
International Journal of Research in Engineering, Science and Management
Volume 8, Issue 8, August 2025
https://www.ijresm.com | ISSN (Online): 2581-5792

*Corresponding author: msvikas092@gmail.com

15

Abstract: In recent years, there has been a significant increase

in the use of Internet of Things (IoT) devices in Australia, ranging
from simple household appliances like smart furniture and
lighting systems to complex machinery and industrial equipment.
With the proliferation of IoT, network attacks and anomalies have
increasingly come under scrutiny. Especially, the recent network
security incidents involving Australian companies have
highlighted the importance of attack or anomaly detection. The
IoT refers to a network of physical devices, vehicles, and home
appliances embedded with sensors, software, and connectivity
capabilities, which can collect and exchange data without direct
human intervention and communicate through the internet or
other networks. With the development of IoT, fog computing has
emerged as an important concept, providing computing and
storage services at the edge of the network. Fog computing
processes data close to the data source, reducing the burden on
centralized cloud computing and enhancing the speed and
efficiency of data processing. This is particularly applicable to
real-time data analysis and processing, playing a significant role in
data management and security monitoring within IoT
environments.

Keywords: IoT Security, Anomaly Detection, Network Attacks,

Edge Computing, Intrusion Detection Systems.

1. Introduction
In recent years, there has been a significant increase in the

use of Internet of Things (IoT) devices in Australia, ranging
from simple household appliances like smart furniture and
lighting systems to complex machinery and industrial
equipment. With the proliferation of IoT, network attacks and
anomalies have increasingly come under scrutiny. Especially,
the recent network security incidents involving Australian
companies have highlighted the importance of attack or
anomaly detection. The IoT refers to a network of physical
devices, vehicles, and home appliances embedded with sensors,
software, and connectivity capabilities, which can collect and
exchange data without direct human intervention and
communicate through the internet or other networks. With the
development of IoT, fog comput- ing has emerged as an
important concept, providing computing and storage services at
the edge of the net- work. Fog computing processes data close
to the data source, reducing the burden on centralized cloud
com- puting and enhancing the speed and efficiency of data
processing. This is particularly applicable to real-time data

analysis and processing, playing a significant role in data
management and security monitoring within IoT environments.

2. Problem Statement
IoT devices typically have limited performance, meaning

their computational capabilities are restricted or lack the
capacity to process data. Therefore, it is necessary to develop
models that can run on these limited- performance devices or
local routers or servers based on fog computing, to facilitate
automatic monitoring of network attacks or anomalies. Our
exploratory data analysis (EDA) has found that network attacks
and abnormal traffic have periodic occurrences at different
times. This finding indicates the importance of time series
models for automatic network security monitoring. Currently,
most related research and work have not in- tegrated time series
models into IoT network security monitoring, whereas their
introduction can significantly enhance the robustness of future
event predictions.

3. Methodology

A. Proposed Solution
To address the challenge of real-time anomaly detection in

resource-constrained IoT environments, we developed a
lightweight Recurrent Neural Network (RNN) with Long Short-
Term Memory (LSTM) units. This model was deployed on a
Raspberry Pi to evaluate performance in edge settings. Key
aspects of the solution include:

• Efficiency through Quantization and Width
Multipliers: The LSTM model was optimized using
quantization and width multipliers, significantly
reducing computational load while preserving
accuracy.

• Accurate Anomaly Detection: The model was trained
on the ToN IoT Modbus dataset and achieved reliable
detection of network attacks and anomalies.

• Baseline Comparison: A lightweight Multilayer
Perceptron (MLP) model was used for comparison.
The LSTM model consistently outperformed the MLP
in both detection performance and generalization.

Network Attack and Anomaly Detection in IoT
Devices

V. S. Chaithra1, M. S. Vikas2*, N. S. Sowmya3, B. Pankaja4

1,3,4Assistant Professor, Department of CSE-AIML, Sapthagiri NPS University, Bangalore, India
2Assistant Professor, Department of CSE-AIML, Sambhram Institute of Technology, Bangalore, India

Chaithra et al. International Journal of Research in Engineering, Science and Management, VOL. 8, NO. 8, AIGUST 2025 16

B. Importing and Visualization of Dataset
We used the publicly available ToN IoT Modbus dataset

provided by the University of New South Wales Canberra. It
contains IoT telemetry logs in CSV format captured via
Modbus protocol. The data includes timestamps, sensor values,
and labeled attack types.

Fig. 1. Attack distribution

Fig. 2. Attack types distribution

Listing 1: Importing and preprocessing IoT data

Hourly label distribution and attack types were visualized.

C. Attack Type Visualization

Listing 2: Attack type distribution graphs

Fig. 3. Attack type pie plot

Listing 3: Pie plot of attacks

D. Data Preprocessing
Data preprocessing focuses on transforming time series data

to enable the LSTM model to learn time dependencies
effectively. Date and time fields are cleaned to remove
inconsistencies, merged into a unified DateTime format, and
used to extract features like year, month, day, hour, and day of
the week. The data is sorted chronologically, and the original
fields are removed for simplicity. Extracted features are
reordered and optimized for efficiency, ensuring the dataset is
ready for accurate model processing.

E. Model Training
We trained an LSTM-based recurrent neural network, using

width multipliers to adjust the number of hidden units for
resource-constrained environments. This approach reduces
model complexity while preserving performance, ideal for IoT
or edge devices. To address class imbalance, we applied class
weights to the loss function, ensuring better recognition of less
frequent attack data. The Adam optimizer was used with an
appropriate learning rate for stable convergence. We monitored
performance metrics like loss, accuracy, precision, recall, and
F1 score throughout the training to ensure effective attack
detection and resource efficiency.

type_list = []
for i in range(24):
result = data[data[’hour’] == i][’type’].value_counts()
type_list.append(result.to_dict())
column_names =

list(data[’type’].value_counts().to_dict().keys())
type_counts =

pd.DataFrame(columns=column_names,data=type_list)
type_counts.plot(title=’Attack types distribution’)

pie_data = data[’type’].value_counts().to_dict() explode =
[0,0,0,1,1] plt.pie(x=list(pie_data.values())[1:],
labels=list(pie_data.keys())[1:],explode=explode)

import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
data = pd.read_csv(’./datasets/IoT_Modbus.csv’)
data[’datetime’] = pd.to_datetime(data[’date’] + ’ ’ +

data[’time’])
data[’hour’] = data[’datetime’].dt.hour
label_list = []
for i in range(24):
result = data[data[’hour’] == i][’label’].value_counts()
label_list.append([result[0],result[1]])
label_counts =

pd.DataFrame(columns=[’0’,’1’],data=label_list)
label_counts.plot(title=’Attack distribution’) type_list =
[]
for i in range(24):
result = data[data[’hour’] == i][’type’].value_counts()
type_list.append(result.to_dict())
column_names =

list(data[’type’].value_counts().to_dict().keys())
type_counts =

pd.DataFrame(columns=column_names,data=type_list)
type_counts.plot(title=’Attack types distribution’)

Chaithra et al. International Journal of Research in Engineering, Science and Management, VOL. 8, NO. 8, AIGUST 2025 17

Listing 4: Cleaning time fields and transformation of extract features

Listing 5: LSTM model using Adam optimizer

import os
import numpy as np import
pandas as pd import random
from sklearn.metrics import accuracy_score, precision_score,

recall_score, f1_score
from sklearn.preprocessing import MinMaxScaler from
sklearn.utils.class_weight import

compute_class_weight import
torch
from torch import optim import
torch.nn as nn
from torch.utils.data import TensorDataset from
torch.utils.data import DataLoader from matplotlib
import pyplot as plt
from tqdm import tqdm
from datetime import datetime seed =
42 torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
if torch.cuda.is_available():
device = torch.device("cuda")
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False else:
device = torch.device("cpu")
data = pd.read_csv(’datasets/IoT_Modbus.csv’)
data[’date’] = data[’date’].str.strip()
data[’time’] = data[’time’].str.strip() data[’datetime’] =
pd.to_datetime(data[’date’] + ’ ’ +

data[’time’], format=’%d-%b-%y %H:%M:%S’)
data[’year’] = data[’datetime’].dt.year data[’month’] =
data[’datetime’].dt.month data[’day’] =
data[’datetime’].dt.day data[’hour’] =
data[’datetime’].dt.hour data[’minute’] =
data[’datetime’].dt.minute
data[’second’] = data[’datetime’].dt.second
data[’dayofweek’] = data[’datetime’].dt.dayofweek # Sort
the data by datetime
data = data.sort_values(by=’datetime’)
Drop the original date, time, and timestamp columns
data.drop([’date’, ’time’, ’datetime’, ’type’], axis=1,

inplace=True)
Adjust feature order

order = [’year’, ’month’, ’day’, ’hour’, ’minute’, ’second’,
’dayofweek’, ’FC1_Read_Input_Register’,

’FC2_Read_Discrete_Value’, ’FC3_Read_Holding_Register’,
’FC4_Read_Coil’, ’label’]

data = data[order].astype(’int32’) #
Calculate split points
split_idx = int(len(data) * 0.8)
Split the data set, keeping order train_data =
data.iloc[:split_idx] test_data =
data.iloc[split_idx:]
Separate features and labels
X_train = train_data.drop(’label’, axis=1) y_train
= train_data[’label’]
X_test = test_data.drop(’label’, axis=1) y_test =
test_data[’label’]
feature_columns = [col for col in X_train.columns if col !=

’label’]
scaler = MinMaxScaler()
X_train[feature_columns] =

scaler.fit_transform(X_train[feature_columns])
.astype(’float32’)
X_test[feature_columns] =

scaler.transform(X_test[feature_columns])
.astype(’float32’)
X_train.info()

class LightweightLSTM(nn.Module):
def init (self, input_size, hidden_size, output_size,

num_layers=1, width_multiplier=1.0):
super(LightweightLSTM, self). init ()
Adjust hidden size based on the width multiplier
adjusted_hidden_size = int(hidden_size *

width_multiplier)
Define the LSTM
layer
self.lstm = nn.LSTM(input_size, adjusted_hidden_size,

num_layers=num_layers, batch_first=True)
self.fc = nn.Linear(adjusted_hidden_size, output_size) def
forward(self, x):
LSTM layer
lstm_out, _ = self.lstm(x)
Take the output of the last time step
last_time_step_out = lstm_out[:, -1, :] #
Output layer
out = self.fc(last_time_step_out)
return out
features_num = X_train.shape[1]
hidden_neurons_num = 512
output_neurons_num = 1
lstm_num_layers = 2
multiplier = 0.5
model = LightweightLSTM(features_num,

hidden_neurons_num, output_neurons_num,
lstm_num_layers,

multiplier).to(device)
class_weights =

compute_class_weight(class_weight=’balanced’,
classes=np.unique(y_train), y=y_train)

class_weights = torch.tensor(class_weights,
dtype=torch.float).to(device=device)

weights = torch.tensor([1, class_weights[1]], dtype=torch.float)
criterion = nn.BCEWithLogitsLoss(torch.FloatTensor

([weights[1] / weights[0]])).to(device)
optimizer = optim.Adam(model.parameters(), lr=0.0005) batch_size
= 128
X_train_tensor = torch.tensor(X_train.values).float().unsqueeze(1)
.to(device)
y_train_tensor =

torch.tensor(y_train.values).float().unsqueeze(1). to(device)
train_dataset = TensorDataset(X_train_tensor, y_train_tensor)
train_loader = DataLoader(train_dataset,
batch_size=batch_size, shuffle=False) Training
loop:
num_epochs = 100
pbar = tqdm(total=num_epochs)
loss_list = [None] * num_epochs
acc_list = [None] * num_epochs for
epoch in range(num_epochs):
model.train()
running_loss = 0.0
running_accuracy = 0.0
times = 0
for inputs, labels in train_loader:
FP
outputs = model(inputs)
loss = criterion(outputs, labels) #
BP and optimization
optimizer.zero_grad() loss.backward()
optimizer.step()
Calculate indicators
model.eval()
with torch.no_grad():
probabilities = torch.sigmoid(outputs)
predictions = (probabilities >

0.5).float().cpu().numpy()
Calculate indicators
y = labels.cpu().numpy()
running_loss += loss.item() * inputs.size(0)
running_accuracy += accuracy_score(y, predictions) times +=
1
epoch_loss = running_loss / len(train_loader.dataset) accuracy =
running_accuracy / times
loss_list[epoch] = epoch_loss
acc_list[epoch] = accuracy
print(f’Epoch [{epoch+1}/{num_epochs}], Loss:

{epoch_loss}, Accuracy: {accuracy}’)
pbar.update(1)
pbar reset()

Chaithra et al. International Journal of Research in Engineering, Science and Management, VOL. 8, NO. 8, AIGUST 2025 18

F. Plotting Loss and Accuracy

Listing 6: Plotting Loss and Accuracy

G. Model Saving

Listing 7: Saving the model

4. Results and Discussion
To ensure the fairness of our experiments, we used the same

training and test datasets. Notably, the time features in the test
dataset follow those in the training dataset, which was done to
validate the model’s effectiveness in detecting future data.
Additionally, to test the model performance in an actual
resource- constrained environment, we configured the
Raspberry Pi to use only one core. This is because IoT devices
often need to reserve computing resources for their own
services, and we also wanted to assess how the inference
devices would perform under extreme pressure, i.e., the extent
of network data stress they can handle.

A. Comparison Between RNN and Baseline Model
Our analysis showed that the baseline Multilayer Perceptron

(MLP) model underperformed compared to the Recurrent
Neural Network (RNN) with Long Short- Term Memory
(LSTM) units. In our task, we focused on the model’s ability to
classify positive samples (i.e., attacks or anomalies). The MLP
model’s recall rate was only 0.322927, resulting in a low F1
score of 0.47614, indicating its ineffectiveness in identifying
positive samples. In contrast, the RNN model achieved an
accuracy of 0.932798 and a recall rate of 0.639914,
demonstrating superior performance in detecting future data.

• Accuracy: 0.9328

• Precision: 0.8336
• Recall: 0.6399
• F1 Score: 0.7240

Fig. 4. Training loss per epoch

B. Impact of Width Multipliers and Quantization
• In the scenario without width multipliers and

quantization, the model was the most resource-
intensive. In this case, the model took 26 minutes and
53 seconds to infer 57,439 samples, processing about
36 network traffic data per second. This inference
speed is clearly insufficient for models deployed on
local servers or routers.

Fig. 5. Training accuracy per epoch

• The inference speed of the model using width multi-

pliers was significantly improved, requiring only 8
minutes and 50 seconds to complete all samples,
processing about 108 network traffic data per second.
Moreover, the model performed best in this test,
validating the effectiveness of width multipliers in

plt.figure(figsize=(12, 5))
plt.subplot(1, 2, 1)
plt.plot(loss_list, label=’Training Loss’)
plt.title(’Training Loss per Epoch’)
plt.xlabel(’Epoch’)
plt.ylabel(’Loss’)
plt.legend()
Draw accuracy curve
plt.subplot(1, 2, 2)
plt.plot(acc_list, label=’Training Accuracy’) plt.title(’Training
Accuracy per Epoch’) plt.xlabel(’Epoch’)
plt.ylabel(’Accuracy’)
plt.legend() plt.show()
X_test_tensor = torch.tensor(X_test.values).float()
.unsqueeze(1).to(device) model.eval()
outputs = model(X_test_tensor) with
torch.no_grad():
probabilities = torch.sigmoid(outputs) predictions
= (probabilities >

0.5).float().cpu().numpy() #
Calculate indicators
acc = accuracy_score(y_test, predictions) precision =
precision_score(y_test, predictions) recall =
recall_score(y_test, predictions)
f1 = f1_score(y_test, predictions)
print("Accuracy: ", acc, ", Precision: ", precision, ", Recall:

", recall, ", F1: ", f1)

save_folder = "save_model"
if not os.path.exists(save_folder):
os.makedirs(save_folder) current_time =

datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
model_filename = f"model_lstm_{current_time}.pt" if
multiplier == 1:
model_filename = f"model_lstm_{current_time}
_without_width_multiplier.pt"
full_path = os.path.join(save_folder, model_filename)
torch.save(model.state_dict(), full_path) print("Model saved
as:", full_ath)

Chaithra et al. International Journal of Research in Engineering, Science and Management, VOL. 8, NO. 8, AIGUST 2025 19

enhancing inference speed on constrained devices.
• The quantized model’s inference speed was even

faster, taking only 7 minutes and 22 seconds to process
all network traffic data, which equals processing about
130 data per second. This demonstrates that model
quantization can significantly accelerate the inference
process.

• When combining width multipliers and model
quantization, the model’s performance was
impressively efficient. It took only 3 minutes and 25
seconds to infer all test dataset samples, processing
about 279 data per second. Although there was a slight
performance drop (about 0.1%), the model still
retained fairly good performance. Compared to the
initial model, which processed 36 data per second, this
improvement to 279 data per second is substantial.

5. Conclusion
In this project, we developed an IoT anomaly detection

system leveraging RNN models with LSTM units to ensure
real-time and efficient identification of net- work anomalies. By
optimizing for resource-constrained environments, we
implemented quantization and width multipliers to reduce

computational overhead. The system effectively processes
time-series data, achieving robust detection of network attacks.
Through integration with fog computing, we decentralized
anomaly detection to enhance performance and scalability. Our
approach demonstrates significant improvements in accuracy
and efficiency, making it suitable for IoT networks with limited
resources.

References
[1] Althubiti, S., & Jones, D. M. (2018). LSTM for Anomaly-Based Network

Intrusion Detection. Semantic Scholar.
[2] Abirami, S., & Santhi, B. (2020). Network Traffic Anomaly Detection

Using LSTM-Based Autoencoder.
[3] Yin, C., Zhu, Y., Fei, J., & He, X. (2017). Anomaly Detection in Cyber

Security Attacks on Networks Using MLP Deep Learning. IEEE
Transactions on Information Forensics and Security.

[4] Radford, S., Dey, S., & Chakraborty, A. (2018). Network Traffic
Anomaly Detection Using Recurrent Neural Networks.

[5] Chen, J., Chen, X., & Hu, Y. (2021). A Deep Learning Ensemble for
Network Anomaly and Cyber-Attack Detection. Computers, Materials &
Continua.

[6] Shamshirband, S., Chronopoulos, A. T., & Ghaffari, M. (2021). The
Impact of Artificial Neural Network Architecture on Network Attack
Detection. ACM Digital Library.

[7] Dhaliwal, A., & Khan, F. (2020). Anomaly-Based Intrusion Detection
System: A Deep Learning Approach. NSF Public Access Repository.

	1. Introduction
	2. Problem Statement
	3. Methodology
	A. Proposed Solution
	B. Importing and Visualization of Dataset
	C. Attack Type Visualization
	D. Data Preprocessing
	E. Model Training
	F. Plotting Loss and Accuracy
	G. Model Saving

	4. Results and Discussion
	A. Comparison Between RNN and Baseline Model
	B. Impact of Width Multipliers and Quantization

	5. Conclusion
	References

