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Abstract: In recent years, there has been a significant increase 

in the use of Internet of Things (IoT) devices in Australia, ranging 
from simple household appliances like smart furniture and 
lighting systems to complex machinery and industrial equipment. 
With the proliferation of IoT, network attacks and anomalies have 
increasingly come under scrutiny. Especially, the recent network 
security incidents involving Australian companies have 
highlighted the importance of attack or anomaly detection. The 
IoT refers to a network of physical devices, vehicles, and home 
appliances embedded with sensors, software, and connectivity 
capabilities, which can collect and exchange data without direct 
human intervention and communicate through the internet or 
other networks. With the development of IoT, fog computing has 
emerged as an important concept, providing computing and 
storage services at the edge of the network. Fog computing 
processes data close to the data source, reducing the burden on 
centralized cloud computing and enhancing the speed and 
efficiency of data processing. This is particularly applicable to 
real-time data analysis and processing, playing a significant role in 
data management and security monitoring within IoT 
environments. 

 
Keywords: IoT Security, Anomaly Detection, Network Attacks, 

Edge Computing, Intrusion Detection Systems. 

1. Introduction 
In recent years, there has been a significant increase in the 

use of Internet of Things (IoT) devices in Australia, ranging 
from simple household appliances like smart furniture and 
lighting systems to complex machinery and industrial 
equipment. With the proliferation of IoT, network attacks and 
anomalies have increasingly come under scrutiny. Especially, 
the recent network security incidents involving Australian 
companies have highlighted the importance of attack or 
anomaly detection. The IoT refers to a network of physical 
devices, vehicles, and home appliances embedded with sensors, 
software, and connectivity capabilities, which can collect and 
exchange data without direct human intervention and 
communicate through the internet or other networks. With the 
development of IoT, fog comput- ing has emerged as an 
important concept, providing computing and storage services at 
the edge of the net- work. Fog computing processes data close 
to the data source, reducing the burden on centralized cloud 
com- puting and enhancing the speed and efficiency of data 
processing. This is particularly applicable to real-time data  

 
analysis and processing, playing a significant role in data 
management and security monitoring within IoT environments. 

2. Problem Statement 
IoT devices typically have limited performance, meaning 

their computational capabilities are restricted or lack the 
capacity to process data. Therefore, it is necessary to develop 
models that can run on these limited- performance devices or 
local routers or servers based on fog computing, to facilitate 
automatic monitoring of network attacks or anomalies. Our 
exploratory data analysis (EDA) has found that network attacks 
and abnormal traffic have periodic occurrences at different 
times. This finding indicates the importance of time series 
models for automatic network security monitoring. Currently, 
most related research and work have not in- tegrated time series 
models into IoT network security monitoring, whereas their 
introduction can significantly enhance the robustness of future 
event predictions. 

3. Methodology 

A. Proposed Solution 
To address the challenge of real-time anomaly detection in 

resource-constrained IoT environments, we developed a 
lightweight Recurrent Neural Network (RNN) with Long Short-
Term Memory (LSTM) units. This model was deployed on a 
Raspberry Pi to evaluate performance in edge settings. Key 
aspects of the solution include: 

• Efficiency through Quantization and Width 
Multipliers: The LSTM model was optimized using 
quantization and width multipliers, significantly 
reducing computational load while preserving 
accuracy. 

• Accurate Anomaly Detection:  The model was trained 
on the ToN IoT Modbus dataset and achieved reliable 
detection of network attacks and anomalies. 

• Baseline Comparison: A lightweight Multilayer 
Perceptron (MLP) model was used for comparison. 
The LSTM model consistently outperformed the MLP 
in both detection performance and generalization. 
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B. Importing and Visualization of Dataset 
We used the publicly available ToN IoT Modbus dataset 

provided by the University of New South Wales Canberra. It 
contains IoT telemetry logs in CSV format captured via 
Modbus protocol. The data includes timestamps, sensor values, 
and labeled attack types. 
 

 
Fig. 1.  Attack distribution 

 

 
Fig. 2.  Attack types distribution 

 

Listing 1: Importing and preprocessing IoT data 
 
 

Hourly label distribution and attack types were visualized. 

C. Attack Type Visualization 

 
Listing 2: Attack type distribution graphs 

 

 
Fig. 3.  Attack type pie plot 

 

 
Listing 3: Pie plot of attacks 

D. Data Preprocessing 
Data preprocessing focuses on transforming time series data 

to enable the LSTM model to learn time dependencies 
effectively. Date and time fields are cleaned to remove 
inconsistencies, merged into a unified DateTime format, and 
used to extract features like year, month, day, hour, and day of 
the week. The data is sorted chronologically, and the original 
fields are removed for simplicity. Extracted features are 
reordered and optimized for efficiency, ensuring the dataset is 
ready for accurate model processing. 

E. Model Training 
We trained an LSTM-based recurrent neural network, using 

width multipliers to adjust the number of hidden units for 
resource-constrained environments. This approach reduces 
model complexity while preserving performance, ideal for IoT 
or edge devices. To address class imbalance, we applied class 
weights to the loss function, ensuring better recognition of less 
frequent attack data. The Adam optimizer was used with an 
appropriate learning rate for stable convergence. We monitored 
performance metrics like loss, accuracy, precision, recall, and 
F1 score throughout the training to ensure effective attack 
detection and resource efficiency. 

 
 
 

type_list = [] 
for i in range(24): 
result = data[data[’hour’] == i][’type’].value_counts() 
type_list.append(result.to_dict()) 
column_names = 

list(data[’type’].value_counts().to_dict().keys())    
type_counts = 

pd.DataFrame(columns=column_names,data=type_list) 
type_counts.plot(title=’Attack types distribution’) 

pie_data = data[’type’].value_counts().to_dict() explode = 
[0,0,0,1,1] plt.pie(x=list(pie_data.values())[1:],   
labels=list(pie_data.keys())[1:],explode=explode) 

import numpy as np 
import pandas as pd 
from matplotlib import pyplot as plt 
data = pd.read_csv(’./datasets/IoT_Modbus.csv’) 
data[’datetime’] = pd.to_datetime(data[’date’] + ’ ’ + 

data[’time’]) 
data[’hour’] = data[’datetime’].dt.hour 
label_list = [] 
for i in range(24): 
result = data[data[’hour’] == i][’label’].value_counts() 
label_list.append([result[0],result[1]]) 
label_counts = 

pd.DataFrame(columns=[’0’,’1’],data=label_list) 
label_counts.plot(title=’Attack distribution’) type_list = 
[] 
for i in range(24): 
result = data[data[’hour’] == i][’type’].value_counts() 
type_list.append(result.to_dict()) 
column_names = 

list(data[’type’].value_counts().to_dict().keys())    
type_counts = 

pd.DataFrame(columns=column_names,data=type_list) 
type_counts.plot(title=’Attack types distribution’) 
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Listing 4: Cleaning time fields and transformation of extract features 

 
 

 
Listing 5: LSTM model using Adam optimizer 

 

import os 
import numpy as np import 
pandas as pd import random 
from sklearn.metrics import accuracy_score, precision_score,  

recall_score,  f1_score 
from sklearn.preprocessing import MinMaxScaler from 
sklearn.utils.class_weight import 

compute_class_weight import 
torch 
from torch import optim import 
torch.nn as nn 
from torch.utils.data import TensorDataset from 
torch.utils.data import DataLoader from matplotlib 
import pyplot as plt 
from tqdm import tqdm 
from datetime import datetime seed = 
42 torch.manual_seed(seed) 
np.random.seed(seed) 
random.seed(seed) 
if torch.cuda.is_available(): 
device = torch.device("cuda") 
torch.cuda.manual_seed(seed) 
torch.backends.cudnn.deterministic = True 
torch.backends.cudnn.benchmark = False else: 
device = torch.device("cpu") 
data = pd.read_csv(’datasets/IoT_Modbus.csv’) 
data[’date’] = data[’date’].str.strip() 
data[’time’] = data[’time’].str.strip() data[’datetime’] = 
pd.to_datetime(data[’date’] + ’ ’ + 

data[’time’], format=’%d-%b-%y %H:%M:%S’) 
data[’year’] = data[’datetime’].dt.year data[’month’] = 
data[’datetime’].dt.month data[’day’] = 
data[’datetime’].dt.day data[’hour’] = 
data[’datetime’].dt.hour data[’minute’] = 
data[’datetime’].dt.minute 
data[’second’] = data[’datetime’].dt.second 
data[’dayofweek’] = data[’datetime’].dt.dayofweek # Sort 
the data by datetime 
data = data.sort_values(by=’datetime’) 
# Drop the original date, time, and timestamp columns 
data.drop([’date’, ’time’, ’datetime’, ’type’], axis=1, 

inplace=True) 
# Adjust feature order 

order = [’year’, ’month’, ’day’, ’hour’, ’minute’, ’second’, 
’dayofweek’, ’FC1_Read_Input_Register’, 

’FC2_Read_Discrete_Value’, ’FC3_Read_Holding_Register’, 
’FC4_Read_Coil’, ’label’] 

data = data[order].astype(’int32’) # 
Calculate split points 
split_idx = int(len(data) * 0.8) 
# Split the data set, keeping order train_data = 
data.iloc[:split_idx] test_data = 
data.iloc[split_idx:] 
# Separate features and labels 
X_train = train_data.drop(’label’, axis=1) y_train 
= train_data[’label’] 
X_test = test_data.drop(’label’, axis=1) y_test = 
test_data[’label’] 
feature_columns = [col for col in X_train.columns if col != 

’label’] 
scaler = MinMaxScaler() 
X_train[feature_columns] = 

scaler.fit_transform(X_train[feature_columns]) 
.astype(’float32’) 
X_test[feature_columns] = 

scaler.transform(X_test[feature_columns]) 
.astype(’float32’) 
X_train.info() 

 

class LightweightLSTM(nn.Module): 
def  init (self, input_size, hidden_size, output_size, 

num_layers=1, width_multiplier=1.0): 
super(LightweightLSTM, self). init () 
# Adjust hidden size based on the width multiplier 
adjusted_hidden_size = int(hidden_size * 

width_multiplier)  
# Define the LSTM 
layer 
self.lstm = nn.LSTM(input_size, adjusted_hidden_size, 

num_layers=num_layers, batch_first=True) 
self.fc = nn.Linear(adjusted_hidden_size, output_size) def 
forward(self, x): 
# LSTM layer 
lstm_out, _ = self.lstm(x) 
# Take the output of the last time step 
last_time_step_out = lstm_out[:, -1, :] # 
Output layer 
out = self.fc(last_time_step_out) 
return out 
features_num = X_train.shape[1] 
hidden_neurons_num = 512 
output_neurons_num = 1 
lstm_num_layers = 2 
multiplier = 0.5 
model = LightweightLSTM(features_num, 

hidden_neurons_num, output_neurons_num, 
lstm_num_layers, 

multiplier).to(device) 
class_weights = 

compute_class_weight(class_weight=’balanced’, 
classes=np.unique(y_train), y=y_train) 

class_weights = torch.tensor(class_weights, 
dtype=torch.float).to(device=device) 

weights = torch.tensor([1, class_weights[1]], dtype=torch.float) 
criterion = nn.BCEWithLogitsLoss(torch.FloatTensor 

([weights[1] / weights[0]])).to(device) 
optimizer = optim.Adam(model.parameters(), lr=0.0005) batch_size 
= 128 
X_train_tensor = torch.tensor(X_train.values).float().unsqueeze(1) 
.to(device) 
y_train_tensor = 

torch.tensor(y_train.values).float().unsqueeze(1). to(device) 
train_dataset = TensorDataset(X_train_tensor, y_train_tensor) 
train_loader = DataLoader(train_dataset, 
batch_size=batch_size, shuffle=False) Training 
loop: 
num_epochs = 100 
pbar = tqdm(total=num_epochs) 
loss_list = [None] * num_epochs 
acc_list = [None] * num_epochs for 
epoch in range(num_epochs): 
model.train() 
running_loss = 0.0 
running_accuracy = 0.0 
times = 0 
for inputs, labels in train_loader: 
# FP 
outputs = model(inputs) 
loss = criterion(outputs, labels) # 
BP and optimization 
optimizer.zero_grad() loss.backward() 
optimizer.step() 
# Calculate indicators 
model.eval() 
with torch.no_grad(): 
probabilities = torch.sigmoid(outputs) 
predictions = (probabilities > 

0.5).float().cpu().numpy() 
# Calculate indicators 
y = labels.cpu().numpy() 
running_loss += loss.item() * inputs.size(0) 
running_accuracy += accuracy_score(y, predictions) times += 
1 
epoch_loss = running_loss / len(train_loader.dataset) accuracy = 
running_accuracy / times 
loss_list[epoch] = epoch_loss 
acc_list[epoch] = accuracy 
print(f’Epoch [{epoch+1}/{num_epochs}], Loss: 

{epoch_loss}, Accuracy: {accuracy}’) 
pbar.update(1) 
pbar reset() 
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F. Plotting Loss and Accuracy 

 
Listing 6: Plotting Loss and Accuracy 

G. Model Saving 

 
Listing 7: Saving the model 

4. Results and Discussion 
To ensure the fairness of our experiments, we used the same 

training and test datasets. Notably, the time features in the test 
dataset follow those in the training dataset, which was done to 
validate the model’s effectiveness in detecting future data. 
Additionally, to test the model performance in an actual 
resource- constrained environment, we configured the 
Raspberry Pi to use only one core. This is because IoT devices 
often need to reserve computing resources for their own 
services, and we also wanted to assess how the inference 
devices would perform under extreme pressure, i.e., the extent 
of network data stress they can handle.  

A.  Comparison Between RNN and Baseline Model 
Our analysis showed that the baseline Multilayer Perceptron 

(MLP) model underperformed compared to the Recurrent 
Neural Network (RNN) with Long Short- Term Memory 
(LSTM) units. In our task, we focused on the model’s ability to 
classify positive samples (i.e., attacks or anomalies). The MLP 
model’s recall rate was only 0.322927, resulting in a low F1 
score of 0.47614, indicating its ineffectiveness in identifying 
positive samples. In contrast, the RNN model achieved an 
accuracy of 0.932798 and a recall rate of 0.639914, 
demonstrating superior performance in detecting future data. 

• Accuracy:  0.9328 

• Precision: 0.8336 
• Recall: 0.6399 
• F1 Score: 0.7240 

 

 
Fig. 4.  Training loss per epoch 

B. Impact of Width Multipliers and Quantization 
• In the scenario without width multipliers and 

quantization, the model was the most resource-
intensive. In this case, the model took 26 minutes and 
53 seconds to infer 57,439 samples, processing about 
36 network traffic data per second. This inference 
speed is clearly insufficient for models deployed on 
local servers or routers. 

 

 
Fig. 5.  Training accuracy per epoch 

 
• The inference speed of the model using width multi- 

pliers was significantly improved, requiring only 8 
minutes and 50 seconds to complete all samples, 
processing about 108 network traffic data per second. 
Moreover, the model performed best in this test, 
validating the effectiveness of width multipliers in 

plt.figure(figsize=(12, 5)) 
plt.subplot(1, 2, 1) 
plt.plot(loss_list, label=’Training Loss’) 
plt.title(’Training Loss per Epoch’) 
plt.xlabel(’Epoch’) 
plt.ylabel(’Loss’) 
plt.legend() 
# Draw accuracy curve 
plt.subplot(1, 2, 2) 
plt.plot(acc_list, label=’Training Accuracy’) plt.title(’Training 
Accuracy per Epoch’) plt.xlabel(’Epoch’) 
plt.ylabel(’Accuracy’) 
plt.legend() plt.show() 
X_test_tensor  =  torch.tensor(X_test.values).float() 
.unsqueeze(1).to(device) model.eval() 
outputs = model(X_test_tensor) with 
torch.no_grad(): 
probabilities = torch.sigmoid(outputs) predictions 
= (probabilities > 

0.5).float().cpu().numpy() # 
Calculate indicators 
acc = accuracy_score(y_test, predictions) precision = 
precision_score(y_test, predictions) recall = 
recall_score(y_test, predictions) 
f1 = f1_score(y_test, predictions) 
print("Accuracy: ", acc, ", Precision: ", precision, ", Recall: 

", recall, ", F1: ", f1) 
 

save_folder = "save_model" 
if not os.path.exists(save_folder): 
os.makedirs(save_folder) current_time = 

datetime.now().strftime("%Y-%m-%d_%H-%M-%S") 
model_filename = f"model_lstm_{current_time}.pt" if 
multiplier == 1: 
model_filename = f"model_lstm_{current_time} 
_without_width_multiplier.pt" 
full_path = os.path.join(save_folder, model_filename) 
torch.save(model.state_dict(), full_path) print("Model saved 
as:", full_ath) 
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enhancing inference speed on constrained devices. 
• The quantized model’s inference speed was even 

faster, taking only 7 minutes and 22 seconds to process 
all network traffic data, which equals processing about 
130 data per second. This demonstrates that model 
quantization can significantly accelerate the inference 
process. 

• When combining width multipliers and model 
quantization, the model’s performance was 
impressively efficient. It took only 3 minutes and 25 
seconds to infer all test dataset samples, processing 
about 279 data per second. Although there was a slight 
performance drop (about 0.1%), the model still 
retained fairly good performance. Compared to the 
initial model, which processed 36 data per second, this 
improvement to 279 data per second is substantial. 

5. Conclusion 
In this project, we developed an IoT anomaly detection 

system leveraging RNN models with LSTM units to ensure 
real-time and efficient identification of net- work anomalies. By 
optimizing for resource-constrained environments, we 
implemented quantization and width multipliers to reduce 

computational overhead. The system effectively processes 
time-series data, achieving robust detection of network attacks. 
Through integration with fog computing, we decentralized 
anomaly detection to enhance performance and scalability. Our 
approach demonstrates significant improvements in accuracy 
and efficiency, making it suitable for IoT networks with limited 
resources.  
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