
International Journal of Research in Engineering, Science and Management
Volume 8, Issue 6, June 2025
https://www.ijresm.com | ISSN (Online): 2581-5792

*Corresponding author: gkrishna18@gmail.com

96

Abstract: Software Bug Prediction (SBP) serves as an essential

process that predicts potential problems before software
deployment to achieve software success. The detection of issues
during development dramatically advances system performance
quality and reduces needs for financial investments. The accuracy
of software bug prediction has been greatly enhanced and
expenses have been decreased with the inclusion of Machine
Learning (ML) methods. A technique based on Deep Neural
Networks (DNNs) is suggested in this research to enhance the
accuracy of defect prediction. The method involves preprocessing
the CM1 NASA dataset followed by ANOVA F-test feature
selection and resolving class imbalance through ADASYN
implementation. The DNN model gained 95% accuracy during
training with optimized hyperparameters and exceeded both
traditional Support Vector Machines with 87% accuracy and
Random Forest with 86.94% accuracy. The model demonstrates
accurate performance by delivering 99% precision alongside 95%
recall, which minimizes defective detection errors. The model
shows its excellence at detecting complex software defect patterns
through experimental validation. The suggested method improves
software quality by providing a data-driven, scalable solution.

Keywords: Software Engineering, Software Defects, Bugs, Fault

Prediction, Software Reliability, Bug Prediction, Defect
Estimation, Machine Learning, CM1 Dataset.

1. Introduction
The software engineering is the study of the requirements,

design, implementation, testing, installation and servicing of
the software, it is indeed a mannered approach towards
preparing for the development of software [1]. Nonetheless, an
effective software development methodology will always be
susceptible to defects and errors due to the involvement of
humans in the process at different levels. Software errors,
commonly known as bugs, faults or failures, are a major
concern influencing software performance or functionality [2].
Software defects may be regarded as flaws that cause the
software to be incorrect or not to produce the desired result. Due
to many tasks during software development are carried out by
humans, which may arise many software defect problems [3].
Software development life cycles include requirements
gathering, design, coding, testing, deployment, and
maintenance, all of which are potential points of failure.
Software testing is important for software products to maintain

software quality and reliability [4]. The rapid growth of
software applications requires more testing, which is expensive
and time-consuming. When it comes to software defect
detection, software defect prediction techniques are
considerably more economical than software testing and
evaluations [5].

Traditional software testing approaches, though essential, are
resource-intensive and may not always detect all potential
defects before deployment. This has led to the growing need for
intelligent, automated defect prediction techniques. The
primary goal of SBP methods is to separate the software
components that are broken from those that are not. In terms
of software's dependability, performance, and operating costs,
bugs are a major headache [6]. The abundance of hidden
problems makes software defect-free design extremely
challenging, even when programs are used with great care.
Multiple techniques, including statistical analysis, ML expert
systems and others, can help identify software issues.

Software professionals can enhance the quality of their
products through the combination of software metric analysis
with ML methods that anticipate software defect occurrences.
A predictive analytical solution based on ML has emerged as a
robust software bug prediction method that utilizes past defect
information to identify meaningful patterns that lead to module-
based defect classification. Tool classification and ensemble
learning reduce the false positives while enhancing the
generalization of the models to foster correct decision-making
in software quality assurance [7]. An enhanced software bug
prediction model using machine learning, accompanied by
hybrid machine learning with the utilization of the best methods
in predictive analytics.

A. Motivation and Contribution of Paper
Software reliability is significant in today’s development

process since the bugs remain undiscovered and can result in
losses, security breaches, or product breakdowns. Class
imbalance is a major problem in conventional bug prediction
methods because it can lead to an undesirable set of
configurations, unoptimal feature selection, and lack of
generalization. However, the research in the area of defect
prediction has resulted in the development of machine learning

Efficient Machine Learning Approach Based
Bug Prediction for Enhancing Reliability of

Software and Estimation
Gopikrishna Maddali*

Independent Researcher, USA

Maddali et al. International Journal of Research in Engineering, Science and Management, VOL. 8, NO. 6, JUNE 2025 97

models for accurate bug detection, especially in imbalanced
datasets are still lacking robust ones. This research also
improves bug prediction when enhanced preprocessing, feature
selection, and deep learning models are applied to optimize
software reliability.

• Addressing missing values, noise, and outliers in the
CM1 NASA dataset ensures data integrity, improving
model robustness.

• Employing Select KBest with the ANOVA F-test
helps retain the most significant features, reducing
computational overhead and enhancing predictive
accuracy.

• To ensure fair model training, it is useful to use the
ADASYN method to produce synthetic samples for
the minority class. This successfully mitigates data
imbalance.

• Implementing a deep Neural Network (DNN)
optimized with the ReLU activation function and
cross-entropy loss improves the model’s learning
efficiency and predictive power.

• Take the confusion matrix's F1-score, recall, accuracy,
and precision into account when assessing the model's
ability to execute.

B. Justification and Novelty of Paper
The DNN-based feature selection for software defect

prediction is a better strategy than the conventional ML models
as it does not face problems of identifying complex patterns in
the models and class-imbalance issues. The proposed method is
different from classifiers like SVM and RF as it fails in high
dimensions and as well as imbalanced data sets, where the
proposed work includes advanced preprocessing, feature
selection using ANOVA F-test, and generated synthetic data by
ADASYN. The DNN model does well to enhance the detection
of defects without generating many false-positive and false-
negative results. The novelty of this work lies in its optimized
deep learning architecture, rigorous hyperparameter tuning, and
robust evaluation, which collectively enhance software quality
and reliability. Additionally, this study provides a scalable
framework adaptable to real-world software engineering
applications, making it a valuable contribution to defect
prediction research.

C. Structure of Paper
The remainder of the paper is organized as follows. Section

I and Section II provide a background study on Bug Prediction
for Enhancing Software Reliability and Estimation. In Section
III, the methodology is detailed. Section IV compares the
findings, analysis, and discussion. In Section V, the study's
results and potential future paths are laid forth in detail.

2. Literature Review
This study is based on a review and analysis of prior

significant research on software dependability and bug
prediction.

Shaikh and Ghosh (2024) using diverse datasets highlights
the efficacy of the proposed technique, surpassing established

approaches like PCA, LDA, and Kernel PCA(KPCA) in
capturing intricate program semantics. Using several classifiers
like decision tree, NB, RF, KNN, and SVM, achieved the
accuracy in the article up to 73 % and by merging all datasets
and improving deep learning models i.e. ANN, achieved the
papers highest accuracy of up to 95 % [8].

R et al. (2024) propose a robust hybrid model that integrates
LSTM networks and XGBoost to improve bug prediction
accuracy. The proposed model achieved a remarkable accuracy
of 92.81 %, outperforming nine existing models, including RF,
SVM, and ANN. Additionally, the model demonstrated
superior performance in recall (91.43%) and F1score (0.915),
indicating its effectiveness in both identifying bugs and
minimizing false positives [9].

Han, Huang and Liu (2024) propose the bjCnet framework
for software defect prediction, which is based on contrastive
learning. It achieves accurate defect prediction by optimizing
the Transformers-based pre-trained code large language model
using a supervised contrastive learning network. Evaluating
bjCnet's effect on forecasts, the results demonstrate that bjCnet
surpasses the cutting-edge approaches used for comparison,
achieving accuracy and f1-score of 0.948, respectively [10].

G and Charles (2024) proposed methodology includes
normalization of data, application of neural network
architectures, and extensive experimentation with varying
parameters. Results demonstrate that CNN outperforms SSAE,
achieving a higher accuracy range of 0.84 to 0.93 compared to
SSAE’s 0.80 to 0.90, particularly excelling on the PC1 dataset
with an accuracy of 0.93. Both models, however, show strong
capabilities in predicting software defects, with CNN
consistently delivering better performance across diverse
datasets [11].

Bharath and Jagadeesh (2023) included two machine-
learning techniques, Logistic Regression and the innovative
Random Forest. Based on a statistical power (G-power) of 80%,
a significance level (alpha) of 0.05, and a desired level of type
II error (beta) of 0.2, a sample size of 10 per group was judged
to be appropriate. The research findings indicate that the
Random Forest strategy had a greater accuracy rate of 78.59%
in comparison to the Logistic Regression technique, which
attained a success rate of 76.54% [12].

Baronia and Gupta (2023) explores machine learning
algorithms and defect prediction approaches to address these
challenges. The overall accuracy levels stood at 99.36% on
average across all the software systems, which translates into
higher levels of accuracy. The proposed method can be of great
value for software development teams and stakeholders because
of its ability to offer very accurate predictions for any number
of software projects. The proposed approach is intended to be
effectively used for identifying potential issues and improving
the software quality [13].

Kukkar et al. (2023) to extract more significant information
for issue severity categorization, a strategy based on ant colony
optimization (ACO) is suggested. Acc-uracy, Pre-cision, Re-
call, and F1measure are the four parameters that can explain the
results of the simulation. Precisely, the performance analysis
sees ACO-F-SVM, ACO-NB, ACO-SVM, ACO-DeepFM, NB,

Maddali et al. International Journal of Research in Engineering, Science and Management, VOL. 8, NO. 6, JUNE 2025 98

SVM, F-SVM, DeepFM techniques yielding an accuracy
ranging from 85.73% to 89.38%, 78%-80%, 73%-76%, 92.67-
97.27%, 71%-77%, 65%- 74%, 78 .21%- 81.28% as well as
90.02%- 95.24% for five benchmark projects [14].

Table 1 provides the backdrop research of Bug Prediction for
Enhancing Software Reliability and Estimation, including its
dataset, models, performance, and contribution.

3. Research Methodology

Fig. 1. Proposed flowchart for software bug prediction

A multiple-step process enables the new machine learning-

based prediction system to enhance software reliability and
estimation. Preprocessing at the initial stage focuses on data
cleanup by filling in missing values and handling outliers while
removing noisy data from the CM1 NASA dataset.
Subsequently, the features undergo min-max normalization,
which scales their values between 0 and 1. The most relevant
features are chosen through Select KBest under the ANOVA F-
test selection technique. The ADASYN platform develops
synthetic examples for minority class populations to fix an
unbalanced class distribution. The data is then split into 70%
training and 30% testing sets. Model is trained to predict bug
occurrences, with the forward propagation and backpropagation
processes optimized through a REL activation function and
cross-entropy loss function. Finally, crucial measures based on
the confusion matrix, such as accuracy, precision, recall, and

F1score, are utilized to assess how well the model performs in
enhancing software dependability and issue prediction. The
following steps of methodology are shown in Figure 1. Each
step of a proposed flowchart for software bug prediction is
provided below:

A. Data Collection
Data was collected from the CM1 NASA dataset. The dataset

contains twenty-one static metrics, or columns, that indicate
different parts of software size and complexity; each entry
stands for a software module with twenty-two columns or
features. Figure 2 shows a heatmap representation of the
correlations between attributes.

Fig. 2. Heatmap of the features

Figure 2 displayed a heatmap of the feature-by-feature

correlation matrix; stronger positive correlations are indicated
by darker blue shades. The axes are labeled with feature names,
and the diagonal shows perfect self-correlation. The heatmap
highlights strong and weak correlations between feature pairs,
with some features highly correlated and others showing

Data preprocessing

Handle missing
values

Remove
outliers

Remove
noise

Min-Max
Normalization

Feature selection
with Select Best

Data splitting
Training

Testing

Model evaluation
accuracy, precision,
recall and f1 score

Implement Deep
Neural network

CM1 NASA dataset

Balancing with
ADASYN

Detect bug

Table 1
Overview of recent studies on software bug prediction using machine learning

Author Proposed Work Dataset Key Findings Challenges/Gaps
Shaikh &
Ghosh (2024)

Fault likelihood prediction for
enhanced resource allocation

Multiple datasets ANN achieved 95% accuracy,
surpassing PCA, LDA, and KPCA

Requires further validation on real-
world projects; lacks scalability
analysis

R et al. (2024) Hybrid bug prediction model
integrating LSTM and
XGBoost

Open-source
repositories

Achieved 92.81% accuracy, with
high recall (91.43%) and F1-score
(0.915)

Limited generalizability to non-
sequential data; potential overfitting
concerns

Han, Huang &
Liu (2024)

Contrastive learning-based
software defect prediction
(bjCnet)

Multiple datasets bjCnet achieved 94.8% accuracy and
outperformed state-of-the-art models

Dependency on large pre-trained
models; computationally expensive

G & Charles
(2024)

Deep learning-based software
defect prediction using CNN
and SSAE

PC1 dataset CNN achieved 93% accuracy,
outperforming SSAE

Limited dataset scope; needs
evaluation on real-world software
projects

Bharath &
Jagadeesh
(2023)

Comparison of Logistic
Regression and Random Forest
for defect prediction

Multiple datasets Random Forest achieved 78.59%
accuracy, outperforming Logistic
Regression

Requires integration of advanced
feature engineering techniques

Baronia &
Gupta (2023)

ML-based defect prediction to
improve software reliability

Multiple software
systems

Achieved 99.36% accuracy,
significantly improving reliability
predictions

Lack of detailed feature importance
analysis; potential dataset bias

Kukkar et al.
(2023)

ACO-based feature extraction
for bug severity classification

Eclipse, Mozilla,
OpenFOAM, JBoss,
Firefox

ACO-DeepFM achieved highest
accuracy (97.27%), improving
classification performance.

Computational overhead due to
ACO-based feature selection; limited
interpretability

Maddali et al. International Journal of Research in Engineering, Science and Management, VOL. 8, NO. 6, JUNE 2025 99

minimal or no correlation. Numerical values within the cells
provide precise information on the strength and direction of
these relationships.

B. Data Preprocessing
Preprocessing removed noise, outliers, and missing values

from the benchmarked CM1 NASA dataset, ensuring its
integrity for future analysis. The data is transformed and
normalized as part of the preprocessing. The following steps of
pre-processing are as follows:

• Handle missing value: The knowledge that the mean
value of a numeric column is used to fill in missing
values, thus maintaining the central tendency, is
essential. Whereas, categorical columns are filled
using the mode value, which is the most frequent
category, ensuring that the original distribution of
categories is maintained as closely as possible.

• Remove Outliers: The findings could be skewed
because of the abundance of outliers in the dataset,
which might change the sample mean and variance.

• Remove noise: Taking the median and interquartile
range into account can help cut down on noise caused
by outliers.

C. Max-Min Normalization
This study's min-max normalization sets all features' values

to a range from 0 to 1 [15]. Equation (1) represents this
approach:

𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑋𝑋−𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚

𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚−𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚
 (1)

where Xmin and Xmax represent the data feature's lowest

and maximum values, respectively, and X represents the data
feature's current value.

D. Feature Selection with SelectKBest
Find the most significant features by using the Select K Best

technique when combined with the ANOVA F-test. Select the
desired number of features to be preserved[16]. To find the best
features, the Select K Best technique takes each feature's score
relative to the target variable and uses that score to choose the
top k features [17]. To improve the model's performance, this
method focuses on the features that are most strongly related to
the dependent variable.

E. Balancing with ADASYN
The idea of SMOTE is expanded by the adaptive synthetic

sampling (ADASYN) method, which highlights the
significance of the categorization boundary in difficult minority
classes [18]. The ADASYN is a multi-stage oversampling
method. Finding the minority-to-majority class ratio is the first
order of business. A ratio of this kind may be expressed as
Equation (2).

𝑇𝑇 = 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚
 (2)

The ADASYN algorithm is initialized using the fraction T.

The following Figure 3 presents the balancing visualization.

Fig. 3. Bar graph for before and after data balancing

Figure 3 compares class applying the ADASYN technique

for data balancing. On the left, the dataset is highly imbalanced,
with class 0 (blue) having around 400 samples and class 1
(peach) only about 50. After applying ADASYN (right panel),
both classes are balanced with roughly 400 samples each,
demonstrating ADASYN's effectiveness in generating
synthetic samples for the minority class. This balancing helps
reduce classifier bias and may improve model performance,
particularly for predicting the minority class.

F. Data Splitting
There is a 70% training set and a 30% testing set, with the

dataset split down the middle.

G. Deep Neural Networks (DNNs) Model
A well-known deep learning method is the deep neural

network (DNN). The three fully connected layers that make up
a DNN's network architecture are the input, hidden, and output
layers[19], [20]. Each neuron is linked to every other neuron in
the subsequent layer, but it is not connected to any neurons in
the layers above or below. The impact of network learning is
strengthened by an activation function that acts on the output
after each network layer. As a result, DNN may also be thought
of as a big perceptron made up of many smaller ones. For
instance, Equation for the ith layer forward propagation
computation is (3).

𝑥𝑥𝑛𝑛+1 = 𝜎𝜎(∑𝑤𝑤𝑛𝑛𝑥𝑥𝑛𝑛 + 𝑏𝑏) (3)

where 𝑥𝑥 denotes an input value, 𝑤𝑤 illustrates the matrices of

weight coefficients and 𝑏𝑏 denotes the bias vector[21]. The
activation function of a multi-class network often uses ReLU,
using the following Equation, as shown in (4).

𝜎𝜎(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑥𝑥(0, 𝑥𝑥) (4)

The network's backpropagation is optimized using the loss

function, which assesses the output loss of training samples and
determines the network's structure. It is common practice to use
cross-entropy as the loss function in classification tasks; its
Equation is (5).

𝐶𝐶 = − 1

𝑁𝑁
∑ ∑ (𝑦𝑦𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝑛𝑛)𝑀𝑀

𝑛𝑛=1𝑥𝑥 (5)

Maddali et al. International Journal of Research in Engineering, Science and Management, VOL. 8, NO. 6, JUNE 2025 100

Here, 𝑁𝑁 stands for the number of input data sets, 𝑀𝑀 for the
number of categories, 𝑦𝑦𝑦𝑦 for the likelihood that the classification
𝑦𝑦 matches the actual category, and 𝑝𝑝𝑦𝑦 for the probability of
forecasting into category 𝑦𝑦. The DNN was configured with
ReLU activation, Adam optimizer (learning rate 0.001), batch
size 32, and 4,000 epochs. Cross-entropy loss handled binary
classification, with dropout (0.2) preventing overfitting. The
initialization improved stability, and early stopping based on
validation loss ensured optimal training.

H. Evaluation Metrics
This concludes the prediction model. Here, you may assess

the accuracy of the predictions by using tests like as the
confusion matrix, f1-score, and classification accuracy. Data
from a confusion matrix determine the statistical significance
of each parameter. The following instances of confusion matrix
are:

• TP True Positive: describes the positive tuples
correctly labeled by the classifier.

• FP False Positive: details the instances when the
classifier made a mistake in labeling positive tuples.

• FN False Negative: is used to describe the negative
tuples that the classifier mislabeled.

• TN True Negative: describes the classifier's successful
classifications of negative tuples.

Accuracy: The ratio of accurate predictions to all of the
testing dataset's predictions is known as accuracy. It is given as
Equation (6).

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚𝐴𝐴𝑦𝑦 = TP+TN

TP+Fp+TN+FN
 (6)

Precision: The fraction of correctly predicted positive class

outcomes that turn out to be positive is known as precision.
Finding the value is as simple as dividing the sum of all positive
observations anticipated by the sum of all positive observations
correctly predicted. This is represented as Equation (7).

𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑦𝑦𝑃𝑃𝑦𝑦𝑙𝑙𝑃𝑃 = TP

TP+FP
 (7)

Recall: The percentage of right positive predictions as a

percentage of all correct positive samples is called recall. In
mathematical form, it is given as Equation (8).

𝑅𝑅𝑃𝑃𝐴𝐴𝑚𝑚𝑙𝑙𝑙𝑙 = TP

𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁
 (8)

F1 score: A model's F1 score, which is a measure of its

accuracy on a dataset, is determined by taking the harmonic
mean of its recall and precision. Mathematically, it is given as
Equation (9).

𝐹𝐹1 − 𝑃𝑃𝐴𝐴𝑙𝑙𝐴𝐴𝑃𝑃 = 2 × 𝑇𝑇𝑛𝑛𝑛𝑛𝑃𝑃𝑛𝑛𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛×𝑅𝑅𝑛𝑛𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛

𝑇𝑇𝑛𝑛𝑛𝑛𝑃𝑃𝑛𝑛𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛+𝑅𝑅𝑛𝑛𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛
 (9)

When used together, these metrics reveal the model's potency

in predicting the dependent variable.

4. Results and Discussion
This section examines an experimental outcome derived

from the suggested software bug predictions. Python is used
for the execution, and the hardware is a 2 GHz dual-core
machine running 64-bit Windows with 4 GB of RAM. We used
the six assessment metrics accuracy, precision, recall, and F-
measure for experimental analysis. The results of the suggested
DNN model are shown in Table II. The model's 95% accuracy
rate shows how well it can distinguish between positive and
negative examples. The precision of 99% indicates a very low
rate of FP, meaning that the majority of predicted bugs are
indeed actual bugs. With a recall of 95%, the model
successfully identifies 95% of the actual bugs present,
minimizing the number of FN. The F1-score of 97% reflects the
balanced performance among precision and recall, indicating a
high overall quality of the model in predicting bugs accurately
and efficiently.

Table 2

Experiment results of proposed models for bug prediction
Performance matrix Deep Neural Networks (DNNs) Model
Accuracy 95
Precision 99
Recall 95
F1-score 97

Fig. 4. Accuracy curves for DNN model

Figure 4 shows accuracy curves for a Deep Neural Network

(DNN) model over 3,500 epochs. The training accuracy (green)
stays high at around 95%, while the validation accuracy
(orange) fluctuates between 70% and 85%. Overfitting is shown
by the difference between the two curves, as the model
outperforms the validation data on the training data. The lack of
convergence in validation accuracy suggests the model is
memorizing the training data, and adjustments like
regularization or architectural changes may be needed for better
generalization.

Figure 5 shows the loss curve of a DNN model over 4,000
epochs, with training loss (blue) and validation loss (red) both
fluctuating between 0.2 and 0.8. The validation loss is generally
higher and more volatile, and neither curve shows a clear
downward trend. The gap between the losses suggests
overfitting, and the fluctuations point to potential issues with
learning rate, batch size, or model architecture, indicating a
need for adjustments to improve convergence and
generalization.

Maddali et al. International Journal of Research in Engineering, Science and Management, VOL. 8, NO. 6, JUNE 2025 101

Fig. 5. Loss curves for the DNN Model

A. Comparison with Discussion
This section compares the experimental findings to those of

other bug prediction algorithms for software. The suggested
model's performance is compared to that of other models in
Table III. Among the ML models, the MLP achieved the
highest accuracy, 87.91%, followed closely by the SVM at 87%
and RF at 86.94%. The MNB model demonstrated the lowest
accuracy at 70.68%, highlighting its limitations in handling
complex feature distributions in bug prediction tasks. Notably,
the Deep Neural Network (DNN) outperformed all ML models,
achieving the highest accuracy of 95%, demonstrating the
superior capability of deep learning in capturing intricate
patterns and relationships within software defect data.

Table 3

Comparison between ml and dl models for software bug prediction on cm1
dataset

Models Accuracy
Support Vector Machine (SVM) [22] 87
Multinomial Naïve Bayes (MNB)[23] 70.68
Multi-Layer Perceptron (MLP)[24] 87.91
Random Forest (RF) [25] 86.94
Deep Neural Network (DNN) 95

The proposed DNN model achieves superior accuracy (95%)

over traditional models, ensuring reliable defect detection.
Feature selection and ADASYN improve efficiency, while deep
learning reduces manual feature engineering. By leveraging
deep learning techniques, the proposed approach provides a
scalable and data-driven solution for software bug prediction,
contributing to improved defect management and overall
software quality.

5. Conclusion and Future Study
The process of identifying software defects with accuracy at

an early stage plays a significant role in software quality
assessment. Scientists and researchers established multiple
approaches to discover software problems ahead of time.
Machine learning is the most competent way because of how
classifiers learn. This study introduced a deep learning-based
approach using a Dense Neural Network (DNN), which
achieved a superior accuracy of 95%, outperforming traditional
models such as SVM 87%, RF 86.94%, and Multinomial Naïve
Bayes 70.68%. The DNN model exhibited high precision 99%
and recall 95%, ensuring reliable defect detection. The

proposed model demonstrated a higher capability in detecting
software defects while effectively handling class imbalance.
The integration of advanced preprocessing, feature selection,
and synthetic data generation contributed to its robustness.
Future work will focus on addressing these issues through
regularization techniques, advanced architectures like
transformers, transfer learning, dataset expansion, automated
hyperparameter tuning, and improved model interpretability
using SHAP or LIME. These enhancements will contribute to
more robust and scalable software defect prediction models,
ultimately improving software quality and reliability.

References
[1] A. Goyal, “Optimising Software Lifecycle Management through

Predictive Maintenance : Insights and Best Practices,” Int. J. Sci. Res.
Arch., vol. 07, no. 02, pp. 693–702, 2022.

[2] S. R. Thota, S. Arora, and S. Gupta, “Al-Driven Automated Software
Documentation Generation for Enhanced Development Productivity,” in
2024 International Conference on Data Science and Network Security
(ICDSNS), 2024, pp. 1–7.

[3] T. M. Phuong Ha, D. Hung Tran, M. H. Le, and N. Thanh Binh,
“Experimental study on software fault prediction using machine learning
model,” in Proceedings of 2019 11th International Conference on
Knowledge and Systems Engineering, KSE 2019, 2019.

[4] P. Panda, D. Sahoo, and D. Sahoo, “Automating Fault Prediction in
Software Testing Using Machine Learning Techniques: A Real-World
Applications,” in 2024 2nd International Conference on Sustainable
Computing and Smart Systems (ICSCSS), 2024, pp. 841–844.

[5] A. Jindal, A. Gupta, and Rahul, “Comparative Analysis of Software
Reliability Prediction Using Machine Learning and Deep Learning,” in
Proceedings of the 2nd International Conference on Artificial Intelligence
and Smart Energy, ICAIS 2022, 2022.

[6] A. Gogineni, “Artificial intelligence-Driven Fault Tolerance Mechanisms
for Distributed Systems Using Deep Learning Model,” J. Artif. Intell.
Mach. Learn. Data Sci., vol. 1, no. 4, 2023.

[7] P. Tadapaneni, N. C. Nadella, M. Divyanjali, and Y. Sangeetha,
“Software Defect Prediction based on Machine Learning and Deep
Learning,” in 5th International Conference on Inventive Computation
Technologies, ICICT 2022 - Proceedings, 2022.

[8] S. Shaikh and S. Ghosh, “Enhancing Software Reliability Through
Machine Learning: Prediction Through Evaluation Metrics,” in 2024
IEEE International Conference on Blockchain and Distributed Systems
Security (ICBDS), 2024, pp. 1–6.

[9] D. R, K. K, T. Geetha, A. S. Mary Antony, M. S. Tufail, and I. Shalout,
“Designing a Robust Software Bug Prediction Model Using Enhanced
Learning Principles with Artificial Intelligence Assistance,” in 2024
International Conference on Innovative Computing, Intelligent
Communication and Smart Electrical Systems (ICSES), IEEE, Dec. 2024,
pp. 1–6.

[10] J. Han, C. Huang, and J. Liu, “bjCnet: A contrastive learning-based
framework for software defect prediction,” Comput. Secur., vol. 145, p.
104024, 2024.

[11] S. J. G and J. Charles, “Revolutionizing Software Defect Prediction
Through Deep Learning,” in 2024 7th International Conference on
Circuit Power and Computing Technologies (ICCPCT), IEEE, Aug.
2024, pp. 438–442.

[12] K. S. Bharath and P. Jagadeesh, “An Innovative Software Bug Prediction
System using Random Forest Algorithm for Enhanced Accuracy in
Comparison with Logistic Regression Algorithm,” in 2023 Intelligent
Computing and Control for Engineering and Business Systems (ICCEBS),
2023, pp. 1–6.

[13] P. B. Baronia and C. Gupta, “Software Defect Prediction for Reliability
Analysis Using Machine Learning Approach,” in 2023 IEEE
International Conference on ICT in Business Industry & Government
(ICTBIG), IEEE, Dec. 2023, pp. 1–5.

[14] A. Kukkar, Y. Kumar, A. Sharma, and J. Kaur Sandhu, “Bug severity
classification in software using ant colony optimization based feature
weighting technique,” Expert Syst. Appl., vol. 230, p. 120573, Nov. 2023.

[15] B. Boddu, “Scaling Data Processing with Amazon Redshift Dba Best
Practices for Heavy Loads,” Int. J. Core Eng. Manag., vol. 7, no. 7, 2023.

Maddali et al. International Journal of Research in Engineering, Science and Management, VOL. 8, NO. 6, JUNE 2025 102

[16] S. Murri, From Raw to Refined: The Art and Science of Data Engineering.
Notion Press, 2025.

[17] R. C. Chen, C. Dewi, S. W. Huang, and R. E. Caraka, “Selecting critical
features for data classification based on machine learning methods,” J.
Big Data, 2020.

[18] H. He, Y. Bai, E. A. Garcia, and S. Li, “ADASYN: Adaptive synthetic
sampling approach for imbalanced learning,” in Proceedings of the
International Joint Conference on Neural Networks, 2008.

[19] S. Nokhwal, P. Chilakalapudi, P. Donekal, S. Nokhwal, S. Pahune, and
A. Chaudhary, “Accelerating Neural Network Training: A Brief Review,”
ACM Int. Conf. Proceeding Ser., pp. 31–35, 2024.

[20] Y. H. Rajarshi Tarafdar, “Finding majority for integer elements,” J.
Comput. Sci. Coll., vol. 33, no. 5, pp. 187–191, 2018.

[21] S. Nokhwal, S. Nokhwal, S. Pahune, and A. Chaudhary, “Quantum
Generative Adversarial Networks: Bridging Classical and Quantum

Realms,” in 2024 8th International Conference on Intelligent Systems,
Metaheuristics & Swarm Intelligence (ISMSI), New York, NY, USA, NY,
USA: ACM, Apr. 2024, pp. 105–109.

[22] S. S. P. Vengatesan, “A Hybrid Machine Learning Approach for Software
Fault Prediction Using Software Metrics,” vol. 121, 2024.

[23] Z. B. Guven Aydin and R. Samli, “A Comparison of Software Defect
Prediction Metrics Using Data Mining Algorithms,” J. Innov. Sci. Eng.,
vol. 4, no. 1, pp. 11–21, May 2020.

[24] A. Sayed and N. Ramadan, “Early Prediction of Software Defect using
Ensemble Learning: A Comparative Study,” Int. J. Comput. Appl., 2018.

[25] R. Suryawanshi, Amol Kadam, “Enhancing Software Defect Prediction
accuracy using Modified Entropy Calculation in Random Forest
Algorithm,” J. Electr. Syst., vol. 20, no. 1s, pp. 84–91, 2024.

	1. Introduction
	A. Motivation and Contribution of Paper
	B. Justification and Novelty of Paper
	C. Structure of Paper

	2. Literature Review
	3. Research Methodology
	A. Data Collection
	B. Data Preprocessing
	C. Max-Min Normalization
	D. Feature Selection with SelectKBest
	E. Balancing with ADASYN
	F. Data Splitting
	G. Deep Neural Networks (DNNs) Model
	H. Evaluation Metrics

	4. Results and Discussion
	A. Comparison with Discussion

	5. Conclusion and Future Study
	References

