
International Journal of Research in Engineering, Science and Management
Volume 8, Issue 6, June 2025
https://www.ijresm.com | ISSN (Online): 2581-5792

*Corresponding author: savalagianvita@gmail.com

144

Abstract: The Vision AI – Multimodal Detection Suite is an

advanced artificial intelligence system that integrates five core
visual processing capabilities into a single, unified platform. It is
designed to perform real-time face detection, object recognition,
text extraction, language translation, and barcode management.
The face detection module uses pre-trained models like YOLO and
OpenCV to accurately identify human faces in images or video
streams. The object recognition component leverages YOLOv8 to
detect and classify multiple objects simultaneously, making it
suitable for surveillance and automation. Text extraction is
handled through Tesseract OCR, enabling the system to read and
digitize printed or handwritten text from visual data. This text can
then be translated into various languages using Google Translate
API, facilitating multilingual communication. Additionally, the
barcode scanning feature employs pyzbar libraries to detect and
decode standard barcodes and QR codes, which is useful in
inventory and retail applications. Built using Python, OpenCV,
Flask, and front-end technologies like HTML, CSS, and
JavaScript, this suite offers a user-friendly interface and
showcases the practical implementation of multimodal AI for
smart environments, automation, and accessibility.

Keywords: Vision AI, Multi-Modal.

1. Introduction
In today’s world, Artificial Intelligence (AI) and Computer

Vision technologies are playing a crucial role in automating
real-world tasks that require human-like perception. From
surveillance systems to smart retail solutions, these
technologies are making systems more intelligent, responsive,
and efficient. The Vision AI – Multimodal Detection Suite is a
project developed to showcase the integration of multiple AI-
powered vision tasks into a single, unified platform.

This suite is designed to perform five major functions: face
detection, object recognition, text extraction (OCR), language
translation, and barcode/QR code scanning. Face and object
detection are implemented using advanced deep learning
models like YOLO (You Only Look Once), which provide fast
and accurate results in real-time. The text extraction module
uses Tesseract OCR to read printed or handwritten text from
images or videos. The extracted text can then be processed
through the Google Translate API to identify and translate it
into different languages, enhancing communication and
accessibility. For retail and logistics applications, the system
includes a barcode and QR code scanning module using tools

like pyzbar and ZBar, which allows automatic recognition and
decoding of visual codes.

The project is developed using Python for backend logic,
with support from libraries like OpenCV for image processing
and Flask for API handling. The user interface is built using
HTML, CSS, and JavaScript, offering a smooth and interactive
experience. By combining multiple detection capabilities, the
Vision AI Suite serves as a powerful tool that demonstrates the
practical application of multimodal AI in various domains such
as surveillance, accessibility, smart automation, and inventory
management.

2. Objectives
The primary objective of the Vision AI – Multimodal

Detection Suite is to design and develop an integrated AI
system capable of performing multiple visual recognition and
processing tasks within a single platform. This includes
implementing accurate and efficient real-time face detection
and object recognition using state-of-the-art deep learning
models such as YOLO, ensuring fast performance with high
precision. Another key goal is to incorporate Optical Character
Recognition (OCR) through Tesseract to extract printed or
handwritten text from images and video frames. The system
also aims to provide seamless multilingual support by
integrating language translation APIs, enabling the translation
of extracted text into various languages to enhance
communication and accessibility. Furthermore, the project
targets the development of a robust barcode and QR code
scanning module to facilitate applications in retail, logistics,
and inventory management. Emphasis is also placed on creating
a responsive and intuitive web-based user interface that allows
users to interact with the multimodal detection suite
effortlessly. Overall, the project strives to demonstrate the
practical utility of combining multiple AI-driven vision and
language processing capabilities to create a versatile and
scalable solution for automation, smart surveillance, and
accessibility enhancement.

Vision AI Meets Multi-Modal Detection: A
Unified Framework for Intelligent Perception

Anvita Savalagi1*, Anusha Bidarkundi2, Arpita Deshapande3, Bhumika Jambagi4, Sandeep N. Kugali5

1,2,3,4Student, Department of Information Science and Engineering, Basaveshwar Engineering College, Bagalkote, India
5Assistant Professor, Department of Information Science and Engineering, Basaveshwar Engineering College, Bagalkote, India

Savalagi et al. International Journal of Research in Engineering, Science and Management, VOL. 8, NO. 6, JUNE 2025 145

3. Literature Survey

A. Rapid Object Detection using a Boosted Cascade of Simple
Features

Paul Viola, Michael Jones, 2001. This seminal paper
introduced a highly efficient method for face detection, using
Haar-like features combined with an AdaBoost learning
algorithm to create a cascade classifier. The method was
revolutionary for its speed, allowing real-time detection on
limited hardware by rejecting non-face regions quickly through
cascading stages. Though based on hand-crafted features, this
approach laid the foundation for later deep learning-based face
detection systems by proving that object detection could be both
fast and accurate.

B. You Only Look Once: Unified, Real-Time Object Detection
Joseph Redmon, Santosh Divvala, Ross Girshick, Ali

Farhadi, 2016. This paper proposed the YOLO framework, a
paradigm shift in object detection that treats detection as a
regression problem, predicting bounding boxes and class
probabilities directly from full images in a single evaluation.
YOLO’s unified architecture enables end-to-end training and
very fast inference speeds, making it suitable for real-time
applications such as face detection, object recognition, and
autonomous driving. Its balance of speed and accuracy has
inspired many subsequent detection models.

C. YOLOv4: Optimal Speed and Accuracy of Object Detection
Alexey Bochkovskiy, Chien-Yao Wang, Hong-Yuan Mark

Liao, 2020. YOLOv4 introduced multiple innovations in
network architecture, data augmentation, and training
techniques to optimize detection speed without sacrificing
accuracy. It employed the CSPDarknet53 backbone, mosaic
data augmentation, and self-adversarial training to boost
performance. This version demonstrated state-of-the-art results
on standard benchmarks, making it practical for embedded and
resource-constrained systems, such as smart cameras for
surveillance and retail monitoring.

D. An Overview of the Tesseract OCR Engine
Ray Smith, 2007. Tesseract is one of the most accurate open-

source OCR engines available. Smith’s paper explains its multi-
stage architecture, including adaptive thresholding, layout
analysis, character segmentation, and recognition using
recurrent neural networks. The engine supports multiple
languages and scripts and can be trained on new fonts or
handwriting styles. Tesseract’s open-source nature and
reliability have made it a key tool for text extraction in vision
applications where converting images to machine-readable text
is essential.

E. Google’s Neural Machine Translation System: Bridging
the Gap Between Human and Machine Translation

Yonghui Wu et al., 2016. This work introduced Google’s end-
to-end neural machine translation (NMT) system, which
replaced phrase-based translation models with a deep learning
architecture. The model uses an encoder-decoder structure with
attention mechanisms to capture context and generate fluent

translations. Its ability to perform real-time, high-quality
translations has transformed applications involving
multilingual text, enabling AI systems to communicate
effectively across languages—vital for projects involving
language translation from extracted text.

F. ZBar Bar Code Reader
Jeffrey Carrier, 2007. ZBar is an open-source software suite

for reading barcodes from images or video streams. It supports
several symbology’s including UPC, EAN, Code 128, and QR
codes. Carrier’s implementation focuses on efficient image
scanning algorithms and decoding methods that allow accurate,
rapid barcode recognition even in low-quality images. Such
reliable decoding is essential for inventory, retail, and logistics
systems that rely on automated barcode scanning.

G. Multi-task Cascaded Convolutional Networks for Face
Detection

Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, Yu Qiao, 2016
This paper proposed the MTCNN framework, which combines
face detection with alignment through cascaded CNNs. The
multi-task learning approach improves robustness by jointly
optimizing face localization and landmark detection. It achieves
higher precision under challenging conditions such as occlusion
or varied lighting, advancing face detection technology beyond
traditional single-task detectors.

H. Scene Text Recognition with Sliding Convolutional
Character Models

Wei Liu, Chaofeng Chen, Kwan-Yee K. Wong, 2016. The
authors presented a convolutional model to recognize text in
natural scene images, addressing challenges like variable fonts,
backgrounds, and distortions. By modelling characters with
sliding windows, their method improves robustness in OCR
tasks where text appears in complex environments,
complementing systems like Tesseract in practical text
extraction scenarios.

4. Methodology
The development of the Vision AI – Multimodal Detection

Suite involves integrating multiple AI and computer vision
techniques into a single cohesive platform. The methodology
can be divided into the following stages:

A. Data Collection and Preparation
• Collect and prepare datasets for face detection, object

recognition, text extraction, and barcode scanning.
• Use publicly available datasets (like COCO for

objects, FDDB for faces) and generate sample
images/videos for barcode and OCR testing.

• Perform data preprocessing such as resizing,
normalization, and augmentation to improve model
robustness.

B. Face Detection Module
• Implement face detection using YOLO (You Only

Look Once) models, fine-tuned for face localization.
• Use OpenCV’s DNN module or pre-trained models

Savalagi et al. International Journal of Research in Engineering, Science and Management, VOL. 8, NO. 6, JUNE 2025 146

like MTCNN to enhance detection accuracy.
• Optimize the model for real-time detection through

model pruning or lighter versions like YOLOv5n.

C. Object Recognition Module
• Employ YOLOv5 or YOLOv8 for multi-class object

detection.
• Train or fine-tune the model on relevant datasets for

accurate recognition of objects relevant to the
application domain.

• Integrate the object recognition module to accept live
video feed or images for real-time inference.

D. Text Extraction (OCR) Module
• Use Tesseract OCR engine to extract text from images

or video frames.
• Apply image preprocessing techniques (grayscale

conversion, thresholding, noise removal) to improve
OCR accuracy.

• Handle different fonts and languages by configuring
Tesseract’s language packs.

E. Language Translation Module
• Integrate the Google Translate API or any other neural

machine translation service.
• Automatically detect the language of the extracted text

and translate it into the target language selected by the
user.

• Display both the original and translated text in the user
interface.

F. Barcode and QR Code Scanning Module
• Use pyzbar or ZBar libraries to detect and decode

barcodes and QR codes from images or video streams.
• Implement error handling for damaged or partially

visible codes to enhance robustness.
• Enable storage or processing of decoded barcode data

for inventory or identification purposes.

G. System Integration
• Develop a backend using Python and Flask to manage

communication between modules.
• Design a frontend web interface using HTML, CSS,

and JavaScript (or React.js) to allow user interaction.
• Integrate all modules such that they can run

simultaneously or individually on user input.
• Ensure real-time processing with minimal latency.

H. 8. Testing and Optimization
• Perform unit testing on individual modules and system

testing on the integrated suite.
• Optimize performance using GPU acceleration where

possible.
• Conduct user testing to gather feedback and improve

the UI/UX and accuracy of detections.

I. Software & Tools
• Python – Core programming language for backend

logic and AI integration.
• OpenCV – For image processing, video capture, and

drawing detection outputs.
• YOLOv5/YOLOv8 (Ultralytics) – For real-time face

and object detection.
• Tesseract OCR – To extract printed or handwritten

text from images.
• Google Translate API – For automatic language

detection and translation.
• pyzbar/ZBar – For barcode and QR code detection and

decoding.
• Flask – Lightweight Python web framework used to

build the backend API.
• HTML, CSS, JavaScript – To design the frontend user

interface.
• React.js (optional) – For creating a dynamic and

responsive web UI.
• Jupyter Notebook/Google Colab – For model training,

testing, and experimentation.
• Git – For version control and collaborative

development.
• VS Code/PyCharm – Integrated Development

Environments (IDEs) used for coding.

J. Hardware
• Processor: Intel i5/i7 or AMD Ryzen 5/7 (minimum

Quad-core)
For smooth execution of real-time detection models
and multitasking.

• RAM: Minimum 8 GB (Recommended: 16 GB)
To handle multiple processes like object detection,
OCR, and translation simultaneously.

• GPU: NVIDIA GPU with CUDA support (e.g., GTX
1650 / RTX 3060 or higher)
For accelerating YOLO model inference and
improving detection speed.
Storage: Minimum 256 GB SSD
Faster data access, model loading, and reduced I/O
delays.

• Webcam: Built-in or external HD webcam
Required for real-time face, object, and barcode
detection through live video feed.

• Internet Connection: Stable broadband
Necessary for accessing Google Translate API and
real-time updates.
Operating System: Windows 10/11, Linux (Ubuntu),
or macOS
Cross-platform support depending on developer
preference.

K. System Design
The system design of the Vision AI – Multimodal Detection

Suite follows a modular and layered architecture to ensure
scalability, flexibility, and real-time performance. The system
is divided into four main layers:

Savalagi et al. International Journal of Research in Engineering, Science and Management, VOL. 8, NO. 6, JUNE 2025 147

1) Input Layer:
• Accepts input through:

• Live webcam feed
• Image upload
• Video upload

• Captures real-time frames or static images to be
processed by the detection modules.

2) Processing Layer (Core AI Modules)
Each module operates independently and feeds output into a

unified results interface:
• Face Detection Module:

Utilizes YOLO/MTCNN to detect and locate faces in
the frame.

• Object Recognition Module:
Runs YOLOv5/YOLOv8 for detecting and classifying
multiple objects in real-time.

• Text Extraction Module (OCR):
Uses OpenCV preprocessing + Tesseract OCR to
extract text from images.

• Language Translation Module:
Sends extracted text to Google Translate API and
retrieves the translated output in the selected language.

• Barcode/QR Code Module:
Uses pyzbar or ZBar to detect and decode barcode and
QR data from the frame.

3) Backend Layer
• Built using Flask (Python)
• Handles communication between modules
• Manages input/output routing, model loading, and API

calls
• Processes requests and serves results to the frontend in

real-time
4) Frontend/User Interface Layer

• Developed using HTML, CSS, JavaScript, and
optionally React.js

• Provides options to:
• Upload images/videos
• Switch between detection modes
• View original and translated text
• Display bounding boxes and labels on live video

• Offers a clear, interactive, and user-friendly interface
5) Output Layer

• Displays results such as:
• Detected faces/objects with labels
• Extracted and translated text
• Scanned barcode/QR code values

• Optionally provides logs or downloads of detected
data

This modular system design ensures that all AI components
work both independently and collaboratively, making the
application efficient, extensible, and real-time ready.

L. Implementation Steps

Fig. 1.

1) Project Setup

• Input: System setup, required libraries, and tools.
• Process:

• Install Python, OpenCV, Flask, Tesseract, pyzbar,
YOLO dependencies.

• Set up virtual environment, folder structure, and
API keys.

• Output:
• Functional development environment with all

dependencies configured.
2) Face Detection Module

• Input: Live webcam feed / image file.
• Process:

• Capture input using OpenCV.
• Load YOLO/MTCNN model for face detection.
• Run detection and draw bounding boxes.

• Output:
• Image/video feed with detected faces outlined.
• Face label and confidence displayed.

3) Object Recognition Module
• Input: Live webcam feed / uploaded image.
• Process:

• Load YOLOv5/YOLOv8 pre-trained model.
• Run object detection algorithm.
• Label and classify each object in the frame.

• Output:
• Image/video feed with multiple objects labelled

(e.g., person, car, bottle).
• Confidence scores shown for each object.

Savalagi et al. International Journal of Research in Engineering, Science and Management, VOL. 8, NO. 6, JUNE 2025 148

Fig. 2.

Fig. 3.

4) Text Extraction (OCR) Module

• Input: Image containing printed/handwritten text.
• Process:

• Convert image to grayscale, apply thresholding
using OpenCV.

• Pass processed image to Tesseract OCR engine.
• Extract readable text.

• Output:
• Plain text output from image.
• Displayed on UI and optionally stored.

Fig. 4

5) Language Translation Module

• Input: Text from OCR module.
• Process:

• Auto-detect source language using Google
Translate API.

• Translate to selected target language (e.g.,
English to Kannada).

• Return translated text.
• Output:

• Display of both original and translated text.
• Enhanced accessibility across languages.

Fig. 5.

Savalagi et al. International Journal of Research in Engineering, Science and Management, VOL. 8, NO. 6, JUNE 2025 149

6) Barcode/QR Code Scanner
• Input: Image or video frame with barcode/QR code.
• Process:

• Use pyzbar/ZBar to detect and decode codes.
• Extract the embedded string or numeric value.

• Output:
• Decoded barcode value (e.g., product ID, URL).
• Displayed on UI and can trigger related actions

(e.g., redirect, lookup).
7) Flask Backend Integration

• Input: User requests via UI (upload image, start
camera).

• Process:
• Flask routes send inputs to respective detection

modules.
• Processed results returned as JSON.
• Backend handles all AI logic and data flow.

• Output:
• Smooth communication between frontend and AI

modules.
• Real-time API responses with results.

8) Frontend Development
• Input: User interactions (button clicks, image uploads,

live stream).
• Process:

• Build UI using HTML, CSS, JavaScript or
React.js.

• Add buttons for switching between modes.
• Connect frontend to Flask backend via

AJAX/Fetch.
• Output:

• User-friendly interface displaying results
instantly.

• Real-time updates with detection boxes, text, and
translations.

Fig. 6.

9) Output Display and Logging
• Input: Final processed results from modules.
• Process:

• Overlay results on image/video frames.
• Log outputs like translated text, barcode data,

object count.
• Output:

• Visual display of detected faces/objects/barcodes.
• Text and translations shown on screen.
• Optional: save logs or generate reports.

5. Results
The Vision AI – Multimodal Detection Suite was

successfully implemented and tested across multiple input types
including images, live webcam streams, and pre-recorded
videos. The results obtained from each module are as follows:

A. Face Detection
• Real-time face detection achieved with high accuracy

using YOLOv5 and MTCNN.
• System accurately identified multiple faces in varying

lighting conditions and angles.
• Output: Faces were highlighted with bounding boxes

and labeled with confidence percentages.

B. Object Recognition
• YOLOv5/YOLOv8 detected and classified common

objects like persons, vehicles, mobile phones, bottles,
etc., with precision above 85%.

• Even in cluttered scenes, the system-maintained speed
and accuracy.

• Output: Each object was labelled in real-time video
with class name and confidence.

C. Text Extraction (OCR)
• Tesseract OCR extracted text from images of printed

documents, labels, and signs with good accuracy.
• Preprocessing like thresholding and noise reduction

improved recognition significantly.
• Output: Extracted text displayed in a readable format

on the interface.

D. Language Translation
• Google Translate API provided real-time translation

of extracted text into selected target languages (e.g.,
English to Kannada).

• System handled multi-language detection and
translation without delay.

• Output: Displayed both the original and translated text
side-by-side.

E. Barcode & QR Code Scanning
• Barcode and QR code detection was instant and

accurate using pyzbar/ZBar libraries.
• System scanned codes from both printed labels and

digital screens effectively.
• Output: Decoded information (URLs, product IDs)

Savalagi et al. International Journal of Research in Engineering, Science and Management, VOL. 8, NO. 6, JUNE 2025 150

displayed clearly.

F. Integration and User Interface
• All modules worked seamlessly through the integrated

web interface.
• Users were able to switch between detection types and

view results in real-time.
• Output: Unified dashboard showing bounding boxes,

translated text, and barcode values live.

6. Conclusion
The Vision AI – Multimodal Detection Suite project

represents a significant step towards building an integrated AI
system capable of performing multiple computer vision tasks
within a unified platform. By combining face detection, object
recognition, text extraction via OCR, language translation, and
barcode scanning, the system addresses a wide spectrum of
real-world challenges spanning security, retail, accessibility,
and information processing domains.

The implementation demonstrated that leveraging state-of-
the-art models such as YOLOv5/YOLOv8 for real-time and
accurate face and object detection can provide reliable results
even under varying environmental conditions. The integration
of Tesseract OCR enabled effective extraction of textual data
from images and video frames, which, when combined with
Google Translate API, allowed for seamless and instant
translation of text into multiple languages—enhancing
communication and usability across linguistic barriers.

Moreover, the barcode and QR code scanning module
augmented the system’s utility for inventory management,
product identification, and quick data retrieval, making it
suitable for retail and logistics applications. The modular design
ensured that each component could function independently
while contributing to a cohesive user experience facilitated
through a web-based interface powered by Flask and modern
frontend technologies.

This paper validates the feasibility and effectiveness of
multimodal AI systems, which can simplify complex tasks by
automating detection, recognition, translation, and decoding in
real time. While the current system performs well, future
enhancements could focus on improving detection accuracy in
challenging scenarios, expanding language and barcode
support, optimizing performance for deployment on mobile or
embedded devices, and incorporating additional modalities
such as speech recognition or gesture detection.

In conclusion, the Vision AI – Multimodal Detection Suite
demonstrates how integrating diverse AI capabilities into a
single platform can offer powerful, scalable, and versatile
solutions, paving the way for smarter applications that bridge
visual and linguistic information processing seamlessly.

References
[1] Viola, P., & Jones, M. (2001). Rapid object detection using a boosted

cascade of simple features. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 511-518.

[2] Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only
Look Once: Unified, Real-Time Object Detection. Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
779-788.

[3] Bochkovskiy, A., Wang, C.-Y., & Liao, H.-Y. M. (2020). YOLOv4:
Optimal Speed and Accuracy of Object Detection. arXiv preprint
arXiv:2004.10934.

[4] Jocher, G., et al. (2021–2023). YOLOv5 and YOLOv8. Ultralytics.
https://github.com/ultralytics/yolov5

[5] Smith, R. (2007). An overview of the Tesseract OCR engine. Proceedings
of the Ninth International Conference on Document Analysis and
Recognition (ICDAR), 629-633.

[6] Wu, Y., Schuster, M., Chen, Z., et al. (2016). Google’s Neural Machine
Translation System: Bridging the Gap between Human and Machine
Translation. arXiv preprint arXiv:1609.08144.

[7] Carrier, J. (2007). ZBar Bar Code Reader. https://zbar.sourceforge.net/
[8] Zhang, K., Zhang, Z., Li, Z., & Qiao, Y. (2016). Joint Face Detection and

Alignment Using Multi-Task Cascaded Convolutional Networks. IEEE
Signal Processing Letters, 23(10), 1499-1503.

[9] Liu, W., Chen, C., & Wong, K.-Y. K. (2016). Scene text recognition with
sliding convolutional character models. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 724-
732.

https://github.com/ultralytics/yolov5
https://zbar.sourceforge.net/

	1. Introduction
	2. Objectives
	3. Literature Survey
	A. Rapid Object Detection using a Boosted Cascade of Simple Features
	B. You Only Look Once: Unified, Real-Time Object Detection
	C. YOLOv4: Optimal Speed and Accuracy of Object Detection
	D. An Overview of the Tesseract OCR Engine
	E. Google’s Neural Machine Translation System: Bridging the Gap Between Human and Machine Translation
	F. ZBar Bar Code Reader
	G. Multi-task Cascaded Convolutional Networks for Face Detection
	H. Scene Text Recognition with Sliding Convolutional Character Models

	4. Methodology
	A. Data Collection and Preparation
	B. Face Detection Module
	C. Object Recognition Module
	D. Text Extraction (OCR) Module
	E. Language Translation Module
	F. Barcode and QR Code Scanning Module
	G. System Integration
	H. 8. Testing and Optimization
	I. Software & Tools
	J. Hardware
	K. System Design
	1) Input Layer:
	2) Processing Layer (Core AI Modules)
	3) Backend Layer
	4) Frontend/User Interface Layer
	5) Output Layer

	L. Implementation Steps
	1) Project Setup
	2) Face Detection Module
	3) Object Recognition Module
	4) Text Extraction (OCR) Module
	5) Language Translation Module
	6) Barcode/QR Code Scanner
	7) Flask Backend Integration
	8) Frontend Development
	9) Output Display and Logging

	5. Results
	A. Face Detection
	B. Object Recognition
	C. Text Extraction (OCR)
	D. Language Translation
	E. Barcode & QR Code Scanning
	F. Integration and User Interface

	6. Conclusion
	References

