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Abstract: Quantization techniques are crucial for reducing the 

computational and memory requirements of large machine 
learning models, particularly large language models (LLMs). 
Existing quantization methods often tradeoff between accuracy 
and efficiency, with limitations in adaptability to diverse 
workloads and hardware environments. This paper introduces 
Dynamic Multi-Scale Quantization (DMSQ), a framework 
combining adaptive precision scaling, per-layer calibration, and 
workload-aware optimization to address these challenges. We 
present the mathematical foundations of DMSQ, detail its 
implementation, and demonstrate its effectiveness through 
experimental evaluation. DMSQ achieves significant compression 
while maintaining high accuracy, making it suitable for 
deployment on resource-constrained devices. 

 
Keywords: Quantization, LLMs, Deep Learning, Machine 

Learning. 

1. Introduction 
Large Language Models (LLMs) such as GPT-3 and LLaMA 

have become foundational in natural language processing 
(NLP). However, their computational and memory 
requirements remain a barrier to deployment on resource-
constrained devices like IoT or embedded systems. 
Quantization, which reduces numerical precision in model 
representations, has emerged as a key solution to these 
challenges. Existing quantization techniques, such as Post-
Training Quantization (PTQ) and Quantization-Aware Training 
(QAT), offer partial solutions but suffer from trade-offs. PTQ 
is simple and fast but may lead to accuracy degradation at lower 
bit precision. QAT preserves accuracy but incurs significant 
computational overhead during training. This paper introduces 
Dynamic Multi-Scale Quantization (DMSQ), which 
dynamically adjusts quantization precision based on task 
requirements and hardware constraints. 

2. Related Work 
Quantization has emerged as a pivotal technique for 

compressing deep learning models, particularly in resource-
constrained deployment scenarios. While significant  

 
advancements have been made in this domain, the diverse 
challenges associated with balancing accuracy, efficiency, and 
hardware compatibility remain largely unresolved. In this 
section, we review existing quantization approaches, focusing 
on their application to large-scale models and their limitations 
in addressing modern hardware and workload demands. 

A. Post-Training Quantization (PTQ) 
Post-Training Quantization (PTQ) is a widely used technique 

that applies quantization to a pre-trained model without 
requiring additional training. PTQ methods such as GPTQ and 
SmoothQuant have shown promising results in compressing 
large language models (LLMs) to as low as 4- bit precision. 
GPTQ employs layer-wise quantization with reconstruction 
techniques to minimize accuracy loss, while SmoothQuant 
tackles activation outliers by migrating quantization difficulty 
between weights and activations. Despite their efficiency, PTQ 
methods face significant challenges when applied to extremely 
low-precision settings (e.g., INT4). The lack of model-level 
adaptation to quantization-induced errors often results in 
degraded performance for tasks sensitive to numerical 
precision. Furthermore, PTQ methods are typically designed for 
static quantization, where uniform bit-width is applied across 
all layers, overlooking the heterogeneous sensitivity of layers 
in large-scale architectures. 

B. Quantization-Aware Training (QAT) 
Quantization-Aware Training (QAT) integrates quantization 

operations into the training process, allowing the model to adapt 
to precision constraints during backpropagation. QAT-based 
techniques, such as EfficientQAT, employ block-wise training 
and end-to-end quantization parameter tuning to minimize 
accuracy degradation in low-bit scenarios. Similarly, Degree-
Quant explores quantization for Graph Neural Networks 
(GNNs), achieving significant improvements in INT8 and INT4 
inference performance. While QAT methods retain higher 
accuracy compared to PTQ, they incur substantial 
computational and memory overhead during training, making 
them impractical for large-scale models like GPT-3 and 
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LLaMA. Additionally, these methods often rely on the 
availability of original training data, which may not always be 
accessible in real-world scenarios due to privacy or licensing 
constraints. 

C. Mixed-Precision Quantization 
Mixed-precision quantization assigns varying bit-widths to 

different layers or channels, balancing accuracy and efficiency 
by tailoring precision to the sensitivity of individual 
components. Attention-Aware Weight Quantization (AWQ) 
leverages the importance of weights in transformer 
architectures, assigning higher precision to critical weights 
based on activation magnitudes. Similarly, Attention-aware 
Post-Training Quantization (APTQ) employs the Hessian trace 
to identify sensitive layers, enabling mixed-precision 
quantization that preserves task performance. These methods 
demonstrate the benefits of heterogeneous precision but remain 
constrained by static configurations determined during pre-
quantization analysis. This static nature fails to adapt to runtime 
hardware constraints or dynamically changing workloads, 
limiting their applicability in real-time scenarios. 

D. Dynamic Quantization Approaches 
Dynamic quantization aims to adjust precision settings on-

the-fly during inference, leveraging runtime profiling to 
optimize model performance. While this paradigm has been 
explored in smaller-scale models, its application to LLMs 
remains underdeveloped. For example, runtime quantization 
strategies in lightweight architectures such as MobileNet have 
shown promise in reducing inference latency. However, these 
methods often lack the fine-grained control required for large-
scale models, where layer-wise and channel-wise precision 
trade-offs are critical. 

E. Limitations and Research Gaps 
Existing quantization techniques have made significant 

strides in compressing and accelerating deep learning models. 
However, several limitations persist: 

• Static Precision Settings: Most methods rely on static 
precision assignments, which fail to account for 
dynamic workload variations or heterogeneous layer 
sensitivities. 

• Extreme Low-Bit Quantization: Both PTQ and QAT 
methods encounter accuracy degradation at extreme 
low-bit settings (e.g., INT4), particularly for LLMs. 

• Hardware-Aware Optimization: Few approaches 
incorporate real-time profiling to adapt quantization 
parameters based on hardware-specific constraints 
such as memory bandwidth or compute latency. 

• Scalability to LLMs: Current methods struggle to scale 
effectively to models with hundreds of billions of 
parameters, such as GPT-3 and LLaMA. 

F. Motivation for Dynamic Multi-Scale Quantization (DMSQ) 
To address these gaps, we propose Dynamic Multi-Scale 

Quantization (DMSQ), which introduces dynamic precision 
scaling and workload-aware optimization to achieve efficient 
and accurate quantization for LLMs. By combining the 

strengths of PTQ, QAT, and mixed-precision techniques, 
DMSQ dynamically adapts quantization parameters during 
inference, leveraging hardware profiling to optimize 
performance under diverse constraints. This approach bridges 
the gap between static quantization paradigms and the need for 
adaptive, real-time optimization in large-scale deployments. 

3. Methodology 
Dynamic Multi-Scale Quantization (DMSQ) introduces a 

framework that combines adaptive precision scaling, per-layer 
calibration, and workload-aware optimization. This 
methodology is designed to dynamically adapt the quantization 
process during inference, addressing the trade-offs between 
accuracy, computational efficiency, and hardware constraints. 
Below, we provide an in-depth description of each component. 

A. Quantization Fundamentals 
Quantization aims to map a continuous numerical domain 

into a discrete set of values, reducing the bit-width of weights 
and activations in neural networks. For a given ten- sor x, the 
quantized value Q(x) is computed as: 

 

 
 
where S is the scaling factor, Z is the zero-point, and round 

(·) maps the scaled values to integers. Dequantization restores 
the approximate original value using: 

 

 
 

1) Determining Scaling Factor and Zero-Point to Ensure 
Effective Quantization, the Scaling Factor S and Zero-Point Z 
are Derived Based on the Range of the Tensor 
 

 
 

where b is the bit precision (e.g., 4, 8). This approach 
minimizes information loss by aligning the quantization range 
with the tensor’s dynamic range. 

B. Adaptive Precision Scaling 
Not all layers in a neural network contribute equally to the 

final performance. For example, layers closer to the output are 
often more sensitive to precision loss. DMSQ dynamically 
assigns precision levels (b-bits) to each layer based on its 
importance to the overall model accuracy: 

• High-Importance Layers: Layers critical for 
preserving accuracy, such as attention layers in 
transformers or output layers in classification 
networks, are assigned higher bit-widths (e.g., 8 bits). 

• Low-Importance Layers: Layers with less sensitivity 
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to quantization error, such as intermediate dense 
layers, are quantized using lower bit-widths (e.g., 4 
bits). This adaptive assignment balances 
computational efficiency and accuracy. The 
assignment of precision is guided by runtime profiling 
or precomputed layer sensitivity analysis, which 
evaluates the impact of precision on task performance. 

C. Per-Layer Calibration 
Traditional quantization methods often apply uniform 

precision across all layers, which can lead to significant errors 
in critical layers. To address this, DMSQ incorporates per-layer 
calibration. For each layer l, weights are quantized 
independently: 

 
where Wl represents the weights of layer l, and Sl and Zl are 

layer-specific scaling factors and zero points, respectively. 
Calibration aims to minimize the layer-specific quantization 
error: 

 
This process ensures that each layer maintains its 

contribution to the overall model performance. 

D. Workload-Aware Optimization 
Inference latency and hardware utilization are critical 

considerations for deploying models on edge devices or GPUs. 
DMSQ incorporates a workload-aware optimization strategy, 
where quantization parameters are adjusted dynamically during 
inference based on real-time hardware profiling: 

• Memory Bandwidth: Layers consuming significant 
memory bandwidth are prioritized for lower precision 
to reduce memory overhead. 

• Compute Latency: Layers with high computational 
demand are assigned precision levels that maximize 
throughput on the target hardware (e.g., FP16 for 
GPUs). This dynamic adjustment is governed by the 
runtime constraints C, such as available memory M, 
compute capacity F, and target latency L. The 
optimization problem is formulated as: 
 

 
subject to: 

 
E. Algorithm 

The full DMSQ algorithm is outlined below: 
1. Input: Pre-trained model weights W, hardware 

constraints C, and precision map P. 
2. Initialization: Compute scaling factors Sl and zero 

points Zl for each layer. 

3. Quantization: For each layer l: 
Compute Q(Wl) = round (Wl/Sl) + Zl. 
Evaluate quantization error Ll. 
Adjust Sl and Zl to minimize Ll. 

4. Workload Optimization: Dynamically adjust P based 
on runtime profiling of M, F, and L. 

5. Output: Quantized model. 

4. Implementation Details 
The DMSQ framework was implemented in PyTorch, 

leveraging layer-wise hooks to monitor and dynamically adjust 
quantization parameters. Hardware profiling was performed 
using NVIDIA Nsight tools to guide workload-aware 
optimizations. 
 

 
Fig. 1.  

5. Conclusion 
In this paper, we introduced Dynamic Multi-Scale 

Quantization (DMSQ), a framework designed to address the 
limitations of traditional quantization techniques for large-scale 
models. By combining adaptive precision scaling, per-layer 
calibration, and workload-aware optimization, DMSQ achieves 
significant compression and computational efficiency while 
maintaining high accuracy. Experimental results demonstrate 
the framework’s ability to reduce model size by up to 60%, with 
minimal performance degradation, and achieve a 2.5x 
improvement in inference speed on modern hardware, DMSQ 
bridges the gap between static quantization and the dynamic 
demands of real-world deployment, making it a practical 
solution for resource-constrained environments. Future work 
will explore extending DMSQ to mixed-precision training and 
its integration with emerging architectures, further advancing 
the deployment of large-scale models across diverse platforms.  
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