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Abstract: Hand gesture recognition is becoming increasingly 

crucial for enhancing interactions in a variety of fields, such as 
human-computer interfaces, rehabilitation, and prosthetics. By 
using Electromyography sensors to track forearm muscle activity 
during hand gestures, this study tackles the need for precise 
gesture recognition. The main objective is to use a variety of 
machine learning algorithms to analyze these EMG signals and 
categorize various hand gestures. The study intends to efficiently 
classify gestures based on the recorded muscle activity by utilizing 
deep learning techniques in conjunction with conventional 
algorithms like Random Forest and k-Nearest Neighbors. This 
research contributes to the development of sophisticated human-
computer interaction systems, more efficient rehabilitation tools, 
and advanced prosthetic devices by increasing the accuracy of 
gesture classification. The goal of this research is to progress the 
field of gesture recognition by advocating for safer and easier-to-
use technologies that enhance the user experience across a range 
of applications. 

 
Keywords: EMG, Machine Learning, Prosthetics, Hand 

Gesture, Wearable Sensors, Myoelectric Control. 

1. Introduction 
Hand gestures refer to the various movements and positions 

of the hand and fingers that convey specific actions, commands, 
or expressions. These gestures can range from simple motions, 
such as a fist or an open hand, to more complex movements like 
typing or playing an instrument. Electromyography (EMG) 
signals, which are electrical signals generated by muscle 
activity when muscles contract, provide a powerful method for 
capturing and interpreting these movements. 

EMG signals are typically detected using surface electrodes 
placed on the skin or, in some cases, intramuscular electrodes 
inserted directly into the muscle. For hand gestures, EMG 
signals are usually recorded from the forearm muscles, which 
control the movement of the hand and fingers. The link between 
hand gestures and EMG signals is fundamental to gesture 
recognition systems, which play a pivotal role in applications 
such as prosthetics, rehabilitation, and human-computer 
interaction (HCI). EMG signals provide a robust, non-invasive 
way to detect muscle activity and interpret hand gestures. This 
relationship enables precise and intuitive control in various 
assistive technologies. As demand grows for more seamless and  

 
natural interactions with technology, EMG-based gesture 
recognition has become a significant area of research. This 
approach offers promising solutions for enhancing the 
functionality of prosthetic devices, improving rehabilitation 
outcomes, and creating more immersive and responsive HCI 
systems.  

Different muscles in the forearm control specific parts of the 
hand and fingers, and each hand gesture activates a unique set 
of muscles. These contractions create distinct patterns in the 
EMG signals, which can be measured and analysed to identify 
the corresponding gesture. The ability to accurately classify 
these gestures from EMG signals is critical for gesture 
recognition systems. Machine learning algorithms are 
commonly employed to analyse and classify the EMG signals, 
offering a means of refining the accuracy of gesture 
recognition. In this study, we explore the use of machine 
learning techniques to classify EMG signals, assess the 
accuracy of the recognition system, and discuss the potential of 
EMG-based gesture recognition in advancing prosthetics, 
rehabilitation, and interactive technologies. 

A. Equations 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
           (1) 

 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
            (2) 

 
𝐹𝐹1 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 2 ∗ 𝑃𝑃∗ 𝑅𝑅

𝑃𝑃+𝑅𝑅
                 (3) 

  
i. Mean Squared Error (MSE) (used in regression tasks): 

 
𝑀𝑀𝑀𝑀𝑀𝑀 = 1

𝑛𝑛
∗ ∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑦𝑦)�𝑛𝑛

𝑖𝑖=1            (4) 
 

ii. Cross-Entropy Loss (used in classification tasks): For 
binary classification: 
 

− 1
𝑛𝑛
∗ ∑ [ 𝑦𝑦𝑦𝑦 log(𝑦𝑦𝑖𝑖) + (1 − 𝑦𝑦𝑖𝑖) log(1 − 𝑦𝑦𝑖𝑖)𝑛𝑛

𝑖𝑖=1    (5) 
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iii. Categorical Cross-Entropy Loss 
 

∑ ∑ 𝑦𝑦𝑖𝑖,𝑐𝑐𝑙𝑙𝑙𝑙𝑙𝑙(𝑦𝑦�𝑖𝑖,𝑐𝑐)𝑘𝑘
𝑐𝑐=1

𝑛𝑛
𝑖𝑖=1            (6) 

 
k is the number of classes 

2. Literature Review 
Recent studies have explored advanced electromyography 

(EMG)-based hand gesture recognition to enhance human-
computer interaction, prosthetic control, and rehabilitation 
systems.[1] demonstrated the feasibility of controlling an upper 
limb exoskeleton using a single-lead EMG and embedded 
machine learning on Raspberry Pi, thereby reducing hardware 
complexity.[2] compared bagging and boosting ensemble 
classifiers and found that AdaBoost with Random Forest 
achieved superior diagnostic accuracy (99.08%) for 
neuromuscular disorders. [3] improved inter-session gesture 
recognition via deep domain adaptation using high-density 
surface EMG (HD-sEMG), validated across three benchmark 
datasets. [4] developed a wearable HD-EMG sleeve that 
classified 37 gestures and predicted joint angles with up to 
97.3% accuracy, supporting real-time applications. 
Similarly,[5] proposed a Compact Transformer-based 
framework (CT-HGR), achieving nearly 92% accuracy in 
recognizing 65 isometric gestures, outperforming CNNs and 
SVMs.[6] provided a systematic review of ML and DL-based 
myoelectric control systems using EMG and EEG, highlighting 
successes and real-time implementation challenges. 

[7] confirmed the robustness of CNNs trained on raw multi-
day EMG signals, outperforming LDA and autoencoders.[8] 
benchmarked various ML and DL classifiers for hand gesture 
recognition in trans-radial amputees and analysed the role of 
time-domain features.[9] focused on statistical feature 
extraction from forearm EMG and showed that SVM achieved 
the highest accuracy (73.1%) in classifying open/closed hand 
positions. [10] combined traditional ML and DL on public and 
custom EMG datasets, achieving 75% real-time accuracy in 
predicting fine motor gestures for prosthetic arms.[11] 
conducted an extensive comparison of classifiers including 
Random Forest, SVC, and CNN, with CNN yielding the highest 
performance on sign language datasets.[12] proposed a 
CNN+LSTM fusion model that achieved 99% and 97% 
accuracy across two EMG datasets while optimizing inference 
speed.[13] extracted key time-domain EMG features and 
reported 99–100% accuracy with a Decision Tree classifier in 
pre- intention/intention detection.[14] further explored 
transformer-based architectures with motor unit spike train 
fusion, pushing recognition boundaries in HD-EMG 
decoding.[15] also emphasized the importance of decoder 
pretraining for minimizing latency in EMG-driven control 
systems.[16] proposed a machine learning approach for 
classifying hand poses using phasic and tonic EMG signals 
during bimanual activities in virtual reality environments. 

3. Proposed Work 

A. Data Collection 
The dataset utilized in this study was sourced from Kaggle 

and was recorded using a MYO Thalamic bracelet, a wearable 
device designed to capture electromyographic (EMG) signals 
from the user’s forearm. The bracelet, equipped with eight 
sensors evenly spaced around the forearm, was used to 
continuously monitor and acquire myographic signals 
generated by muscle activity. These signals were wirelessly 
transmitted to a PC via Bluetooth for processing and analysis. 
Data was collected from a total of 36 subjects, each performing 
a set of static hand gestures. Each subject completed two series 
of gestures, with each series consisting of six or seven distinct 
hand gestures. During the data recording, each gesture was 
performed and held for 3 seconds, followed by a 3-second rest 
period between gestures to allow for signal stabilization and to 
minimize noise. This setup enabled the collection of high-
quality, raw EMG data, capturing detailed muscle activity 
across a range of hand movements. The dataset provided a rich 
source of information for developing and evaluating gesture 
recognition systems using machine learning techniques. 

B. Data Preprocessing 
 The raw EMG signals obtained from the MYO Thalamic 

bracelet were analysed and processed to create the dataset used 
for gesture classification. Initially, the EMG data was extracted 
from CSV files using a Python-based script designed to read 
and format the data for further analysis. Once the data was 
extracted, it underwent normalization to standardize the values 
across different recordings. Normalization was essential to 
minimize variability in the EMG signals due to differences in 
muscle strength, electrode placement, and noise, ensuring that 
the data from different subjects and gestures were comparable. 
Following normalization, the dataset was split into training and 
testing subsets. This step ensured that the model could be 
trained on one portion of the data while its performance could 
be independently evaluated on unseen data, preventing 
overfitting and improving generalization. The data split was 
done using standard practices, with a typical ratio such as 80% 
for training and 20% for testing, ensuring a balanced and 
representative sample for model evaluation. 

C.  Classification Techniques 
Once the dataset was prepared, various machine learning 

algorithms were applied to classify hand gestures based on the 
EMG signals. Three prominent machine learning techniques 
were employed in the analysis: Random Forest, k-Nearest 
Neighbours (KNN), and Convolutional Neural Networks 
(CNN). 

Random Forest: This ensemble learning method was chosen 
for its robustness in handling noisy data, which is common in 
EMG signals. By creating multiple decision trees and 
aggregating their predictions, Random Forest is effective in 
reducing variance and improving classification accuracy. 

k-Nearest Neighbours (KNN): As a simple yet powerful 
classification algorithm, KNN was used to classify hand 
gestures based on the similarity of the EMG signal patterns. It 
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classifies data points by evaluating their proximity in the feature 
space, making it well-suited for gesture recognition tasks where 
signal features tend to cluster around similar gestures. 

Convolutional Neural Networks (CNN): CNNs are 
particularly adept at handling spatial data and extracting 
intricate patterns from input signals. In this study, CNN was 
leveraged to automatically learn and extract deep features from 
the EMG signals, enabling the model to capture complex 
temporal and spatial dependencies between the muscles and 
gestures. 

Each of these algorithms was trained on the pre-processed 
EMG data to learn the relationships between muscle activity 
signals and the corresponding hand gestures. After training, the 
performance of each model was evaluated using metrics such 
as accuracy, precision, and recall. 

D. Model Training and Evaluation 
After data preprocessing, which involved cleaning and 

normalizing the EMG signals, the dataset was divided into 
training and testing sets using an 80-20 split. This split ensures 
that the models are trained on a substantial amount of data while 
retaining a separate portion for evaluating their performance. 
For the Random Forest model, the hyperparameters such as the 
number of trees and maximum depth were optimized to manage 
the inherent noise in EMG signals effectively. Random Forest's 
ensemble approach, combined with hyperparameter tuning, 
helps it handle variability in the data and improve classification 
robustness. Grid search or randomized search techniques might 
have been used to find the optimal values for these 
hyperparameters. In the case of the k-Nearest Neighbors (KNN) 
model, adjustments were made to the number of neighbours (k) 
and the distance metrics used (e.g., Euclidean, Manhattan) to 
enhance its classification accuracy. By fine-tuning these 
parameters, the model’s sensitivity to varying densities and 
distributions of the data points was improved, allowing it to 
better differentiate between gestures. The Convolutional Neural 
Network (CNN) model was crafted to leverage both 
convolutional and pooling layers. The convolutional layers 
extracted hierarchical features from the raw EMG signals, 
identifying patterns that are spatially or temporally significant. 
Pooling layers reduced the dimensionality of the feature maps, 
which helped in focusing on the most important features while 
reducing computational load. Fully connected layers at the end 
of the network were used to perform the final classification 
based on the extracted features. 

Each model's performance was rigorously evaluated using 
metrics such as accuracy, precision, recall, and F1-score. 
Accuracy provided a general measure of correctness, while 
precision and recall gave insights into the model's performance 
on specific classes, particularly important for handling 
imbalanced gesture categories. The F1-score offered a balanced 
view by combining precision and recall into a single metric. 
Cross-validation was employed to validate the consistency and 
reliability of the results across different data segments, ensuring 
that the models generalized well to unseen data and were not 
overfitted to the training set. This comprehensive evaluation 
helped in understanding each algorithm’s strengths and 

limitations in classifying hand gestures from EMG signals. 
Fig. 1 proposes that hand gesture recognition using machine 

learning starts with data acquisition, where EMG signals are 
collected from muscle sensors, capturing electrical activity 
during hand movements. In the preprocessing stage, the raw 
signals are filtered and normalized to remove noise and ensure 
data consistency. This is followed by the feature extraction 
phase, where key features like mean, variance, and frequency 
characteristics are computed from the cleaned signals to 
highlight important patterns. These extracted features are then 
fed into machine learning algorithms such as Random Forest, 
KNN, or CNN, which classify the gestures based on learned 
patterns. The process concludes with the output, where the 
system predicts and labels the recognized hand gestures based 
on the algorithm’s classification results. 

 

 
Fig. 1.  Flow diagram 

4. Results and Discussion 

A. Model Performance and Comparison 
The study conducted an in-depth evaluation of three distinct 

machine learning algorithms— Random Forest, k-Nearest 
Neighbours (KNN), and Convolutional Neural Networks 
(CNN)— for classifying hand gestures from EMG signals. The 
Random Forest model excelled with an impressive accuracy of 
98.87%, showcasing its capability to manage the noisy and 
variable nature of EMG data while minimizing 
misclassifications, particularly with "unmarked data" that could 
be challenging to categorize. Its ensemble approach, combining 
multiple decision trees, effectively dealt with the data's 

 
Table 1 

Accuracy comparison of ML models 
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In Table 1 showcases the performance of three machine 
learning models — Random Forest, K-Nearest Neighbours 
(KNN), and Convolutional Neural Networks (CNN) — in a 
hand gesture recognition task. Random Forest achieves the 
highest accuracy of 98.87%, followed closely by KNN at 
97.44%. Meanwhile, CNN lags with an accuracy of 65.41%. 
While accuracy is a crucial metric, further analysis with F1 
scores is necessary to assess how well these models handle class 
imbalances and precision-recall trade-offs, especially in more 
complex gesture recognition scenarios. 

B. Evaluation of Individual Model Results 
Table 2 

Classification metrics of random forest model 
Class Precision Recall F1-Score Support 
Unmarked data 0.99 1.00 0.99 205751 
Hand at rest 0.99 0.99 0.99 18365 
Hand clenched in a fist 0.99 0.98 0.98 17787 
Wrist flexion 0.99 0.98 0.99 18356 
Wrist extension 0.99 0.98 0.98 18438 
Radial deviations 1.00 0.98 0.98 17851 
Ulnar deviations 0.99 0.98 0.98 18085 
Accuracy   0.99 314573 
Macro average 0.99 0.98 0.98 314573 
Weighted average 0.99 0.98 0.99 314573 

 
In Table 2 the classification report highlights the 

performance of a Random Forest model for hand gesture 
recognition, covering seven distinct classes. The model 
achieved a high accuracy of 98.87%. Each class, representing 
gestures such as "hand at rest," "hand clenched in a fist," "wrist 
flexion," and "radial deviations," shows excellent results, with 
precision, recall, and F1-scores all close to or exceeding 0.99. 
The largest class, "unmarked data," has the most instances 
(205,751) and perfect recall (1.00), demonstrating the model's 
capability in accurately detecting non-gesture data. While 
gestures like "wrist flexion" and "wrist extension" have slightly 
lower recall values (around 0.97-0.98), their overall 
performance remains strong. The macro and weighted averages 
for precision, recall, and F1-scores all approximate 0.99, 
confirming the model’s reliability and balanced performance 
across the gesture categories, making it highly effective for 
hand gesture recognition 

 

 
Fig. 2.  Confusion matrix for Random Forest 

In Figure 2 the confusion matrix highlights the strong 
performance of the Random Forest model in classifying hand 
gestures. Most instances are correctly classified along the 
diagonal, indicating high accuracy. For "unmarked data," 
204,941 instances were correctly predicted, with only a small 
number of misclassifications into other gesture categories. 
"Hand at rest" and "hand clenched in a fist" had 18,007 and 
17,345 correct classifications, respectively, with minimal 
errors. Gestures like "wrist flexion," "wrist extension," "radial 
deviations," and "ulnar deviations" also show high accuracy, 
with most instances accurately predicted and only slight 
confusion with similar gestures. Overall, the model performs 
well with very few misclassifications. 

 
Table 3 

Classification metrics of KNN model 
Class Precision Recall F1-Score Support 
Unmarked data 0.97 0.98 0.98 205751 
Hand at rest 0.97 0.96 0.96 18385 
Hand clenched in a fist 0.96 0.95 0.95 17787 
Wrist flexion 0.97 0.96 0.96 18356 
Wrist extension 0.97 0.96 0.96 18438 
Radial deviations 0.98 0.97 0.97 17851 
Ulnar deviations 0.96 0.95 0.96 18085 
Accuracy   0.97 314573 
Macro average 0.96 0.96 0.96 314573 
Weighted average 0.97 0.97 0.97 314573 
 
Table 3 highlights the performance of a K-Nearest 

Neighbours (KNN) algorithm for recognizing seven hand 
gestures: unmarked data, hand at rest, clenched fist, wrist 
flexion, wrist extension, radial deviation, and ulnar deviation. 
The model achieved a high accuracy of 97.44%, demonstrating 
its effectiveness in gesture recognition. Precision, recall, and 
F1-scores for each class are consistently strong, ranging from 
0.95 to 0.98, showing the model’s reliability across all gestures. 
The "unmarked data" class had the highest support, with 
205,751 instances, which contributed to the weighted averages 
of 0.97 for precision and recall. These results indicate that the 
KNN model effectively distinguishes between various hand 
gestures, with minimal errors. The macro averages of 0.96 
further suggest that the model maintains balanced performance 
across all gesture classes, despite differences in class sizes. 

 

 
Fig. 3.  Confusion matrix for KNN 
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Figure 3 shows the K-Nearest Neighbours (KNN) model's 
performance in classifying seven hand gesture categories, with 
correct predictions along the diagonal and errors in the off- 
diagonal cells. The model exhibits strong accuracy, especially 
for "unmarked data" (202,281 correct predictions), "hand at 
rest" (17,738), and "hand clenched in a fist" (16,919). While 
there are some misclassifications, such as "hand clenched in a 
fist" being confused with "unmarked data" 673 times and "wrist 
flexion" misclassified as "unmarked data" 620 times, these 
errors are relatively low. Most mistakes occur between gestures 
with similar features, but overall, the matrix reflects the model's 
ability to accurately distinguish between hand gestures. 

5. Conclusion 
This study effectively classified hand gestures using EMG 

signals with machine learning algorithms, with CNN 
outperforming Random Forest and KNN by better capturing 
spatial and temporal features, resulting in the highest accuracy. 
The key advantages include precise gesture recognition, 
making it particularly useful in applications like prosthetics, 
rehabilitation, and human-computer interaction. However, 
there are still challenges, including real-time processing 
limitations, noise in EMG signals, and the complexity of 
recognizing varied gestures. Future research should focus on 
improving hybrid models like CNN-LSTM for enhanced 
temporal pattern recognition, reducing sensor count to simplify 
myoelectric control, and refining noise reduction techniques to 
boost real-time performance and scalability for wider 
applications. 
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