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Abstract: Software Bug Prediction (SBP) serves as an essential 

process that predicts potential problems before software 
deployment to achieve software success.  The detection of issues 
during development dramatically advances system performance 
quality and reduces needs for financial investments. The accuracy 
of software bug prediction has been greatly enhanced and 
expenses have been decreased with the inclusion of Machine 
Learning (ML) methods. A technique based on Deep Neural 
Networks (DNNs) is suggested in this research to enhance the 
accuracy of defect prediction. The method involves preprocessing 
the CM1 NASA dataset followed by ANOVA F-test feature 
selection and resolving class imbalance through ADASYN 
implementation. The DNN model gained 95% accuracy during 
training with optimized hyperparameters and exceeded both 
traditional Support Vector Machines with 87% accuracy and 
Random Forest with 86.94% accuracy. The model demonstrates 
accurate performance by delivering 99% precision alongside 95% 
recall, which minimizes defective detection errors. The model 
shows its excellence at detecting complex software defect patterns 
through experimental validation. The suggested method improves 
software quality by providing a data-driven, scalable solution. 

 
Keywords: Software Engineering, Software Defects, Bugs, Fault 

Prediction, Software Reliability, Bug Prediction, Defect 
Estimation, Machine Learning, CM1 Dataset.  

1. Introduction 
The software engineering is the study of the requirements, 

design, implementation, testing, installation and servicing of 
the software, it is indeed a mannered approach towards 
preparing for the development of software [1]. Nonetheless, an 
effective software development methodology will always be 
susceptible to defects and errors due to the involvement of 
humans in the process at different levels. Software errors, 
commonly known as bugs, faults or failures, are a major 
concern influencing software performance or functionality [2]. 
Software defects may be regarded as flaws that cause the 
software to be incorrect or not to produce the desired result. Due 
to many tasks during software development are carried out by 
humans, which may arise many software defect problems [3]. 
Software development life cycles include requirements 
gathering, design, coding, testing, deployment, and 
maintenance, all of which are potential points of failure. 
Software testing is important for software products to maintain  

 
software quality and reliability [4]. The rapid growth of 
software applications requires more testing, which is expensive 
and time-consuming. When it comes to software defect 
detection, software defect prediction techniques are 
considerably more economical than software testing and 
evaluations [5]. 

Traditional software testing approaches, though essential, are 
resource-intensive and may not always detect all potential 
defects before deployment. This has led to the growing need for 
intelligent, automated defect prediction techniques. The 
primary goal of SBP methods is to separate the software 
components that are broken from those that are not.   In terms 
of software's dependability, performance, and operating costs, 
bugs are a major headache [6]. The abundance of hidden 
problems makes software defect-free design extremely 
challenging, even when programs are used with great care.  
Multiple techniques, including statistical analysis, ML expert 
systems and others, can help identify software issues. 

Software professionals can enhance the quality of their 
products through the combination of software metric analysis 
with ML methods that anticipate software defect occurrences. 
A predictive analytical solution based on ML has emerged as a 
robust software bug prediction method that utilizes past defect 
information to identify meaningful patterns that lead to module-
based defect classification. Tool classification and ensemble 
learning reduce the false positives while enhancing the 
generalization of the models to foster correct decision-making 
in software quality assurance [7]. An enhanced software bug 
prediction model using machine learning, accompanied by 
hybrid machine learning with the utilization of the best methods 
in predictive analytics.  

A. Motivation and Contribution of Paper 
Software reliability is significant in today’s development 

process since the bugs remain undiscovered and can result in 
losses, security breaches, or product breakdowns. Class 
imbalance is a major problem in conventional bug prediction 
methods because it can lead to an undesirable set of 
configurations, unoptimal feature selection, and lack of 
generalization. However, the research in the area of defect 
prediction has resulted in the development of machine learning 
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models for accurate bug detection, especially in imbalanced 
datasets are still lacking robust ones. This research also 
improves bug prediction when enhanced preprocessing, feature 
selection, and deep learning models are applied to optimize 
software reliability. 

• Addressing missing values, noise, and outliers in the 
CM1 NASA dataset ensures data integrity, improving 
model robustness. 

• Employing Select KBest with the ANOVA F-test 
helps retain the most significant features, reducing 
computational overhead and enhancing predictive 
accuracy. 

• To ensure fair model training, it is useful to use the 
ADASYN method to produce synthetic samples for 
the minority class. This successfully mitigates data 
imbalance. 

• Implementing a deep Neural Network (DNN) 
optimized with the ReLU activation function and 
cross-entropy loss improves the model’s learning 
efficiency and predictive power. 

• Take the confusion matrix's F1-score, recall, accuracy, 
and precision into account when assessing the model's 
ability to execute. 

B. Justification and Novelty of Paper 
The DNN-based feature selection for software defect 

prediction is a better strategy than the conventional ML models 
as it does not face problems of identifying complex patterns in 
the models and class-imbalance issues. The proposed method is 
different from classifiers like SVM and RF as it fails in high 
dimensions and as well as imbalanced data sets, where the 
proposed work includes advanced preprocessing, feature 
selection using ANOVA F-test, and generated synthetic data by 
ADASYN. The DNN model does well to enhance the detection 
of defects without generating many false-positive and false-
negative results. The novelty of this work lies in its optimized 
deep learning architecture, rigorous hyperparameter tuning, and 
robust evaluation, which collectively enhance software quality 
and reliability. Additionally, this study provides a scalable 
framework adaptable to real-world software engineering 
applications, making it a valuable contribution to defect 
prediction research. 

C. Structure of Paper 
The remainder of the paper is organized as follows. Section 

I and Section II provide a background study on Bug Prediction 
for Enhancing Software Reliability and Estimation. In Section 
III, the methodology is detailed. Section IV compares the 
findings, analysis, and discussion.  In Section V, the study's 
results and potential future paths are laid forth in detail. 

2. Literature Review 
This study is based on a review and analysis of prior 

significant research on software dependability and bug 
prediction. 

Shaikh and Ghosh (2024) using diverse datasets highlights 
the efficacy of the proposed technique, surpassing established 

approaches like PCA, LDA, and Kernel PCA(KPCA) in 
capturing intricate program semantics. Using several classifiers 
like decision tree, NB, RF, KNN, and SVM, achieved the 
accuracy in the article up to 73 % and by merging all datasets 
and improving deep learning models i.e. ANN, achieved the 
papers highest accuracy of up to 95 % [8]. 

R et al. (2024) propose a robust hybrid model that integrates 
LSTM networks and XGBoost to improve bug prediction 
accuracy. The proposed model achieved a remarkable accuracy 
of 92.81 %, outperforming nine existing models, including RF, 
SVM, and ANN. Additionally, the model demonstrated 
superior performance in recall (91.43%) and F1score (0.915), 
indicating its effectiveness in both identifying bugs and 
minimizing false positives [9]. 

Han, Huang and Liu (2024) propose the bjCnet framework 
for software defect prediction, which is based on contrastive 
learning.   It achieves accurate defect prediction by optimizing 
the Transformers-based pre-trained code large language model 
using a supervised contrastive learning network. Evaluating 
bjCnet's effect on forecasts, the results demonstrate that bjCnet 
surpasses the cutting-edge approaches used for comparison, 
achieving accuracy and f1-score of 0.948, respectively [10]. 

G and Charles (2024) proposed methodology includes 
normalization of data, application of neural network 
architectures, and extensive experimentation with varying 
parameters. Results demonstrate that CNN outperforms SSAE, 
achieving a higher accuracy range of 0.84 to 0.93 compared to 
SSAE’s 0.80 to 0.90, particularly excelling on the PC1 dataset 
with an accuracy of 0.93. Both models, however, show strong 
capabilities in predicting software defects, with CNN 
consistently delivering better performance across diverse 
datasets [11]. 

Bharath and Jagadeesh (2023) included two machine-
learning techniques, Logistic Regression and the innovative 
Random Forest. Based on a statistical power (G-power) of 80%, 
a significance level (alpha) of 0.05, and a desired level of type 
II error (beta) of 0.2, a sample size of 10 per group was judged 
to be appropriate. The research findings indicate that the 
Random Forest strategy had a greater accuracy rate of 78.59% 
in comparison to the Logistic Regression technique, which 
attained a success rate of 76.54% [12]. 

Baronia and Gupta (2023) explores machine learning 
algorithms and defect prediction approaches to address these 
challenges. The overall accuracy levels stood at 99.36% on 
average across all the software systems, which translates into 
higher levels of accuracy.  The proposed method can be of great 
value for software development teams and stakeholders because 
of its ability to offer very accurate predictions for any number 
of software projects. The proposed approach is intended to be 
effectively used for identifying potential issues and improving 
the software quality [13]. 

Kukkar et al. (2023) to extract more significant information 
for issue severity categorization, a strategy based on ant colony 
optimization (ACO) is suggested.  Acc-uracy, Pre-cision, Re-
call, and F1measure are the four parameters that can explain the 
results of the simulation. Precisely, the performance analysis 
sees ACO-F-SVM, ACO-NB, ACO-SVM, ACO-DeepFM, NB, 
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SVM, F-SVM, DeepFM techniques yielding an accuracy 
ranging from 85.73% to 89.38%, 78%-80%, 73%-76%, 92.67- 
97.27%, 71%-77%, 65%- 74%, 78 .21%- 81.28% as well as 
90.02%- 95.24% for five benchmark projects [14]. 

Table 1 provides the backdrop research of Bug Prediction for 
Enhancing Software Reliability and Estimation, including its 
dataset, models, performance, and contribution.  

3. Research Methodology 

 
Fig. 1.  Proposed flowchart for software bug prediction 

 
A multiple-step process enables the new machine learning-

based prediction system to enhance software reliability and 
estimation. Preprocessing at the initial stage focuses on data 
cleanup by filling in missing values and handling outliers while 
removing noisy data from the CM1 NASA dataset. 
Subsequently, the features undergo min-max normalization, 
which scales their values between 0 and 1. The most relevant 
features are chosen through Select KBest under the ANOVA F-
test selection technique. The ADASYN platform develops 
synthetic examples for minority class populations to fix an 
unbalanced class distribution. The data is then split into 70% 
training and 30% testing sets. Model is trained to predict bug 
occurrences, with the forward propagation and backpropagation 
processes optimized through a REL activation function and 
cross-entropy loss function. Finally, crucial measures based on 
the confusion matrix, such as accuracy, precision, recall, and 

F1score, are utilized to assess how well the model performs in 
enhancing software dependability and issue prediction. The 
following steps of methodology are shown in Figure 1. Each 
step of a proposed flowchart for software bug prediction is 
provided below: 

A. Data Collection 
Data was collected from the CM1 NASA dataset. The dataset 

contains twenty-one static metrics, or columns, that indicate 
different parts of software size and complexity; each entry 
stands for a software module with twenty-two columns or 
features. Figure 2 shows a heatmap representation of the 
correlations between attributes. 

 

 
Fig. 2.  Heatmap of the features 

 
Figure 2 displayed a heatmap of the feature-by-feature 

correlation matrix; stronger positive correlations are indicated 
by darker blue shades. The axes are labeled with feature names, 
and the diagonal shows perfect self-correlation. The heatmap 
highlights strong and weak correlations between feature pairs, 
with some features highly correlated and others showing 
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CM1 NASA dataset  

Balancing with 
ADASYN 
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Table 1 
Overview of recent studies on software bug prediction using machine learning 

Author Proposed Work Dataset Key Findings Challenges/Gaps 
Shaikh & 
Ghosh (2024) 

Fault likelihood prediction for 
enhanced resource allocation 

Multiple datasets ANN achieved 95% accuracy, 
surpassing PCA, LDA, and KPCA 

Requires further validation on real-
world projects; lacks scalability 
analysis 

R et al. (2024) Hybrid bug prediction model 
integrating LSTM and 
XGBoost 

Open-source 
repositories 

Achieved 92.81% accuracy, with 
high recall (91.43%) and F1-score 
(0.915) 

Limited generalizability to non-
sequential data; potential overfitting 
concerns 

Han, Huang & 
Liu (2024) 

Contrastive learning-based 
software defect prediction 
(bjCnet) 

Multiple datasets bjCnet achieved 94.8% accuracy and 
outperformed state-of-the-art models 

Dependency on large pre-trained 
models; computationally expensive 

G & Charles 
(2024) 

Deep learning-based software 
defect prediction using CNN 
and SSAE 

PC1 dataset CNN achieved 93% accuracy, 
outperforming SSAE 

Limited dataset scope; needs 
evaluation on real-world software 
projects 

Bharath & 
Jagadeesh 
(2023) 

Comparison of Logistic 
Regression and Random Forest 
for defect prediction 

Multiple datasets Random Forest achieved 78.59% 
accuracy, outperforming Logistic 
Regression 

Requires integration of advanced 
feature engineering techniques 

Baronia & 
Gupta (2023) 

ML-based defect prediction to 
improve software reliability 

Multiple software 
systems 

Achieved 99.36% accuracy, 
significantly improving reliability 
predictions 

Lack of detailed feature importance 
analysis; potential dataset bias 

Kukkar et al. 
(2023) 

ACO-based feature extraction 
for bug severity classification 

Eclipse, Mozilla, 
OpenFOAM, JBoss, 
Firefox 

ACO-DeepFM achieved highest 
accuracy (97.27%), improving 
classification performance. 

Computational overhead due to 
ACO-based feature selection; limited 
interpretability 
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minimal or no correlation. Numerical values within the cells 
provide precise information on the strength and direction of 
these relationships. 

B. Data Preprocessing 
Preprocessing removed noise, outliers, and missing values 

from the benchmarked CM1 NASA dataset, ensuring its 
integrity for future analysis.  The data is transformed and 
normalized as part of the preprocessing. The following steps of 
pre-processing are as follows: 

• Handle missing value: The knowledge that the mean 
value of a numeric column is used to fill in missing 
values, thus maintaining the central tendency, is 
essential. Whereas, categorical columns are filled 
using the mode value, which is the most frequent 
category, ensuring that the original distribution of 
categories is maintained as closely as possible. 

• Remove Outliers: The findings could be skewed 
because of the abundance of outliers in the dataset, 
which might change the sample mean and variance. 

• Remove noise: Taking the median and interquartile 
range into account can help cut down on noise caused 
by outliers.  

C. Max-Min Normalization 
This study's min-max normalization sets all features' values 

to a range from 0 to 1 [15]. Equation (1) represents this 
approach: 

 
𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑋𝑋−𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚

𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚−𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚
              (1) 

 
where Xmin and Xmax represent the data feature's lowest 

and maximum values, respectively, and X represents the data 
feature's current value. 

D. Feature Selection with SelectKBest  
Find the most significant features by using the Select K Best 

technique when combined with the ANOVA F-test. Select the 
desired number of features to be preserved[16]. To find the best 
features, the Select K Best technique takes each feature's score 
relative to the target variable and uses that score to choose the 
top k features [17]. To improve the model's performance, this 
method focuses on the features that are most strongly related to 
the dependent variable. 

E. Balancing with ADASYN 
The idea of SMOTE is expanded by the adaptive synthetic 

sampling (ADASYN) method, which highlights the 
significance of the categorization boundary in difficult minority 
classes [18]. The ADASYN is a multi-stage oversampling 
method.  Finding the minority-to-majority class ratio is the first 
order of business.  A ratio of this kind may be expressed as 
Equation (2). 

 
𝑇𝑇 = 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚

𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚
                     (2) 

 
The ADASYN algorithm is initialized using the fraction T. 

The following Figure 3 presents the balancing visualization. 
 

 
Fig. 3.  Bar graph for before and after data balancing 

 
Figure 3 compares class applying the ADASYN technique 

for data balancing. On the left, the dataset is highly imbalanced, 
with class 0 (blue) having around 400 samples and class 1 
(peach) only about 50. After applying ADASYN (right panel), 
both classes are balanced with roughly 400 samples each, 
demonstrating ADASYN's effectiveness in generating 
synthetic samples for the minority class. This balancing helps 
reduce classifier bias and may improve model performance, 
particularly for predicting the minority class. 

F. Data Splitting 
There is a 70% training set and a 30% testing set, with the 

dataset split down the middle. 

G. Deep Neural Networks (DNNs) Model 
A well-known deep learning method is the deep neural 

network (DNN).  The three fully connected layers that make up 
a DNN's network architecture are the input, hidden, and output 
layers[19], [20]. Each neuron is linked to every other neuron in 
the subsequent layer, but it is not connected to any neurons in 
the layers above or below.  The impact of network learning is 
strengthened by an activation function that acts on the output 
after each network layer. As a result, DNN may also be thought 
of as a big perceptron made up of many smaller ones. For 
instance, Equation for the ith layer forward propagation 
computation is (3). 

 
𝑥𝑥𝑛𝑛+1 = 𝜎𝜎(∑𝑤𝑤𝑛𝑛𝑥𝑥𝑛𝑛 + 𝑏𝑏)              (3) 

  
where 𝑥𝑥 denotes an input value, 𝑤𝑤 illustrates the matrices of 

weight coefficients and 𝑏𝑏 denotes the bias vector[21]. The 
activation function of a multi-class network often uses ReLU, 
using the following Equation, as shown in (4). 

 
𝜎𝜎(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑥𝑥(0, 𝑥𝑥)                (4) 

  
The network's backpropagation is optimized using the loss 

function, which assesses the output loss of training samples and 
determines the network's structure.  It is common practice to use 
cross-entropy as the loss function in classification tasks; its 
Equation is (5). 

 
𝐶𝐶 = − 1

𝑁𝑁
∑ ∑ (𝑦𝑦𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑝𝑝𝑛𝑛)𝑀𝑀

𝑛𝑛=1𝑥𝑥              (5) 
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Here, 𝑁𝑁 stands for the number of input data sets, 𝑀𝑀 for the 
number of categories, 𝑦𝑦𝑦𝑦 for the likelihood that the classification 
𝑦𝑦 matches the actual category, and 𝑝𝑝𝑦𝑦 for the probability of 
forecasting into category 𝑦𝑦. The DNN was configured with 
ReLU activation, Adam optimizer (learning rate 0.001), batch 
size 32, and 4,000 epochs. Cross-entropy loss handled binary 
classification, with dropout (0.2) preventing overfitting. The 
initialization improved stability, and early stopping based on 
validation loss ensured optimal training. 

H. Evaluation Metrics 
This concludes the prediction model.  Here, you may assess 

the accuracy of the predictions by using tests like as the 
confusion matrix, f1-score, and classification accuracy.  Data 
from a confusion matrix determine the statistical significance 
of each parameter. The following instances of confusion matrix 
are: 

• TP True Positive: describes the positive tuples 
correctly labeled by the classifier. 

• FP False Positive: details the instances when the 
classifier made a mistake in labeling positive tuples.  

• FN False Negative: is used to describe the negative 
tuples that the classifier mislabeled.  

• TN True Negative: describes the classifier's successful 
classifications of negative tuples. 

Accuracy: The ratio of accurate predictions to all of the 
testing dataset's predictions is known as accuracy. It is given as 
Equation (6). 

 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑚𝑚𝐴𝐴𝑦𝑦 = TP+TN

TP+Fp+TN+FN
             (6) 

 
Precision: The fraction of correctly predicted positive class 

outcomes that turn out to be positive is known as precision.  
Finding the value is as simple as dividing the sum of all positive 
observations anticipated by the sum of all positive observations 
correctly predicted. This is represented as Equation (7). 

 
𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴𝑦𝑦𝑃𝑃𝑦𝑦𝑙𝑙𝑃𝑃 = TP

TP+FP
                (7) 

  
Recall: The percentage of right positive predictions as a 

percentage of all correct positive samples is called recall. In 
mathematical form, it is given as Equation (8). 

 
𝑅𝑅𝑃𝑃𝐴𝐴𝑚𝑚𝑙𝑙𝑙𝑙 = TP

𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁
                  (8) 

  
F1 score: A model's F1 score, which is a measure of its 

accuracy on a dataset, is determined by taking the harmonic 
mean of its recall and precision. Mathematically, it is given as 
Equation (9). 

 
𝐹𝐹1 − 𝑃𝑃𝐴𝐴𝑙𝑙𝐴𝐴𝑃𝑃 = 2 × 𝑇𝑇𝑛𝑛𝑛𝑛𝑃𝑃𝑛𝑛𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛×𝑅𝑅𝑛𝑛𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛

𝑇𝑇𝑛𝑛𝑛𝑛𝑃𝑃𝑛𝑛𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛+𝑅𝑅𝑛𝑛𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛
           (9) 

  
When used together, these metrics reveal the model's potency 

in predicting the dependent variable. 

4. Results and Discussion 
This section examines an experimental outcome derived 

from the suggested software bug predictions.  Python is used 
for the execution, and the hardware is a 2 GHz dual-core 
machine running 64-bit Windows with 4 GB of RAM.  We used 
the six assessment metrics accuracy, precision, recall, and F-
measure for experimental analysis. The results of the suggested 
DNN model are shown in Table II. The model's 95% accuracy 
rate shows how well it can distinguish between positive and 
negative examples. The precision of 99% indicates a very low 
rate of FP, meaning that the majority of predicted bugs are 
indeed actual bugs. With a recall of 95%, the model 
successfully identifies 95% of the actual bugs present, 
minimizing the number of FN. The F1-score of 97% reflects the 
balanced performance among precision and recall, indicating a 
high overall quality of the model in predicting bugs accurately 
and efficiently. 

 
Table 2 

Experiment results of proposed models for bug prediction 
Performance matrix Deep Neural Networks (DNNs) Model 
Accuracy 95 
Precision 99 
Recall 95 
F1-score 97 

 

 
Fig. 4.  Accuracy curves for DNN model 

 
Figure 4 shows accuracy curves for a Deep Neural Network 

(DNN) model over 3,500 epochs. The training accuracy (green) 
stays high at around 95%, while the validation accuracy 
(orange) fluctuates between 70% and 85%. Overfitting is shown 
by the difference between the two curves, as the model 
outperforms the validation data on the training data. The lack of 
convergence in validation accuracy suggests the model is 
memorizing the training data, and adjustments like 
regularization or architectural changes may be needed for better 
generalization. 

Figure 5 shows the loss curve of a DNN model over 4,000 
epochs, with training loss (blue) and validation loss (red) both 
fluctuating between 0.2 and 0.8. The validation loss is generally 
higher and more volatile, and neither curve shows a clear 
downward trend. The gap between the losses suggests 
overfitting, and the fluctuations point to potential issues with 
learning rate, batch size, or model architecture, indicating a 
need for adjustments to improve convergence and 
generalization. 
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Fig. 5.  Loss curves for the DNN Model 

A. Comparison with Discussion 
This section compares the experimental findings to those of 

other bug prediction algorithms for software.  The suggested 
model's performance is compared to that of other models in 
Table III. Among the ML models, the MLP achieved the 
highest accuracy, 87.91%, followed closely by the SVM at 87% 
and RF at 86.94%. The MNB model demonstrated the lowest 
accuracy at 70.68%, highlighting its limitations in handling 
complex feature distributions in bug prediction tasks. Notably, 
the Deep Neural Network (DNN) outperformed all ML models, 
achieving the highest accuracy of 95%, demonstrating the 
superior capability of deep learning in capturing intricate 
patterns and relationships within software defect data. 

 
Table 3 

Comparison between ml and dl models for software bug prediction on cm1 
dataset 

Models Accuracy 
Support Vector Machine (SVM)  [22] 87 
Multinomial Naïve Bayes (MNB)[23] 70.68 
Multi-Layer Perceptron (MLP)[24] 87.91 
Random Forest (RF) [25] 86.94 
Deep Neural Network (DNN) 95 

 
The proposed DNN model achieves superior accuracy (95%) 

over traditional models, ensuring reliable defect detection. 
Feature selection and ADASYN improve efficiency, while deep 
learning reduces manual feature engineering. By leveraging 
deep learning techniques, the proposed approach provides a 
scalable and data-driven solution for software bug prediction, 
contributing to improved defect management and overall 
software quality. 

5. Conclusion and Future Study 
The process of identifying software defects with accuracy at 

an early stage plays a significant role in software quality 
assessment. Scientists and researchers established multiple 
approaches to discover software problems ahead of time. 
Machine learning is the most competent way because of how 
classifiers learn. This study introduced a deep learning-based 
approach using a Dense Neural Network (DNN), which 
achieved a superior accuracy of 95%, outperforming traditional 
models such as SVM 87%, RF 86.94%, and Multinomial Naïve 
Bayes 70.68%. The DNN model exhibited high precision 99% 
and recall 95%, ensuring reliable defect detection. The 

proposed model demonstrated a higher capability in detecting 
software defects while effectively handling class imbalance. 
The integration of advanced preprocessing, feature selection, 
and synthetic data generation contributed to its robustness.  
Future work will focus on addressing these issues through 
regularization techniques, advanced architectures like 
transformers, transfer learning, dataset expansion, automated 
hyperparameter tuning, and improved model interpretability 
using SHAP or LIME. These enhancements will contribute to 
more robust and scalable software defect prediction models, 
ultimately improving software quality and reliability. 
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