
International Journal of Research in Engineering, Science and Management  
Volume 8, Issue 7, July 2025 
https://www.ijresm.com | ISSN (Online): 2581-5792 

 

 
*Corresponding author: mohanharisoni3@gmail.com   
 
 

50 

 
Abstract: Optimization of machining parameters is 

irreplaceable in modern productions since it is essential not only 
to achieve a high level of precision but also to increase 
productivity. The inherently bounded and non-linear nature of 
machining processes, their combining integer, discrete and 
continuum variables, further complicates this effort. Secondly, 
mathematical formulations of these systems are often 
discontinuous, implicit, or characterized by a non-differentiable 
(with regard to the design variables) nature. As a result, gradient-
based non- linear optimization methods have rather limited usage. 
Genetic Algorithms (GA) have thus become an interesting choice, 
which can easily deal with complex and highly non-linear 
optimization issues of machining. In comparison with the other 
traditional approaches, GAs operate on a population of possible 
solutions and use both stochastic and deterministic search 
strategies to guide the search to solutions that meet feasible 
solution criteria and optimal solutions. Despite the strengths that 
GAs provide there are still some limitations that are inherent in 
the structure of the algorithm: (1) inefficiency of the way they 
encode continuous variables using ones and zeros, (2) lack of local-
search functionality, (3) lack of self-adaptation and (4) poor 
handling of conveys. The article describes a new, structured 
evolutionary algorithm based on canonical genetic algorithms that 
was specifically designed to overcome the problems detected in 
current implementations. Discriminating improvements 
encompass a more efficient characterization of the nature of the 
problem-issues, the incorporation of selection procedures with an 
eye to population-level goals, specific genetic operators 
appropriate to variable groupings, competent constraint 
management measures and judicious initial population-setting 
regimes. Its efficacy and efficiency as provided by the proposed 
framework are empirically demonstrated with the help of two 
machining case studies, in which the framework proves better than 
the other established ones in terms of efficacy and efficiency. 

 
Keywords: Genetic Algorithm, Production Cost, Crossover, 

Mutation, Constraints. 

1. Introduction 
In the modern competitive manufacturing, meeting a product 

quality, confining the cost of production, as well as maximizing 
the efficiency of operations are key goals, specifically within 
the Computer Numerical Control (CNC) machining. When 
machine tools have been selected, the specific description of the 
machining parameters is unavoidable. The overall objective of 
machining is to produce components with high quality 
requirements and at the same time avoiding excessive spending.  

 
Since CNC machines are associated with large financial 
investments and maintenance costs, it is crucial to use the 
optimization techniques that provide good profit on investment. 

A. Parameter Significance 
Cutting speed, feed rate and depth of cut are the process 

parameters that significantly modulate the performance of any 
machining operation. These values are traditionally calculated 
by the assistance of personal experience and ordinary 
handbooks by the process planners. Although, these manual 
approaches hardly reach the level of optimality needed to 
minimize the costs. Conventional methods of optimization rely 
on robust mathematical studies drawn after making 
experimental observations but this information often tends to 
contain systematic and random errors thus hinders their 
accuracy. 

B. Tools and Methods Tools and Methods 
Several computation tools, algorithms and techniques have 

been created to overcome such limitations. Machine learning, 
such as support vector regression, artificial neural networks and 
other allied statistical models, has shown especially good 
prospects. The machine-learning methodologies include a 
number of benefits: they need little input of experimental data, 
presuppose small amounts of the a priori knowledge concerning 
the dynamics of the processes, and provide the creation of the 
predictions with the strong explanatory value. Moreover, they 
may be concatenated into the currently used optimization 
methods, giving probability of golden approaches that merge 
the powers of the two. 

Summing up, sophisticated techniques of parameter 
optimization in the CNC machining cannot be overlooked when 
striving to achieve high quality increases, low operation 
expenses, and enhanced working efficiency. Such ambitions are 
possible to reach through the combination of machine learning 
with classic approaches to optimization. 

The process of optimization is largely based on optimal 
decision making, which acts as the main process by which most 
operational decisions can be able to align to the overall strategic 
goals. Agapiou [1] tackled the subject in a multi-stage 
machining system, where they have used Nelder-Mead simplex 
algorithm to reduce the overall costs as well as raise in the tool 
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life by the appropriate utilisation of idle time of succeeding 
machining stations. A second change combined the time and 
cost as bi-objectives, and weighted the objectives. 

Within a slightly different and yet same context, Shin et al. 
[2] developed a framework of multi-pass turning in which the 
depth of cut of every machining pass was established by the 
means of dynamic programming. The microcomputer-based 
optimization scheme of the surface grinding introduced in the 
paper by Wen et al. [3] took into consideration variables 
including the speed of the grinding wheel, the speed of the 
workpiece, the depth of dressing as well as the lead angle. Their 
model used quadratic programming to optimise a weighted 
objective term, where the constraint was to meet the thermal 
stresses, the wheel wear, the machine stiffness, and either a cost 
(rate of production) or surface quality. 

White et al. [4] have put the traditional model of machining 
cost further by integrating cost penalties into surface roughness. 
In Chen et al. [5] the simulated annealing was used to optimize 
a single model featuring straight, taper, and circular turning. 
Kee [6] concerned himself with constrained optimization 
techniques in order to find the cutting parameters during multi-
pass rough turning processes, in a conventional as well as a 
CNC lathe. Genetic algorithms were used by Bhaskara Reddy 
et al. [7] to optimize the depth of cut of multi-pass turning thus 
reducing cost of production. 

Combined, these papers highlight the depth of the analytical 
methods to improve machining processes in terms of modelling 
approaches, constraint sets and objective functions. 

Optimization of the machining processes using evolutionary 
techniques has been dealt upon by a number of researchers in 
the past. Importantly, Chen et al. [8] suggested rough turning 
by using multi-objective evolutionary algorithm. A 
mechanism-based model that was proposed by Cheol Lee and 
Yung Shin [9] to control the lead angle with minimized 
roughness and expense in single pass turning operations. 
Kennedy et al. [10] have implemented particle swarm 
optimization (PSO) a technique that has been observed as 
having global optima. Hui et al. [11] further expanded on this 
research and they extended it into coming up with a dynamic 
economical model that considered trade-offs between quality 
costs and other costs related to single-pass turning. 

Expanding on such input, Onwubolu et al. [12], Choudhri et 
al. [13] and Suresh et al. [14] have used genetic algorithms to 
optimise multiple-objectives in turning processes involving 
surface roughness and cost simultaneously. Saravanan et al. 
[15] found out that GAs work better than quadratic 
programming in surface grinding model. In terms of multi-pass 
turning, Vijayakumar et al. [16] has employed ant colony 
optimization with results which performed better than those of 
GAs. 

A more recent example of optimisation with the help of GAs 
has been applied by Venugopal et al. [17] in the case of grinding 
of silicon carbide using diamond grinding wheels and the major 
goal has been to maximize material removal rate with 
limitations on surface finish and damage. Gopal et al. [18] made 
some attempts to resolve comparable grinding problems using 
an existing mathematical model. 

Another article by Saravanan et al. [19] gives the description 
of a hybrid scheme combining genetic algorithms and 
simulating annealing that is used to optimize turning operations. 
At the same time, Cus et al. [20] elaborate a genetic-algorithm-
centered scheme, instrumental in the persistent optimization of 
cutting conditions, and experimentally proves it. Baskar et al. 
[21] then propose a simulated-annealing model of surface-
grinding optimisation. According to Zhang et al. [22], the 
limitations of population size and velocity will have a 
significant impact on the performance of a particle swarm 
optimization used in the optimisation of machining parameters. 
In another version, Sardinas et al. [23] incorporate genetic 
algorithms to a multi-objective scenario where the two goals are 
maximizing tool life and decreasing operation time. The 
presentation furnished by Mukherjee and Ray [24] provides a 
thorough picture of optimization techniques in metal cutting. 
The work by Wang et al. [25] capitalizes on the combination of 
geometric programming and the use of interval analysis in 
obtaining bounds of unit production costs, with a view to 
enhancing accuracy of decisions made. The aim of research 
conducted by Lee [26] is the study of the robustness of the 
grinding process in order to achieve maximum amounts of 
material removal. Despite the fact that traditional methods of 
the dynamic programming, the geometric programming, and 
the branch and bound have been thoroughly researched, they 
often face the challenge of solving large, multidimensional 
search spaces, thus producing only locally optimal solutions. 
Comparatively, more advanced algorithms such as simulated 
annealing, genetic algorithms, particle swarm optimization 
have proved more flexible and applicable in practice in the field 
of machining. This review will focus on evaluating and 
contrasting the effectiveness of these methods examining the 
ability of techniques to be applied to different machining 
models to conclude a strong and versatile methods of 
optimization. 

2. Proposed Methodology  
Non-conventional search and optimization methods, mainly 

evolutionary algorithms, have lately been acknowledged as a 
feasible approach of tackling an extensive scope of engineering 
current optimization issues. They are based on the biological 
law of the survival of the fittest and these methods work under 
a set of population where there is constant evolutionary process 
through transfer of information. The optimization of machining 
processes was conducted by using several evolutionary 
methods in the current study. 

A. Concept of Genetic Algorithm 
Genetic algorithms may be described as adaptive search 

methods that are monopolized of evolutionary theory, and 
classical genetics. Unlike the traditional optimization processes 
that evaluate one solution at a time, genetic algorithms only 
optimize a population of possible designs. They obey laws of 
natural selection according to which the most fit people get 
more chance to procreate and transfer the beneficial properties 
to their descendants. 
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Fig. 1.  Flow chart of working of genetic algorithm 

B. Parameters of GA 
Table 1 

 
 

The process starts by producing in random a set of initial 
populations. A particular design is encoded by each member of 
this population as a binary string with each bit representing a 
distinct design variable. The fitness is measured against pre-
specified denominator called the objective function that 
measures the performance within the optimization context. 

The selection follows their individual fitness value, where 
those that score well stand higher chances of becoming parents. 
After selection, the genetic operations, which are crossover as 
well as mutation, apply to the generation of the next generation. 
Crossover is used to mix bits of two parent strings and give birth 
to new strings, whereas mutation causes random changes to 
ensure the diversity of population. 

The genetic algorithm does not use any new crossover, 
mutation, selection or evaluation, but is repeated until either an 
arbitrary limit on the number of iterations of the algorithm is 
reached, or the algorithm converges to a solution which 

performs as well as possible. All these phases may be outlined 
as follows: 

1. Population initialization: A cohort of people is 
randomly produced initially. 

2. Fitness calculation: In the objective function, every 
person will be considered based on the objective 
function. 

3. Termination check: The algorithm quits when the 
maximum number of iterations has been attempted or 
the performance offered by the current solution is 
satisfactory. 

4. Parent selection: Reproduction individuals are 
selected based on their fitness; most of the time, the 
reproduction involves individuals who are in the best 
part of the population. 

5. Operator usage: The acceptable pairs undergo 
crossover and mutation, thus giving birth to future 
generations. 

6. Fitness assessment: The actual children are also tested 
and the procedure is repeated again starting at step 2 
until the process is stopped. 

The behaviour of the algorithm is regulated by five primary 
parameters: 

• Population size: Solution diversity is directly 
dependent on the numerical magnitudes of the 
population. 

• Crossover probability: Crossover probability 
influences the severity with which genetic material is 
recombined, a factor which may influence 
convergence paths. 

• Mutation probability: In the same way, mutation 
probability defines the degree of diversification that 
takes place. 

• Number of generations: This is one of the parameters 
of the schedule and they can be predetermined a priori 
to represent the maximum computation time that will 
be allocated to the algorithm. 

• Termination criteria- The convergence criterion may 
be performance criterion or iteration criterion.  

Versions of canonical genetic algorithm (GA) have been 
suggested to handle constraints. One of the vectors of changes 
is selection procedures, especially when it comes to changes in 
persons in the population. There are three paradigmatic 
approaches that include generational replacement (GR), steady-
state replacement (SSR), and elitism (EL). In GR, the 
population is immediately replaced as a whole, in SSR, only a 
portion of it is restored. EL retains certain discrete elite in its 
nature. 

Crossover is a second theory of variability. It can be 
performed as single-point crossover (SPC) and multi-point 
crossover (MPC). The operators can be combined and it is 
possible to have SPC applied in some loci and MPC in others.  

Convergence is affected by fitness normalization schemes 
too. Linear scaling is the most common one. The mean fitness 
may be scaled to the fitness range such that, prior to selection, 
the mean fitness = unity maximizing the diversity of the 
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population. 
Since GA has many different variants, it does not exist such 

a panoptic configuration that would help in any kind of 
optimization in the best way. The practitioners, instead, are 
supposed to refine each of the parameters to the setting of the 
particular problem. 

A genetic algorithm was used in the current investigation 
such that the control parameters were as follows: 

Total iterations: 1, 000 
• Population size 100 

Crossover probability: 0.80 
• Probability of mutation: 0.05 

3. Single-Pass Turning Operation 

A. Mathematical Model 
In this section, one has addressed the single-pass turning and 

studied that mathematical model developed by Agapiou [1] is 
adopted to ensure the best choice of three basic parameters 
namely the cutting speed, feed rate and depth of cut. The 
variables have significant impacts on the cost of production, 
cycle time, quality of products as well as productivity in 
general. It is thus a prerequisite in optimization of them to 
achieve efficient use of machines. The current study aims at the 
minimization of an integrated optimization goal that includes 
production cost and production time. 

B. Formulation of Objective Function 
In the framework of the example with the single-pass turning 

operation, the parameters adopt values that have been fixed 
according to the machine specification and conventional 
handbooks. The work piece material is high-carbon steel and 
the cutting tool is tungsten carbide. The details of the particular 
machining parameters used are in Table 2.  

 
Table 2 

Values of machining parameters 

 
 
The overall expense incurred in the machining of one unit of 

part includes the cost due to cutting tool, cutting process, 
replacement of blunt parts, work piece handling, and the 
additional movements due to the tool contact used to bring the 
tool back. It would be possible to calculate the cost of tool 
replacement by dividing the time taken to machine with the 
observed instances by the life expectancy of the tool 
encountered according to expected tool running time to produce 
multiple pieces before one tool finishes its returning to the 

Unrepeated life or prime and another tool is required.  
1) Production Cost 

The production cost per component for a machining 
operation consists of the sum of the costs for tooling, 
machining, tool changing time; handling time, and quick return 
time. Tool changing cost for each part is calculated based on the 
machining time of the part to the tool life. This is because a 
single tool may be used to machine several parts before it needs 
to be replaced by a sharp one. 

 
Production cost is given by: 
 
cu = Co tm + (tm/T) Co tcs + Ct + Co (th +tR)      (1) 
 
The machining time per pass in turning is given by: 
 
tm = (πDL)/(1000 vf )              (2) 
 
Tool life is given by: 
 
T = (K/v fal da2)(1/a3)                (3) 
 

2) Production Time 
The total time required to produce a part is the sum of the 

times necessary for machining, tool changing, tool quick return 
time, and work piece handling time that includes loading and 
unloading of work piece in the machine. This is given by: 

 
tu = tm + tcs(tm/T) + th + tR             (4) 
 

3) Combined Objective Function 
The objective function consists of the combination of the 

production time and the production cost using different weight 
coefficients for each criterion. 

 
µ(v, f , d) + w1.cu + w2.λ.tu             (5) 
 
where, w1 and w2 are the weight coefficients, which indicates 

the relative importance of the production time and production 
cost. It has been assumed that these weight coefficients should 
satisfy the condition given below. When both weight 
coefficients w1 and w2 are set equal to 0.5, the objective 
functions moves closer to the higher profit rate. 

 
w1 + w2 = 1, 0 ≤ w1 ≤ 1 and 0 ≤ w2 ≤ 1        (6) 
 
The optimum function is normalized through the use of a 

constant multiplier. 
 
λ = cu min/tu min                 (7) 
 
where, cu min and tu min are the minimum production cost 

and minimum production time, respectively, under the defined 
process constraints.  

C. Machining Parameters 
Although there are many machining parameters which affect 
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the machining operation, cutting speed, feed, and depth of cut 
have the greatest effect on the success of a machining operation. 
Therefore, only these machining parameters are considered in 
this work. Moreover, these machining parameters also 
considered as the practical constraints. 
1) Cutting Speed 

When compared to depth of cut and feed rate, cutting speed 
has a greater effect on tool life. Certain combinations of speed, 
feed, and depth of cut are usually selected for easy chip 
removal, which are directly proportional to the type of tool and 
work piece material. Thus, the range of cutting speed can be 
written as: 

 
vmin ≤ v ≤ vmax                  (8) 
 

2) Feed 
By increasing the feed and decreasing the cutting speed, it is 

always possible to obtain much higher metal removal rates 
without reducing tool life. Thus, the range of feed can be written 
as: 

 
f min ≤ f ≤ f max                  (9) 

3) Depth of Cut 
Selection of depth of cut should counter balance between the 

tool life and metal removal rate to obtain highest permissible 
level of depth of cut. Thus, the range of depth of depth of cut 
can be written as: 

 
dmin ≤ d ≤ dmax                  (10) 

D. Physical Constraints 
There are always many constraints that exist in the actual 

cutting condition for the optimization of the objective function. 
For a given pass, an optimum cutting speed, feed, and depth of 
cut is chosen and, thus, balancing the conflict between the metal 
removal rate and tool life. The following constraints are 
considered in optimizing the machining parameters. On 
satisfying these constraints, the optimum machining parameters 
are arrived. 

 
1) Parameter Constraints 
 

vmin ≤ v ≤ vmax, fmin ≤ f ≤ fmax & dmin ≤ d ≤ dmax   (11) 
 

2) Power Constraint 
 

0.0373 v0.91 f 0.78 d0.75 ≤ HPmax          (12) 
 

3) Surface Finish Constraint 
 

14785 v-1.52f 1.004d0.25 ≤ SRmax           (13) 
 

4) Temperature Constraint 
 

74.96 v0.4 f 0.2 d0.105 - 17.8 ≤ Tmax         (14) 
 

5) Cutting Force Constraint 
 

844 v-0.1013 f 0.725 d0.75 ≤ Fmax           (15) 

4. Surface Grinding 

A. Mathematical Model 
The mathematical model proposed by Anne Venugopal et al. 

[17] is considered in this work. This work is concerned with the 
optimal selection of machining parameters such as feed rate and 
depth of cut. Since these parameters strongly affect the cost, 
time, productivity, and quality of the machined 

parts, determining the optimal machining parameters is an 
essential step in machining operation. Maximizing the material 
removal rate is the objective function of the proposed model. 
Table 3 shows the machining parameter values for surface 
grinding. 

B. Objective Function 
Material removal rate is the objective function of the 

proposed model. It is the rate at which the material is removed 
from the work piece during the machining process. 

 
MRR = f, d                   (16) 

C. Machining Parameters 
1) Feed 

The maximum allowable feed greatly affects the production 
rate. It has a significant effect on tool life. By increasing the 
feed and decreasing the cutting speed, it is always possible to 
obtain much higher metal removal rates without reducing tool 
life. Surface finish determines the maximum feed in finish 
operation. Thus, the range of feed can be written as: 

 
f min ≤ f ≤ f max                  (17) 

 
Table 3 

Values of machining parameters 

 
Table 4 

Results of GA 
Machining Parameter Optimum value of Machining Parameter 

N rpm  f mm/rev d mm 
 125.6659 0.132 0.4 
Unit Production Cost except material cost 
Unit Production Cost  in turning in Rs/piece  in facing in Rs/piece in grinding in Rs/piece 
 142.2627 9.779692 40.23723 
Total Unit Production Cost except material cost turning, in facing and in grinding in Rs/piece 192.2797 
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2) Depth of Cut 
By changing the depth of cut, tool life is less affected. So, 

there should be a counter balance between the tool life and 
metal removal rate to obtain highest permissible level of depth 
of cut. The selection of maximum depth of cut is dependent on 
(1) tool material, (2) cutting force, (3) available horsepower, (4) 
stability of the tool work machine, (5) dimensional accuracy, 
and (6) surface finish required. Thus, the range of depth of 
depth of cut can be written as: 

 
dmin ≤ d ≤ dmax                  (18) 
 

D. Physical Constraints 
1. Feed: optimum feed must be in the range determined 

by the minimum and maximum feed rates of the 
machine and can be written as: 
 
f min ≤ f ≤ f max               (19) 
 

2. Depth of cut: optimum depth of cut must be in the 
range determined by the minimum and maximum 
depth of cut of the machine and can be written as: 
dmin ≤ d ≤ dmax               (20) 
 

3. Grain size: grain size is the size of the abrasive grain 
in the grinding wheel which should be within the given 
range. 

4.  
Mmin ≤ M ≤ Mmax              (21) 
 

5. Grain density: grain density is the closeness of 
packing of abrasive grains on the grinding wheel 
which should be within the given range. 
 
Rmin ≤ R ≤ Rmax               (22) 
 

6. Surface roughness: it refers to the smoothness of 
machined surface which should be within the range is 
given by: 
 
Ra = 0.36(d)0.1843 (f )0.5253 (M)-0.2866 (R)-0.2444 ≤ Ramax 

                    (23) 
 

7. Surface damage: surface damage should be within the 
range is given by: 
 
%D = 24.44 (d)0.2857 (f)-0.3 (M)-0.4140 ≤ Dmax     (24) 
 
 
 
 
 
 
 

E. Computational Result of GA 

 
Fig. 2.  Display of plot on using MATLAB software for optimization using 

genetic algorithm toolbox 
 

 
Fig. 3.  Display of results on using MATLAB software for Optimization using 

genetic algorithm toolbox 

5. Results and Discussions 
The current study uses MATLAB software to bring about 

implementation and evaluation of optimization models and 
algorithms related to turning and grinding operations. Types of 
all computational trials that are conducted using the same 
experimental setup take a size of 100 and 1,000 runs per genetic 
algorithm (GA running). 

Evaluation of genetic algorithms as a performance tuning of 
a multi-modular flexible manufacturing system was carried out. 
The major goal was to decrease the overall objective function 
(COF). It has used a two-stage experimental design. The first 
phase informed the optimisation of single-pass turning 
processes with 15-second computation time and the COF 
minimum of 0.6896. At the second stage, optimisation of 
ground surface operations was performed, with a computation 
time of 6 seconds, and maximum of 179.8 mm c 2 /min material 
removal rate (MRR). These findings implied that a genetic 
algorithm would be an efficient optimisation tool of a flexible 
manufacturing system. 

The genetic algorithm (GA) has proved successful in both the 
studied applications, single-pass turning and surface grinding 
because of its robustness and efficiency in relation to both 
applications. In single-pass turning the GA was used to 
minimize the overall objective function (time and cost). This 
success shows that the algorithm has ability to trade off many 
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goals in constrained machining problem setting.   
In case of surface grinding, the GA was applied to maximize 

the metal removal rate (MRR) under parametric limitation of 
surface roughness and surface damage. The results indicate 
that, to some extent of acceptability, an increment in the surface 
roughness and surface damage consequently implies greater 
values of MRR. Here, it implies a sacrifice of productivity 
against the surface integrity, which was successfully addressed 
with the help of the GA.   

These findings reveal that genetic algorithm is practical as 
means of resolving multi-variable, constrained optimization 
problem within the machining process. The algorithm is fast 
converging and provides astonishing performance terms. 

6. Conclusion 
In this analysis, the mathematics of how the parameters 

involved in various machining processes are optimized through 
the mathematical modelling of each operation by designing of 
unique laws derived by the machining process objective 
functions and constraints is addressed. Specifically, these two 
relatively essential machining processes are considered: 

1. Single-pass turning, in which the goal is to optimise a 
sum total of goals that included production time and 
production cost. 

2. Surface grinding, in which the aim is to maximize the 
material removal rate (MRR) subject to surface finish 
and damage related constraints. 

These optimisation tasks are solved by means of non-
traditional inherent population-based evolutionary technique: 
genetic algorithm (GA). This strategy is the same throughout 
all models making, hence showing its nature of flexibility and 
adaptability. 

These findings are affirmative that GA is effective tool of 
optimising machining operations under wide range of real 
constraints and economic considerations. Among the most 
significant benefits of the suggested framework, it is possible to 
state that the GA-based software, designed herein is problem-
independent and general-purpose, which enables its easy 
conversion or adaptation to other machining processes or other 
optimisation constraints. Moreover, the given methodology 
does not apply only to the issues that have been outlined: the 
same GA framework can be applied to numerous engineering 
problems that involve multi-objective optimisation in 
constrained settings.  
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