
International Journal of Research in Engineering, Science and Management
Volume 8, Issue 8, August 2025
https://www.ijresm.com | ISSN (Online): 2581-5792

*Corresponding author: sanimar.manghera@spit.ac.in

35

Abstract: In this project, we propose a system for text-to-music

generation, using AI techniques such as Natural Language
Processing (NLP) and deep learning models. Our goal is to
empower users to create music compositions using textual
descriptions. The work is divided into three phases: literature
survey, dataset preprocessing, and model implementation. This
system makes music generation more accessible, even to users with
no musical expertise, leveraging models such as LSTM, Bi-LSTM,
and pre- trained models like MusicGen.

Keywords: AI, NLP, music generation, deep learning, LSTM,

Django, MusicGen.

1. Introduction
In the Text to Music Generation project, we leverage

Artificial Intelligence to revolutionize music production. Using
advanced techniques such as NLP and Generative AI, our goal
is to enable users to generate personalized music compositions
based on textual input. This system bridges the gap between
user input and AI-generated music, democratizing music pro-
duction for users of all backgrounds.

2. Problem Definition
Creating high-quality music is a challenge for both be ginners

and experienced musicians. Mastery over melodies, rhythm,
and harmonics requires significant time and experience. Our
project aims to bridge the gap between creativity and usability,
inspiring innovation in tools and techniques for music
composition. All musicians seek efficient methods to unleash
creativity while meeting artistic expectations and deadlines.

A. Scope
Design a parameter-based music generation system, using AI

techniques. Designing a user-friendly interface for seamless
interaction. This involves sophisticated NLP models used to
obtain relevant features from user-provided text inputs. It
combines Generative Adversarial Networks (GANs),
Variational Autoencoders (VAEs), and diffusion models for
music generation in alignment with textual inputs. Optimization
of the training of our model, its performance and scalability to
respond in real time and have high quality music.

B. Objectives
Its overall primary goals are to democratize the creation of

music, to use AI-based instruments in the process of sound

engineering and composition, and thus bring people closer to
building easy ways to create composition. All the traditional
barriers separating humans and art in the sense that traditional
creativity often requires a minimum or medium level of
understanding from various aspects of what that form of art
implies make up what this initiative seems to accomplish.

3. Literature Survey
The first direction of research is in the use of advanced deep

learning models for AI-based music generation. Shanmukh
Krishna (2023) explored the application of Long Short-Term
Memory (LSTM) and Transformer models for music
generation. They highlighted the gap in the field related to the
lack of standardized evaluation metrics for assessing the quality
of generated music [1]. In 2023, Ning Zhang et al. conducted
research on AI techniques for pop music creation, identifying
challenges in maintaining coherence during conditioned
generation and aligning the generated music with specific
requirements [2]. Shansong Liu et al. (2023) introduced
MUSIC KNOWING LLAMA, a system for text- to-music
generation using question answering and captioning. Their
research encountered difficulties in capturing emotional
elements, tempo variations, and genre-specific characteristics
in the generated music [3]. Similarly, Olga Vechtomova et al.
(2023) focused on real-time composition with LyricJam Sonic,
shedding light on the challenges of assessing the quality and
coherence of AI generated musical compositions in real-time
scenarios [5]. Chunhui Bao and Qianru Sun (2022) discussed
the generation of music with emotions, highlighting the need to
explore the diversity in generated music and addressing biases
in the generation process [6].

4. Design and Methodology

A. Block Diagram

Fig. 1. Block diagram

B. System Overview
The system is composed of two main modules: text

processing and music generation. In the text processing module,
we use NLP techniques like tokenization and sentiment analysis
to extract features such as mood and genre from the input. The

Parameter Based Music Generation
Manav Bhanushali1, Aryan Nathani2, Sanimar Manghera3*, Jyoti Ramteke4, Chandrashekhar Gajbhiye5

1,2,3Student, Department of Computer Engineering, Sardar Patel Institute of Technology, Mumbai, India
4,5Professor, Department of Computer Engineering, Sardar Patel Institute of Technology, Mumbai, India

Bhanushali et al. International Journal of Research in Engineering, Science and Management, VOL. 8, NO. 8, AUGUST 2025 36

music generation module utilizes models like LSTM, Bi-
LSTM, and MusicGen to convert the textual features into music
sequences.

5. Implementation

A. Data Collection
Data collection is the most critical step and the one that

usually is most difficult in any deep learning project. A model
makes good predictions only when it has a well labeled dataset,
which is big enough. In our case, we had two main choices:
create our own dataset or use some existing publicly available
datasets. For music generation, the dataset has to meet some
criteria that include being large enough in order to capture
diverse and complex musical patterns, have a wide range of
styles, genres, instruments, and compositions, and be accessible
in standard formats such as MID, WAV, MP3, or symbolic
representations as MusicXML or mel-spectrograms.
Furthermore, the dataset has to consist of annotations or
metadata, which will guide the generated music to comply with
specified criteria.

That means creating our own dataset seemed highly imprac
tical, as creating both an audio and language annotation proved
resource-intensive. The actual creation of the annotations from
a model was feasible to some extent, but to get started with a
completely custom dataset would require significant amounts
of resources. Instead, we decided to rely on datasets that are
available, a large number of which comprise music files and
their accompanying captions or annotations. These among
many will be one of the more suitable for our project-
MusicCaps (Google),

MagnaTagATune (University of London), MU-LLaMA,
Music QA (MU-LLaMA) or Song Describer Dataset. So here
go very important datasets based on robust background for
further music model generations.

The dataset for this project consists of two main types of data:
textual data, including captions and aspect lists, and musical
data, comprising audio samples. Both of these types were
preprocessed with specialized processing to prepare them for
the model. We focused on two major columns for preprocessing
textual data: “Captions,” which hold descriptive multi-sentence
text regarding the music, and “Aspect List,” which specifies
specific aspects of the Different NLP techniques were used,
such as tokenization, stemming, lemmatization, TF-IDF, and
Word2Vec, to refine the text. Then, the “caption” and “aspect
list” columns were combined into a new column called
“augmented caption,” which was vectorized using Word2Vec
in preparation for the model.

B. Models Tried
We experimented with models such as LSTM and

Bidirectional LSTM. After downloading 60% of the data, we
initiated model training.

C. MusicGen Model

Fig. 2. MusicGen

MusicGen is a Transformer model developed by Jade Copet

and colleagues at Meta AI, as introduced in the paper on Simple
and Controllable Music Generation. The model pro- duces
high-quality music from any text or audio input, doing so
through three main stages of operation: text encoding, music
decoding, and audio decoding. At text encoding, for example, a
frozen text encoder processes text descriptions to produce such
hidden-state representations. The hidden states are then used by
the MusicGen decoder to predict discrete audio tokens, and
audio decoding provides a waveform from the compressed
audio model, EnCodec, using these tokens. In contrast to
hierarchical models, MusicGen makes an allowance for
efficient token interleaving patterns that greatly speed up
inference.

To train MusicGen we utilized the Tesla T4 16GB GPU at
Colab, initializing a basic environment with the installed pack-
ages like Transformers, Datasets, and pre configured check-
points at the Hugging Face Hub. It can be set for two music
generation modes: greedy and sampling; the sampling is
enabled by default because usually, it better generates output.
We were able to run experiments within both unconditional and
text conditional generation modes. The model generates a 3D
Torch tensor shaped as (batch size, channels, sequence length),
which is playable or can be saved to produce a .wav file later.

D. Backend Implementation
The backend, built with Django, handles user input, music

generation, and content delivery. The workflow starts at
home.html, where users submit prompts via POST requests.
These prompts are processed and passed to the MusicGen
model. While music is being generated, the interface displays a
status update. Once complete, result.html presents the output
and metadata. Django’s messaging framework and Celery
enable real-time updates and asynchronous processing. The
generated music is served via Django’s static files. JavaScript
manages user interactions like play controls, timer, and
progress bar.

E. Implementation for Emotion-Based Generation
In addition to the standard Text-to-Music generation method,

our platform introduces an innovative feature: Emotion-to-
Music generation. Utilizing a live video feed, this feature

Bhanushali et al. International Journal of Research in Engineering, Science and Management, VOL. 8, NO. 8, AUGUST 2025 37

detects the user’s facial expressions and infers their emotional
state. Based on the detected emotion, the system generates
relevant AI-based music prompts tailored to match the user’s
mood.

Fig. 3. Selection between emotion or text

The project utilizes a strong technology stack for full

functionality and user interaction. The backend is done through
Django, which takes charge of API requests and drives the AI-
based emotion analysis pipeline. Django provides excellent
communication between the user interface and the emotion
detection system. For emotion recognition, this project uses
Python libraries like OpenCV for accurate face detection and
DeepFace for very precise emotion analysis. These tools work
in tandem to deliver reliable and efficient emotion detection
capabilities.

Fig. 4. An image with happy face captured by site

Fig. 5. Prompts from a happy face

The process starts with capturing the user's face via webcam.

OpenCV’s Haarcascade classifier detects facial features, and
DeepFace analyzes the Region of Interest (ROI) to determine
the dominant emotion—such as happiness, sadness, or anger.
Based on the detected emotion, Django generates a suitable
music prompt. For example, a smiling user triggers suggestions
like “Upbeat jazz melodies” or “Energetic EDM tracks” to

match the positive mood.

6. Technology Stack
The programmatic language used in this project is Python,

and some other libraries are used to add on to its functionality.
For instance, it uses deep learning techniques from PyTorch;
handling musical data is enabled using some MIDI processing
libraries. Finally, it uses RNN-LSTM and BERT (Bidirectional
Encoder Representations from Transformers) to handle under-
standing input text. For transforming text to formats readable
by machines, there exist tools such as Word2Vec, GloVe, and
FastText. Models of GANs (Generative Adversarial Networks),
VAEs (Variational Autoencoders), and Diffusion Models are
used to create music from textual prompts. For the evaluation,
there are tools like MIDITrail, MIDIculous, and MuseScore
that are helpful for determining the quality of the music created.
The pretrained model of MusicGen is used in the task of
generating music.

For the frontend, HTML, CSS, and JavaScript are used to
build up the user interface, while the backend is built using
Django and Python for handling user requests and processes for
generating music.

7. Conclusion
This paper presented the implementation of parameter-based

music generation.

Acknowledgement
The authors would like to express their gratitude to Sardar

Patel Institute of Technology for providing the necessary
resources and support for this research. Special thanks to Prof.
Jyoti Ramteke for valuable insights and technical assistance in
the development of this platform.

References
[1] Shanmukh Krishna B, Satya Sai Roopa Sree Chiluvuri, Sai Sri Harshini

Kosuri, Sai Sree Harsha Chimbili, Sai Sree Harsha Chimbili, “The
Application of Long Short-Term Memory and Transformers for Music
Generation,” 2023.

[2] Ning Zhang, Junchi Yan, Jean-Pierre Briot, “Artificial Intelligence
Techniques for Pop Music Creation: A Real Music Production
Perspective,” 2023.

[3] Shansong Liu, Atin Sakkeer Hussain, Chenshuo Sun, Ying Shan, “Music
Knowing LLAMA: Advancing Text-to-Music Generation with Question
Answering and Captioning,” 2023.

[4] Kenta Suzuki, Jinyu Cai, “A Comparative Evaluation on Melody
Generation of Large Language Models,” 2023.

[5] Olga Vechtomova, Gaurav Sahu, “LyricJam Sonic: A Generative System
for Real-Time Composition and Musical Improvisation,” 2023.

[6] Wenzhao Liu, Dechao Meng, “Musical Elements Enhancement and
Image Content Preservation Network for Image to Music Generation,”
2023.

[7] Chunhui Bao, Qianru Sun, “Generating Music with Emotions,” 2022.
[8] Guangwei Li, Xuenan Xu, Lingfeng Dai, Mengyue Wu, Kai Yu, “Diverse

and Vivid Sound Generation from Text Descriptions,” 2023.
[9] Sneha Adhikari, “Automatic Music Generation of Indian Classical Music

Based on Raga,” 2023.

	1. Introduction
	2. Problem Definition
	A. Scope
	B. Objectives

	3. Literature Survey
	4. Design and Methodology
	A. Block Diagram
	B. System Overview

	5. Implementation
	A. Data Collection
	B. Models Tried
	C. MusicGen Model
	D. Backend Implementation
	E. Implementation for Emotion-Based Generation

	6. Technology Stack
	7. Conclusion
	Acknowledgement
	References

