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Abstract: In this project, we propose a system for text-to-music 

generation, using AI techniques such as Natural Language 
Processing (NLP) and deep learning models. Our goal is to 
empower users to create music compositions using textual 
descriptions. The work is divided into three phases: literature 
survey, dataset preprocessing, and model implementation. This 
system makes music generation more accessible, even to users with 
no musical expertise, leveraging models such as LSTM, Bi-LSTM, 
and pre- trained models like MusicGen.  
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1. Introduction 
In the Text to Music Generation project, we leverage 

Artificial Intelligence to revolutionize music production. Using 
advanced techniques such as NLP and Generative AI, our goal 
is to enable users to generate personalized music compositions 
based on textual input. This system bridges the gap between 
user input and AI-generated music, democratizing music pro- 
duction for users of all backgrounds.  

2. Problem Definition 
Creating high-quality music is a challenge for both be ginners 

and experienced musicians. Mastery over melodies, rhythm, 
and harmonics requires significant time and experience. Our 
project aims to bridge the gap between creativity and usability, 
inspiring innovation in tools and techniques for music 
composition. All musicians seek efficient methods to unleash 
creativity while meeting artistic expectations and deadlines.  

A. Scope 
Design a parameter-based music generation system, using AI 

techniques. Designing a user-friendly interface for seamless 
interaction. This involves sophisticated NLP models used to 
obtain relevant features from user-provided text inputs. It 
combines Generative Adversarial Networks (GANs), 
Variational Autoencoders (VAEs), and diffusion models for 
music generation in alignment with textual inputs. Optimization 
of the training of our model, its performance and scalability to 
respond in real time and have high quality music.  

B. Objectives 
Its overall primary goals are to democratize the creation of 

music, to use AI-based instruments in the process of sound  

 
engineering and composition, and thus bring people closer to 
building easy ways to create composition.  All the traditional 
barriers separating humans and art in the sense that traditional 
creativity often requires a minimum or medium level of 
understanding from various aspects of what that form of art 
implies make up what this initiative seems to accomplish.  

3. Literature Survey 
The first direction of research is in the use of advanced deep 

learning models for AI-based music generation.  Shanmukh 
Krishna (2023) explored the application of Long Short-Term 
Memory (LSTM) and Transformer models for music 
generation. They highlighted the gap in the field related to the 
lack of standardized evaluation metrics for assessing the quality 
of generated music [1]. In 2023, Ning Zhang et al. conducted 
research on AI techniques for pop music creation, identifying 
challenges in maintaining coherence during conditioned 
generation and aligning the generated music with specific 
requirements [2]. Shansong Liu et al. (2023) introduced 
MUSIC KNOWING LLAMA, a system for text- to-music 
generation using question answering and captioning.  Their 
research encountered difficulties in capturing emotional 
elements, tempo variations, and genre-specific characteristics 
in the generated music [3]. Similarly, Olga Vechtomova et al. 
(2023) focused on real-time composition with LyricJam Sonic, 
shedding light on the challenges of assessing the quality and 
coherence of AI generated musical compositions in real-time 
scenarios [5]. Chunhui Bao and Qianru Sun (2022) discussed 
the generation of music with emotions, highlighting the need to 
explore the diversity in generated music and addressing biases 
in the generation process [6].  

4. Design and Methodology  

A. Block Diagram 

 
Fig. 1.  Block diagram 

B. System Overview 
The system is composed of two main modules: text 

processing and music generation. In the text processing module, 
we use NLP techniques like tokenization and sentiment analysis 
to extract features such as mood and genre from the input. The 
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music generation module utilizes models like LSTM, Bi- 
LSTM, and MusicGen to convert the textual features into music 
sequences.  

5. Implementation 

A. Data Collection 
Data collection is the most critical step and the one that 

usually is most difficult in any deep learning project. A model 
makes good predictions only when it has a well labeled dataset, 
which is big enough. In our case, we had two main choices: 
create our own dataset or use some existing publicly available 
datasets. For music generation, the dataset has to meet some 
criteria that include being large enough in order to capture 
diverse and complex musical patterns, have a wide range of 
styles, genres, instruments, and compositions, and be accessible 
in standard formats such as MID, WAV, MP3, or symbolic 
representations as MusicXML or mel-spectrograms. 
Furthermore, the dataset has to consist of annotations or 
metadata, which will guide the generated music to comply with 
specified criteria.  

That means creating our own dataset seemed highly imprac 
tical, as creating both an audio and language annotation proved 
resource-intensive. The actual creation of the annotations from 
a model was feasible to some extent, but to get started with a 
completely custom dataset would require significant amounts 
of resources. Instead, we decided to rely on datasets that are 
available, a large number of which comprise music files and 
their accompanying captions or annotations. These among 
many will be one of the more suitable for our project-
MusicCaps (Google),  

MagnaTagATune (University of London), MU-LLaMA, 
Music QA (MU-LLaMA) or Song Describer Dataset. So here 
go very important datasets based on robust background for 
further music model generations.  

The dataset for this project consists of two main types of data: 
textual data, including captions and aspect lists, and musical 
data, comprising audio samples. Both of these types were 
preprocessed with specialized processing to prepare them for 
the model. We focused on two major columns for preprocessing 
textual data: “Captions,” which hold descriptive multi-sentence 
text regarding the music, and “Aspect List,” which specifies 
specific aspects of the Different NLP techniques were used, 
such as tokenization, stemming, lemmatization, TF-IDF, and 
Word2Vec, to refine the text. Then, the “caption” and “aspect 
list” columns were combined into a new column called 
“augmented caption,” which was vectorized using Word2Vec 
in preparation for the model.   

B. Models Tried 
We experimented with models such as LSTM and 

Bidirectional LSTM. After downloading 60% of the data, we 
initiated model training.  

C. MusicGen Model 

 
Fig. 2.  MusicGen 

 
MusicGen is a Transformer model developed by Jade Copet 

and colleagues at Meta AI, as introduced in the paper on Simple 
and Controllable Music Generation. The model pro- duces 
high-quality music from any text or audio input, doing so 
through three main stages of operation: text encoding, music 
decoding, and audio decoding. At text encoding, for example, a 
frozen text encoder processes text descriptions to produce such 
hidden-state representations. The hidden states are then used by 
the MusicGen decoder to predict discrete audio tokens, and 
audio decoding provides a waveform from the compressed 
audio model, EnCodec, using these tokens. In contrast to 
hierarchical models, MusicGen makes an allowance for 
efficient token interleaving patterns that greatly speed up 
inference.  

To train MusicGen we utilized the Tesla T4 16GB GPU at 
Colab, initializing a basic environment with the installed pack- 
ages like Transformers, Datasets, and pre configured check- 
points at the Hugging Face Hub. It can be set for two music 
generation modes: greedy and sampling; the sampling is 
enabled by default because usually, it better generates output. 
We were able to run experiments within both unconditional and 
text conditional generation modes. The model generates a 3D 
Torch tensor shaped as (batch size, channels, sequence length), 
which is playable or can be saved to produce a .wav file later.  

D. Backend Implementation  
The backend, built with Django, handles user input, music 

generation, and content delivery. The workflow starts at 
home.html, where users submit prompts via POST requests.  
These prompts are processed and passed to the MusicGen 
model. While music is being generated, the interface displays a 
status update. Once complete, result.html presents the output 
and metadata. Django’s messaging framework and Celery 
enable real-time updates and asynchronous processing. The 
generated music is served via Django’s static files. JavaScript 
manages user interactions like play controls, timer, and 
progress bar.  

E. Implementation for Emotion-Based Generation  
In addition to the standard Text-to-Music generation method, 

our platform introduces an innovative feature: Emotion-to-
Music generation. Utilizing a live video feed, this feature 
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detects the user’s facial expressions and infers their emotional 
state. Based on the detected emotion, the system generates 
relevant AI-based music prompts tailored to match the user’s 
mood.  

 
Fig. 3.  Selection between emotion or text 

 
The project utilizes a strong technology stack for full 

functionality and user interaction. The backend is done through 
Django, which takes charge of API requests and drives the AI- 
based emotion analysis pipeline. Django provides excellent 
communication between the user interface and the emotion 
detection system. For emotion recognition, this project uses 
Python libraries like OpenCV for accurate face detection and 
DeepFace for very precise emotion analysis. These tools work 
in tandem to deliver reliable and efficient emotion detection 
capabilities. 
 

 
Fig. 4.  An image with happy face captured by site 

 

 
Fig. 5.  Prompts from a happy face 

 
The process starts with capturing the user's face via webcam. 

OpenCV’s Haarcascade classifier detects facial features, and 
DeepFace analyzes the Region of Interest (ROI) to determine 
the dominant emotion—such as happiness, sadness, or anger. 
Based on the detected emotion, Django generates a suitable 
music prompt. For example, a smiling user triggers suggestions 
like “Upbeat jazz melodies” or “Energetic EDM tracks” to 

match the positive mood. 

6. Technology Stack  
The programmatic language used in this project is Python, 

and some other libraries are used to add on to its functionality. 
For instance, it uses deep learning techniques from PyTorch; 
handling musical data is enabled using some MIDI processing 
libraries. Finally, it uses RNN-LSTM and BERT (Bidirectional 
Encoder Representations from Transformers) to handle under- 
standing input text. For transforming text to formats readable 
by machines, there exist tools such as Word2Vec, GloVe, and 
FastText. Models of GANs (Generative Adversarial Networks), 
VAEs (Variational Autoencoders), and Diffusion Models are 
used to create music from textual prompts. For the evaluation, 
there are tools like MIDITrail, MIDIculous, and MuseScore 
that are helpful for determining the quality of the music created. 
The pretrained model of MusicGen is used in the task of 
generating music.  

For the frontend, HTML, CSS, and JavaScript are used to 
build up the user interface, while the backend is built using 
Django and Python for handling user requests and processes for 
generating music.  

7. Conclusion 
This paper presented the implementation of parameter-based 

music generation.  
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