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Abstract: Quantum computing offers transformative 

computational power by harnessing phenomena such as 
superposition and entanglement. Yet, this potential 
simultaneously poses severe risks to classical cryptographic 
systems. In this paper, we explore how quantum algorithms, most 
notably Shor’s algorithm for integer factorization and Grover’s 
algorithm for unstructured search, could break widely deployed 
cryptographic schemes. We present a rigorous mathematical 
analysis of these quantum algorithms, compare their complexity 
with classical methods, and examine their impact on public-key 
and symmetric cryptography. Finally, we discuss potential 
countermeasures, including post-quantum cryptographic 
solutions, to safeguard data in the quantum era. 
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1. Introduction 
The rapid development of quantum computing introduces a 

dual-edged sword for cryptography. On one hand, quantum 
systems promise exponential speed-ups in solving problems 
that are intractable for classical computers. On the other hand, 
these same advances threaten the security of many 
cryptographic protocols that underpin modern digital 
communications. Classical public-key algorithms such as RSA 
and elliptic curve cryptography (ECC) rely on the 
computational difficulty of problems like integer factorization 
and discrete logarithms. Shor’s algorithm, however, can factor 
large numbers and compute discrete logarithms in polynomial 
time, rendering these systems vulnerable. 

Symmetric ciphers and hash functions, while more resilient, 
are still affected by Grover’s algorithm, which provides a 
quadratic speedup for brute-force searches. This reduction in 
complexity implies that key sizes must be doubled to achieve 
classical security levels. The urgent need for post-quantum 
cryptography has prompted extensive research into new 
algorithms resistant to quantum attacks. This paper examines 
the mathematical foundations of these quantum algorithms and 
assesses their implications for cryptography. 

2. Background 

A. Quantum Computing Fundamentals 
Quantum computers use qubits, which unlike classical bits, 

can exist in superpositions of states. A single qubit is  

 
represented by: 

 
∣ 𝜓𝜓⟩ = 𝛼𝛼 ∣ 0⟩ + 𝛽𝛽 ∣ 1⟩,𝑤𝑤𝑤𝑤𝑤𝑤ℎ ∣ 𝛼𝛼 ∣2 +∣∣ 𝛽𝛽 ∣2= 1  (1) 
 
The ability to represent 2𝑛𝑛 states with n qubits, combined 

with entanglement and interference, enables quantum 
algorithms to process information in fundamentally new ways. 
Quantum gates, represented by unitary matrices, manipulate 
these qubit states. The performance of quantum algorithms 
relies heavily on maintaining coherence and minimizing errors 
through techniques such as quantum error correction. 

B. Classical Cryptographic Primitives 
Modern cryptographic systems generally fall into two 

categories: 
• Public-Key Cryptography: Systems like RSA and 

ECC are based on the hardness of problems such as 
integer factorization and discrete logarithms. 

• Symmetric-Key Cryptography: Algorithms such as 
AES rely on key lengths and complex permutation–
substitution networks to ensure security. Hash 
functions provide data integrity by generating fixed-
length digests from variable-length inputs. 

The security of these systems rests on the assumption that 
certain mathematical problems are computationally infeasible 
to solve on classical machines, a premise that quantum 
computing directly challenges. 

3. Quantum Algorithms for Cryptanalysis 

A. Shor’s Algorithm 
Shor’s algorithm represents a ground-breaking approach to 

integer factorization. For a given composite number N (with 
bit-length n), the algorithm operates as follows: 

• Random Selection: Choose an integer a such that 
gcd(a,N) = 1 

• Period Finding: Define the function 𝑓𝑓(𝑥𝑥) =
𝑎𝑎𝑥𝑥 𝑚𝑚𝑚𝑚𝑚𝑚 𝑁𝑁 

• Factor Extraction: If r is even and 𝑎𝑎
𝑟𝑟
2 ≢ -1(mod N), 

then compute gcd (𝑎𝑎
𝑟𝑟
2 ± 1,𝑁𝑁)  to obtain non-trivial 

factors of N. 
The quantum component of the algorithm, dominated by the 
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QFT, runs in O(2𝑛𝑛) time, making it exponentially faster than 
the best-known classical factoring algorithms. This 
polynomial-time solution threatens the security of RSA and 
ECC, both of which depend on the intractability of factorization 
and discrete logarithm problems. 

B. Grover’s Algorithm 
Grover’s algorithm offers a quadratic speedup for searching 

unsorted databases. In classical terms, finding a specific item in 
a database of N items requires O√𝑁𝑁 iterations.  

For symmetric cryptography, the algorithm implies that a 
brute-force key search on a n-bit key can be performed in 
roughly O(2

𝑛𝑛
2) steps, rather than O(2𝑛𝑛). This significant 

reduction in complexity means that symmetric algorithms such 
as AES-128, which are considered secure against classical 
attacks, may be compromised by quantum adversaries unless 
key lengths are doubled (e.g., using AES-256). 

Mathematically, the success probability after k iterations is 
given by: 

 
𝑃𝑃(𝑘𝑘) = sin2((2𝑘𝑘 + 1)𝜃𝜃)  (2) 
      
With 𝜃𝜃 = arcsin � 1

√𝑁𝑁
�. The optimal number of iterations is 

approximately: 
𝑘𝑘 ≈

𝜋𝜋
4√

𝑁𝑁 

4. Mathematical Analysis and Complexity, Calculations 

A. Complexity Analysis of Shor’s Algorithm 
Consider an integer N with n = 𝑙𝑙𝑙𝑙𝑙𝑙2𝑁𝑁 bits. The quantum 

complexity of Shor’s algorithm is primarily determined by the 
quantum Fourier transform, which requires about O(𝑛𝑛2) 
quantum operations. Including overhead for error correction, 
the overall procedure remains polynomial in n, demonstrating 
that RSA, which requires super-polynomial effort to break 
classically, is fundamentally vulnerable in the quantum regime. 

B. Impact of Grover’s Algorithm on Symmetric Cryptography 
For a symmetric cipher with a key length of n bits, the 

classical brute-force complexity is 2𝑛𝑛. With Grover’s 
algorithm, this is reduced to: 

 
𝑇𝑇𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞(𝑛𝑛) ≈

𝜋𝜋
4

2
𝑛𝑛
2 (3) 

 
For example, AES-128’s effective complexity falls from 

2^128 to approximately 264 operations under quantum attack. 
This quadratic speedup necessitates larger key sizes (such as 
AES-256) to maintain equivalent security levels. 

5. Quantum Impact on Cryptographic Primitives 

A. Vulnerability of Public-Key Systems 
Public-key systems such as RSA and ECC derive their 

security from problems that are hard for classical computers but 
become tractable with quantum algorithms. Shor’s algorithm, 
by efficiently factorizing large numbers and computing discrete 

logarithms, effectively nullifies the security assumptions of 
these systems. This vulnerability necessitates a rapid transition 
to quantum-resistant alternatives. 

B. Symmetric Ciphers and the Role of Grover’s Algorithm 
Although symmetric cryptography is more resilient, 

Grover’s algorithm significantly reduces the effective key 
length by providing a quadratic speedup for exhaustive 
searches. As a result, doubling the key size is required to 
counteract this reduction. This requirement underscores the 
importance of reassessing key length recommendations in the 
context of emerging quantum technologies. 

6. Countermeasures and Post-Quantum Cryptography 
In anticipation of quantum attacks, researchers have been 

developing post-quantum cryptographic schemes. These 
include: 

• Lattice-Based Cryptography: Algorithms based on the 
hardness of lattice problems are promising candidates 
for quantum-resistant cryptography. 

• Code-Based Cryptography: Systems such as the 
McEliece cryptosystem leverage error-correcting 
codes to provide security. 

• Hash-Based Signatures: These digital signature 
schemes rely solely on the strength of cryptographic 
hash functions and are inherently resistant to quantum 
attacks. 

A. Lattice-Based Cryptography 
Lattice-based schemes derive their security from the worst-

case hardness of certain lattice problems, most notably the 
Shortest Vector Problem and the Learning with Errors problem. 
A lattice ℒ ⊂ ℝ𝑛𝑛 is the integer span of basis vectors B= 
[𝑏𝑏1, … . ,𝑏𝑏2]. The SVP asks for a nonzero lattice vector 𝜈𝜈 ∈ ℒ 
minimizing ‖𝑣𝑣‖. Best classical algorithms run in time roughly 
2𝑂𝑂(𝑛𝑛), and quantum improvements are bounded by a 
subexponential factor, far from the polynomial. 

B. Learning with Errors 
Let q be a prime modulus, n the dimension, and 𝜒𝜒 an “error” 

distribution ℤ𝑞𝑞 (eg. A discrete Gaussian  𝒟𝒟𝑎𝑎𝑎𝑎). An LWE sample 

is (𝑎𝑎, 𝑏𝑏 =< 𝑎𝑎, 𝑠𝑠 + 𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞 >) where 
$
← ℤ𝑞𝑞𝑛𝑛, secret s ∈ ℤ𝑞𝑞𝑛𝑛, and 

e 
$
←𝑥𝑥. The basic LWE decision problem is reducible in 

quantum polynomial time to GapSVP in the worst case. The 
best known quantum solvers for LWE require time 2𝑂𝑂(𝑛𝑛) as 
well, with improvements only in constants or sub-exponential 
factors 

Parameter selection. To achieve 2𝜆𝜆 quantum security, choose 
 

𝑛𝑛 = 𝑂𝑂(𝜆𝜆), 𝑞𝑞 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑛𝑛),𝛼𝛼 = 𝑂𝑂 �
1

�𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
� (4) 

 
For instance, for 𝜆𝜆 = 128:𝑛𝑛 ≈ 512, 𝑞𝑞 ≈ 213,𝑎𝑎𝑎𝑎𝑎𝑎 𝛼𝛼𝛼𝛼 ≈ 3.. 

Under these parameters, any quantum accelerated lattice 
reduction still takes time ≈ 21.8𝑛𝑛/(𝑘𝑘+1) for block size k≈ 40, 
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which is infeasible. 

C. Code-Based Cryptography 
Code-based cryptosystems rely on the NP-hardness of 

decoding a random linear code. The canonical example is the 
McEliece cryptosystem, based on the structural difficulty of 
syndrome decoding. 

McEliece setup. Let 𝐺𝐺 ∈  𝔽𝔽2𝑘𝑘 𝑥𝑥 𝑛𝑛  generate a binary Goppa 
code of length n, dimension k, and error‐correcting capability t. 
The public key is G′ = SGP where S is an invertible k×k matrix 
and P is a n×n permutation matrix. The private key is (S,G,P). 
Encryption of message m 𝔽𝔽2𝑘𝑘   adds a random vector e of 
hamming weight t: 

 
𝑐𝑐 = 𝑚𝑚𝐺𝐺′ + 𝑒𝑒 (5) 
 
Decryption uses 𝑃𝑃−1 to permute c back, then applies efficient 

Goppa-code decoders to correct up to t errors and recovers 
m=u𝑆𝑆−1. 

Syndrome decoding hardness. Given ℍ𝔽𝔽2
(𝑛𝑛−𝑘𝑘)𝑛𝑛 and 

syndrome s = 𝐻𝐻𝑒𝑒𝑇𝑇, finding any e of weight t such that 𝐻𝐻𝐻𝐻𝑇𝑇 = 𝑠𝑠 
is NP- complete. Best classical information-set decoding (ISD) 
algorithms cost roughly, 

 

�
𝑛𝑛
𝑡𝑡�

/ �
𝑘𝑘
𝑡𝑡
� ≈ 2𝛾𝛾𝛾𝛾 

 
(6) 

Where 𝛾𝛾 ≈ 0.12 for recommended parameters 
(n=3488, k=2720, t=64). Quantum enhancements using 
Grover’s algorithm yield only a quadratic speedup, 2

𝛾𝛾𝛾𝛾
2 ,, still 

infeasible for 𝛾𝛾𝛾𝛾
2
≈ 209. 

Concrete parameters. The NIST‐Round 3 Classic McEliece 
uses (n=3488, k=2720, t=64), giving classical security ≈256 
bits and quantum security ≈128 bits. The code rate k/n≈0.78 
ensures efficient transmission, and the well-studied algebraic 
structure of Goppa codes resists structural attacks. 

Resistance to quantum attacks. Because the core problem, 
decoding a random linear code, is NP‐hard and admits only 
brute‐force or ISD-based attacks, quantum computers offer at 
best Grover‐speedups. No subexponential quantum algorithm is 
known for general decoding. The public‐key size (≈1 MB) is a 
trade-off for long-term security, but the extremely high 
estimated quantum work factor renders code-based schemes a 
cornerstone of post-quantum cryptography. 

D. Hash-Based Signatures 
Hash-based signature schemes (e.g., XMSS, SPHINCS+) 

leverage the provable security of cryptographic hash functions 
and Merkle trees. Their security reduces to collision and pre-
image resistance,properties believed to withstand quantum 
adversaries beyond Grover’s speed-ups. 

The Lamport One Time Signatures uses two pairs of random 
n-bit values (𝑋𝑋𝑖𝑖,0,𝑋𝑋𝑖𝑖,1) for each bit I of the message. The public 
key is �ℎ�𝑋𝑋𝑖𝑖,0�,ℎ(𝑋𝑋𝑖𝑖,1)�. To sign a message m =(𝑚𝑚1, … . ,𝑚𝑚𝑙𝑙) 
reveal 𝑋𝑋𝑖𝑖,𝑚𝑚1. Verification recomputes hashes and matches 
against the public key. Security against an attacker forging a 

second message requires breaking pre-image resistance in ℓ 
instances, each cost ≈2n classically and ≈2

𝑛𝑛
2quantumly. Thus, 

achieving 𝜆𝜆 −bit quantum security requires hash outputs of 
length 2𝜆𝜆. 

Stateless hash-based (SPHINCS+) builds multiple layers of 
few-time signature trees (Winternitz OTS) and a top-layer hash 
tree, avoiding state-management challenges. Parameters (e.g., 
Winternitz parameter w=16 balance signature size vs. signing 
speed. Total security analysis still reduces to repeated Grover‐
style attacks costing 2

𝑛𝑛
2. If n = 512, quantum effort per collision 

is 2256, providing 256-bit security. For a hash function H: 
{0,1}∗ → {0,1}𝑛𝑛, quantum pre image resistance implies any 
adversary’s success probability in inverting one instance is 
bounded by, 

 

𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤
𝑄𝑄2

2𝑛𝑛
 

 
(7) 

Where Q quantum queries to H are made. By choosing n =2 
𝜆𝜆, even Q=2𝜆𝜆 yields negligible success probability because 
hash-based schemes rest solely on hash security, and quantum 
computers only grant quadratic speed-ups, they remain a robust 
and mathematically transparent option for post-quantum 
signatures.  

7. Conclusion 
Modern cryptography systems face both an incredible 

opportunity and an existential threat from the rapidly 
developing field of quantum computing. Quantum algorithms 
like Shor's and Grover's can challenge the fundamental 
hardness assumptions that underpin classical cryptography, as 
shown by thorough mathematical study. Once thought to be 
computationally safe, public-key systems like RSA and ECC 
are made ineffective by polynomial-time quantum attacks. 
Despite its greater resilience, even symmetric-key cryptography 
has a quadratic security degradation, requiring more robust 
designs and longer key lengths.  

The cryptographic community has made great progress in 
creating post-quantum algorithms that are safe from attackers 
using massive quantum computers in response to these 
difficulties. A mathematically complex and adaptable 
framework based on worst-case hardness assumptions, lattice-
based encryption is thought to be impervious to both classical 
and quantum attacks. Code-based cryptographic systems, 
exemplified by the McEliece scheme, leverage the enduring 
complexity of syndrome decoding and continue to demonstrate 
formidable resilience even under Grover-accelerated 
adversaries. Hash-based signatures, on the other hand, rely only 
on the preimage and collision resistance of cryptographic hash 
functions to offer sophisticated, stateless solutions with 
transparent and understandable security reductions. 

The prompt adoption of these post-quantum cryptographic 
primitives is essential to the future of secure digital 
communication. Although there are still issues with 
performance trade-offs, key sizes, and standardisation, post-
quantum cryptography has solid theoretical foundations. Our 



Shajee et al.  International Journal of Research in Engineering, Science and Management, VOL. 8, NO. 5, MAY 2025 123 

cryptography infrastructure has to advance along with quantum 
capabilities. To prevent the vulnerabilities of the upcoming 
computational paradigm, governments, institutions, and the 
commercial sector must start implementing and integrating 
quantum-safe protocols widely. In the quantum era, we can only 
guarantee the confidentiality, integrity, and validity of data by 
taking a proactive, mathematically based approach.  
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