparative analysis of smart waste management systems

Performance Aspect SmartBin by Ecube Labs  BigBelly Solar Compactor _ Proposed IoT System
Classification Accuracy (%) 78.40% 82.10% 94.30%
Power Efficiency (%) 65.20% 71.80% 89.60%
Cost Reduction 24.10% 31.70% 43.00%
Route Optimization Improvement  18.50% 22.30% 31.00%
System Reliability (%) 91.30% 94.70% 99.20%
Data Transmission Success Rate ~ 96.10% 97.40% 99.60%

Basic level sensing
Not available
GSM/3G

External panel

Real-time Monitoring
Autonomous Segregation
Communication Protocol
Solar Integration

Multi-para meter comprehensive
Tri-category automated sorting
LoRaWAN + Wi-Fi dual-mode
Integrated with battery backup

Fill-level only
Compaction only
Wi-Fi/Cellular
Built-in solar
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5. System Performance and Smart City Integration

A. Operational Efficiency Analysis

1) Waste Collection Route Optimization Results and Fuel
Savings

The implemented Dijkstra-based dynamic routing algorithm
integrated with real-time bin fill-level data achieved significant
operational improvements. Analysis of 180-day deployment
across 15 collection routes demonstrated 31% reduction in total
travel distance (average route distance decreased from 47.3km
to 32.6km). This optimization resulted in 29% fuel
consumption reduction, translating to 1,847 liters diesel savings
annually per collection vehicle. GPS tracking data revealed
42% reduction in unnecessary stops at partially filled bins, with
collection efficiency improving from 68% to 91% bin
utilization at pickup.
2) Time Efficiency Improvements in Waste Management
Operations

Automated segregation eliminated manual sorting time at
collection points, reducing average collection time per bin from
8.3 minutes to 3.7 minutes (55% improvement). Overall daily
collection cycle completion improved by 34%, allowing
municipalities to increase service coverage from 12 to 16 zones
per day with existing fleet capacity. Pre-segregated waste at
source reduced processing time at disposal facilities by 67%,
from 45 minutes per truck load to 15 minutes.
3) Cost-Benefit Analysis of Automated vs. Manual Systems

Comprehensive economic analysis over 5-year deployment
period revealed total cost savings of $127,400 per 100-bin
installation. Initial deployment cost of $89,200 was offset
within 18 months through operational savings. Annual
operational cost reduction of 43% was achieved ($34,800 vs.
$61,200 traditional system) primarily through reduced labor
requirements (3 workers per shift vs. 7 traditional), decreased
fuel consumption, and optimized maintenance schedules.

B. Scalability and Deployment Considerations

1) Multi-bin Network Integration and Centralized
Management

LoRaWAN mesh network architecture successfully managed
127 connected bins across 8.5km? urban area with single
gateway. Network scalability testing confirmed capacity for
500+ bins per gateway with maintained data integrity of 99.4%.
Centralized MQTT broker handled 15,620 messages per hour
with average processing latency of 23ms. Auto-discovery
protocols enabled plug-and-play deployment, reducing
installation time from 4 hours to 47 minutes per bin.
2) Power Consumption Analysis and Battery Life
Optimization

Advanced power management incorporating sleep modes
and duty cycling achieved 67% power consumption reduction
compared to continuous operation. Average power
consumption of 2.3W enabled 96-hour autonomous operation
on single battery charge. Solar panel integration (20W
monocrystalline) provided energy self-sufficiency with 15%
surplus generation during peak sunlight hours. Battery
degradation analysis showed 8% capacity loss after 2,000
charge cycles.
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Fig. 4. Per%ormance analysis of the proposed system

3) Maintenance Requirements and System Reliability
Assessment

Predictive maintenance algorithms reduced unscheduled
downtime by 76%, with mean time between failures (MTBF)
of 2,847 hours. Remote diagnostic capabilities identified 89%
of potential issues before system failure, enabling proactive
maintenance scheduling. Component reliability assessment
showed 99.2% uptime across 180-day continuous operation
period.

C. Smart City Ecosystem Integration

1) Integration with Existing Municipal Infrastructure

RESTful API integration enabled seamless connectivity with
municipal Enterprise Resource Planning (ERP) systems. Data
interoperability was achieved through standardized JSON
formats, supporting integration with traffic management (34%
correlation between waste generation and pedestrian density)
and utility systems. Legacy system compatibility was
maintained through protocol translation middleware.
2) Data Analytics Insights for Policy-Making and Urban
Planning

Machine learning analytics identified waste generation
patterns with 87% prediction accuracy for weekly volumes.
Temporal analysis revealed 23% variation in waste composition
during seasonal changes, enabling optimized recycling policies.
Geospatial analysis correlated waste generation with
demographic data, supporting evidence-based urban planning
decisions and resource allocation strategies.

ML-Based Waste Generation Prediction
g (87% Accuracy Achievement)
1400 4 - Actual W
- ML Predu
B7% Pres

eneration (kg)

Waste G

Week Number

Fig. 5. Impact analysis of the propped system

3) Environmental Impact Assessment and Sustainability
Metrics

Lifecycle assessment demonstrated 38% reduction in carbon
footprint compared to traditional systems (2.1 vs. 3.4 kg CO2
equivalent per collection cycle).

Improved segregation accuracy increased recycling
efficiency by 41%, diverting 2,340kg additional recyclable
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materials monthly from landfills. Air quality monitoring
integration showed 16% reduction in particulate matter
emissions due to optimized collection routes reducing vehicle
idle time.

6. Discussion and Conclusion

A. Key Findings and Implications

The developed system achieved remarkable technical
milestones with 94.3% classification accuracy and 31%
improvement in collection route efficiency, demonstrating
superior performance compared to existing commercial
solutions. Municipal waste management authorities benefit
from 43% operational cost reduction and 55% time efficiency
improvements, enabling expanded service coverage with
existing resources. The environmental impact encompasses
38% carbon footprint reduction and 41% increased recycling
efficiency, contributing significantly to urban sustainability
goals while promoting social acceptance of automated waste
management technologies [21].

B. Limitations and Future Work

Current hardware limitations include sensor performance
degradation under extreme weather conditions and
classification challenges with heavily contaminated materials.
Environmental factors such as temperature variations and
lighting conditions occasionally impact system reliability.
Future enhancements will incorporate advanced deep learning
algorithms for improved classification robustness and seamless
integration with broader smart city infrastructure including
traffic management and utility systems.

C. Conclusion

This research contributes to a comprehensive loT-enabled
autonomous waste segregation system that addresses critical
urban waste management challenges through innovative sensor
fusion and machine learning approaches. The system's practical
applications extend beyond individual bin management to city-
wide optimization of waste collection operations,
demonstrating significant potential for transforming municipal
waste management practices.

The demonstrated technical achievements, economic
benefits, and environmental improvements establish this work
as a valuable contribution to smart city technology
development, paving the way for sustainable urban waste
management solutions [22].
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