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Abstract: Sustainable concrete is necessary to lessen the 

environmental impact of building. In the construction industry, 
supplemental cementitious materials (SCMs) added to recycled 
aggregate concrete (RAC) provide a sustainable alternative.  The 
compressive strength (CS) of RAC made using SCM was 
thoroughly examined in this work, which compiled a dataset of 
1000 samples from published literature. Conventional concrete 
mix design techniques are based on trial-and-error and empirical 
methods, which results in inefficient material use and performance 
optimization.  This study explores the use of Artificial Neural 
Networks (ANNs) to forecast and optimize concrete mix design 
parameters in order to increase sustainability and performance. 
This research illustrates how machine learning may greatly 
expedite the design process by training an ANN model on a dataset 
that includes several concrete mix compositions and their resulting 
properties. According to the results, ANN-based models can 
determine the ideal mix proportions with less cement and better 
workability, which is in line with sustainability objectives. They 
can also accurately forecast compressive strength. 
 

Keywords: Compressive strength, ANN, concrete, mix design, 
optimization, sustainable concrete.  

1. Introduction 
The widespread use of Portland cement in concrete is the 

main reason why the building sector contributes significantly to 
global carbon emissions. Sustainable building materials that 
strike a balance between performance, durability, and 
environmental effect are desperately needed as the need for 
infrastructure rises. A potential remedy is sustainable concrete, 
which incorporates supplemental cementitious materials 
(SCMs) such as fly ash, slag, or silica fume. However, creating 
such combinations frequently necessitates making difficult 
trade-offs.  

Many efforts have been made to mitigate the negative 
environmental effects associated with the manufacture of 
concrete in response to these worries. The usage of 
supplemental cementitious materials, or SCMs, has grown in 
popularity all around the world. Particularly well-known 
mineral minerals that are derived from by-products and serve as 
SCMs are fly ash (FA), slag (Sl), and silica fume (SF). By 
partially replacing these ingredients in the concrete mixture, the 
overall amount of ordinary Portland cement (OPC) used can be 
reduced, as well as the environmental impact. The addition of 
SF, Sl, and FA to the concrete blend also has the benefit of  

 
enhancing the concrete's mechanical properties and long-term 
durability.  

One of the primary ways SCMs contribute to better 
mechanical properties is through this pozzolanic reaction. This 
reaction happens when calcium hydroxide, which is generated 
during cement hydration, interacts with SCMs. A denser and 
stronger matrix is produced as a result of the development of 
more calcium silicate hydrate (C–S–H) gel, which is the crucial 
binding phase in concrete (J. Wang et al., 2023). Additionally, 
SCMs contribute to the improvement of the concrete's 
microstructure (Gao et al., 2023). By efficiently filling in the 
spaces between cement particles, they lower porosity and raise 
the concrete's density and strength (Gao et al., 2023). When it 
comes to improving the rheological behavior and compressive 
strength of concrete using SCM, this particle-packing effect is 
especially important (Kashani et al., 2014). Another advantage 
is that SCMs can lessen the alkali-silica reaction (ASR), which 
weakens RAC and shortens its lifespan. 

When it comes to workability, adding SCMs usually makes 
the concrete mixture simpler to work with and more cohesive 
(Feng et al., 2022). Improved workability facilitates greater 
concrete compaction, which is necessary to achieve high 
compressive strength. Additionally, SCMs such as fly ash have 
the ability to control the concrete's hydration heat (Sunayana 
and Barai, 2021). For large-scale projects, where excessive heat 
might lead to cracking and hence negatively affect the early 
compressive strength, this is very helpful. SCM-enriched RAC 
may have a lower initial strength than conventional concrete, 
but it frequently outperforms conventional mixes in the long 
run, especially after the typical 28-day mark. This is explained 
by the continuous pozzolanic reactions that SCMs enable.  

The type and percentage of use of SCMs have a significant 
impact on their efficacy (J. Wang et al., 2023). For instance, fly 
ash may have a more gradual effect, although silica fume is 
known to greatly increase strength (J. Wang et al., 2023). 
Additionally, after a certain optimal quantity of SCMs in the 
mix, the benefits might not increase or might even decrease (J. 
Wang et al., 2023). The quality of the recovered aggregates is 
another crucial factor. High-quality recycled aggregates can 
produce compressive strength increases that are more 
pronounced than those of lower-quality aggregates when paired 
with SCMs (D. Wang et al., 2023). 
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An environmentally responsible and sustainable way to use 
building materials is by employing recycled aggregate (RA) in 
concrete. This material is derived from a number of sources, 
including as concrete that has been crushed and treated to 
produce new aggregates and building detritus. By partially or 
completely substituting natural aggregates, recycled aggregate 
concrete (RAC) provides a number of benefits, such as 
decreased demand for natural aggregates, waste reduction, 
energy conservation, and cost-effectiveness (Kim, 2022). Even 
though RA integration has environmental benefits, it's vital to 
understand that it could negatively impact RAC's durability and 
mechanical qualities. Some of the reasons for this include that 
RA has more porosity, better water absorption, and worse 
adhering mortar than natural aggregate. Consequently, a weak 
inter-facial transition zone (ITZ) develops between the cement 
paste and the RA in the concrete mixture (Yong Ho et al., 2013).  

Concrete's compressive strength (CS) is essential for long-
lasting, safe, and structurally sound constructions. However, 
reaching the necessary CS becomes more challenging because 
to the complex interactions and variations that SCMs and RA 
introduce into concrete mixes (Gao et al., 2023). The presence 
of RA with varying replacement quantities may have a 
particularly significant effect on the ITZ, which is further 
impacted by the presence of SCMs altering the microstructure. 
Because of this, optimizing the concrete mix design under such 
a complex ITZ is challenging. Compared to traditional 
analytical or empirical methodologies, machine learning (ML) 
techniques offer numerous advantages when predicting the CS 
of RAC (Behnood and Golafshani, 2022; Golafshani et al., 
2021).  

These benefits lead to more accurate, reliable, and efficient 
predictions, which enhance comprehension and RAC property 
optimization. Several studies have been conducted to model the 
CS of RAC. Notably, because ensemble approaches can 
improve forecast accuracy and robustness, they have been the 
main focus of recent study. Among the different ensemble 
methods, gradient boosting (GBoost) and extreme gradient 
boosting (XGBoost) have shown better performance when 
compared to other ensemble and individual strategies. 
However, there are currently very few studies that use ensemble 
techniques to model RAC with ternary SCMs.  

Conventional concrete mix designs frequently focus on just 
one goal, like CS maximization or cost reduction, while 
ignoring other important aspects like environmental effect. 
Multi-objective optimization techniques for trade-offs between 
CS, cost, and sustainability-related parameters in concrete 
manufacturing enable the exploration of optimal concrete 
mixtures that strike a compromise between these objectives. 
This scenario enables engineers to make more sustainable 
options by considering not just cost and CS but also the 
environmental impact of making concrete. Liu et al. (2023) 
employed a variety of machine learning techniques to forecast 
the CS of RAC including FA utilizing 1373 data samples. 
Multi-objective particle swarm optimization (MOPSO), which 
considered CS, cost, CO2 emission, and energy consumption as 
objective functions, was then used to identify the optimal mix 
design of RAC. Zandifaez et al. (2023) used 2120 data samples 

to develop several machine learning models to simulate the CS 
of RAC with SF and FA. A many-objective evolutionary 
method based on adaptive geometry estimation was then used 
to optimize the RAC mix design, accounting for the objectives 
of cost, CO2 emission, acidification potential, and the 
possibility for fossil fuel depletion.  

A thorough database of RAC combinations, including 
ternary SCMs, was assembled in order to create the ML models. 
1000 data samples from 60 scientific research that were sourced 
from pertinent literature were included in this collection. 
Following the development of the machine learning models, 
random samples were generated using the Monte Carlo 
simulation technique. This allowed for the analysis of the 
sensitivity analysis of SHapley Additive Explanations (SHAP) 
derived from the collected database. Thus, the behavior of the 
model with respect to fresh data outside of the current database 
was examined. The multi-objective water cycle algorithm 
(MOWCA), a novel metaheuristic optimization technique, was 
then used in the study to simultaneously optimize the CS, cost, 
and CO2 emissions of RAC combining SF, Sl, and FA.  

In order to do this, the machine learning model developed 
during the machine learning development phase was used to 
determine the compressive strength (CS). Conventional mix 
design techniques, such the DOE or ACI approaches, are time-
consuming, involve a lot of physical testing, and might not 
necessarily produce the most sustainable result. A subset of 
machine learning called artificial neural networks (ANNs) is a 
powerful tool for modeling nonlinear interactions and 
forecasting intricate behaviors in concrete materials.  

2. Literature Review 
The promise of machine learning in civil engineering has 

been demonstrated by numerous studies. Yeh (1998) was the 
first to employ artificial neural networks (ANNs) to forecast 
concrete's compressive strength, proving that they were more 
accurate than linear regression. More recently, ANN 
applications have been extended to simulate concrete 
containing SCMs and recycled aggregates (Chou et al., 2011; 
Naseri et al., 2020). The usage of supplemental cementitious 
materials, or SCMs, has grown in popularity all around the 
world. Particularly well-known mineral minerals derived from 
by-products that serve as SCMs are fly ash (FA), slag (Sl), and 
silica fume (SF) (Gupta and Chaudhary, 2022). The formation 
of additional calcium silicate hydrate (C–S–H) gel, the essential 
binding phase in concrete, results in a denser and stronger 
matrix (J. Wang et al., 2023). Furthermore, SCMs help to 
enhance the microstructure of the concrete (Gao et al., 2023). 
They reduce porosity and increase the density and strength of 
the concrete by effectively filling in the gaps between cement 
particles (Gao et al., 2023). The capacity of SCMs to reduce the 
alkali-silica reaction (ASR), a harmful reaction that can cause 
concrete to expand and crack, is another benefit (Barrag´an-
Ramos et al., 2022; Mahmood et al., 2022).  

The optimal mix proportions have also been found using 
optimization techniques. Fuzzy logic, particle swarm 
optimization, and genetic algorithms have demonstrated 
potential. But ANNs offer a more flexible and self-learning 
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substitute. They are appropriate for applications requiring 
variations in material sources and environmental circumstances 
due to their capacity to generalize from data.  

3. Methodology 

A. Data Collection 
The data required for the investigation might be obtained 

from a variety of sources. These sources could include 
published literature, established databases, industry standards 
and requirements, and laboratory tests carried out especially for 
the study. The data set for the current study comes from 
respectable journals and publications, guaranteeing the 
accuracy and legitimacy of the data. A dataset of 1,000 samples 
of concrete mixes was gathered from lab tests and published 
sources. Every data point contained:  

• Cement content (kg/m³) 
• Fly ash, slag, or silica fume content (kg/m³) 
• Water-to-binder ratio 
• Coarse and fine aggregate content (kg/m³) 
• Recycled aggregate content (kg/m³) 
• Superplasticizer dosage (kg/m³) 
• Age of concrete (days) 
• Measured compressive strength (MPa) 

Observations from Statistical Analysis of the Dataset: The 
dataset's statistical analysis yields significant findings on the 
output Compressive Strength and the input ingredients' mean, 
standard deviation, quartiles, and range. The following are the 
main conclusions: 

 
Table 1 

Statistical analysis of the dataset 
Variables Mean Maximum Std 
C (kg/m3) 276.5 540 103.4 
SF+SL (kg/m³) 74.27 359.4 84.25 
Fly Ash(kg/m³) 62.87 260 71.58 
RCA (kg/m³) 964.83 1145 82.79 
FA (kg/m³) 770.49 992.6 79.37 
W (kg/m³) 182.98 247 21.71 
SP (kg/m3) 6.42 32.2 5.80 
Age (Days) 44.92 365 60.44 
Compressive Strength (MPa) 35.84 82.60 16.10 

  
The range, distribution, and central tendencies of the input 

ingredients as well as the output Compressive Strength are 
clarified by these statistical findings, which offer a thorough 
picture of the dataset. They provide the foundation for more 
research, the creation of models, and the improvement of high-
performance concrete mixes.  

B. Data Preprocessing 
The raw data in the database was prepared for analysis and 

model building using a series of steps known as data 
preparation in machine learning (ML), which includes data 
cleaning, feature selection, and data normalization when 
required. The predictors considered for the model included 
amounts of cement (C), silica fume (SF), slag (Sl), fly ash (FA), 
water (W), natural fine aggregate (NFA), and superplasticizer 
(SP) in addition to cement grade (CG), recycled coarse 
aggregate ratio (RAR), recycled aggregate water absorption 

(RWA), and testing age (TA). It should be noted that 
sophisticated machine learning approaches have the ability to 
capture intricate, non-linear correlations between the CS and 
the chosen inputs, which could result in predictions that are 
more accurate. To enhance ANN performance, the data was 
adjusted to a [0, 1] range. In order to handle missing variables, 
we employed k-nearest neighbors (k-NN) imputation. Seventy 
percent of the dataset was then used for training, fifteen percent 
for validation, and fifteen percent for testing. 

C. ANN Model Development 
There are several varieties of deep learning neural networks, 

and the ANN is a popular method that has been used extensively 
to create prediction models across a range of industries. 
Because ANN is widely used and simple to use, it is used in this 
study. In particular, a modified and optimized version of ANN 
that is frequently used in practice is the Backpropagation Neural 
Network (BPNN). The Tensor Flow framework in Python was 
used to create a feed forward back propagation neural network. 
The structure was made up of: 

• Input layer: 7 neurons (input variables) 
• Two hidden layers: 20 and 10 neurons respectively, 

with ReLU activation 
• Output layer: 1 neuron (compressive strength), with 

linear activation  
The network was trained using the Adam optimizer with a 

mean squared error loss function. 
In the initial phase, every input neuron receives an input that 

indicates the percentage of ingredients and sends a prediction 
to the buried layer neurons based on Eq. (1). To provide non-
linearity to the fitting process, an activation function is applied 
at the output neuron and each hidden layer. Differentiability is 
crucial for this activation function. The input for the activation 
function is thought to be the output of the input neurons. he 
output is calculated and sent forward as input to either the 
output layer neurons or the subsequent hidden layer neurons, 
depending on the selected activation function, following Eq. 
(2). 

 
yj= ∑ (𝑤𝑤𝑤𝑤𝑤𝑤. 𝑥𝑥𝑤𝑤) + 𝑏𝑏𝑤𝑤𝑛𝑛

𝑖𝑖=1               (1) 
 

The input and output of the 𝑤𝑤𝑗𝑗ℎ neuron are denoted by 𝑥𝑥𝑤𝑤 and 
𝑦𝑦𝑤𝑤, the weight (connection) between the 𝑤𝑤𝑗𝑗ℎ and 𝑤𝑤𝑗𝑗ℎ neuron by 
𝑤𝑤𝑤𝑤𝑤𝑤, the bias parameter for the 𝑤𝑤𝑗𝑗ℎ neuron by 𝑢𝑢 is the number of 
neurons. 

The error is computed by comparing the output neuron's 
prediction with the actual value after it has been generated. This 
calculation of error aids in evaluating the model's correctness. 

 
                   𝐴𝐴𝑤𝑤=(𝑦𝑦𝑤𝑤)           (2) 
 
In this case, 𝑦𝑦𝑤𝑤 represents the activation function's input that 

was obtained from Eq. 1. 
To reduce the error, the estimated error is transmitted 

backward in the second stage. Each neuron's weight and bias 
are tuned during this procedure. The MSE provided in Eq. 3 is 
used to assess the error in BPNN. 
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MSE= 1
𝑛𝑛
 ∑ (𝑦𝑦𝑤𝑤 − 𝑦𝑦𝑦𝑤𝑤)2𝑛𝑛

𝑖𝑖=1            (3) 
 

The mean squared error is represented by 𝑀𝑀𝑀𝑀𝑀𝑀, the total 
number of samples is represented by 𝑛𝑛, the actual output is 
represented by 𝑦𝑦𝑤𝑤, and the predicted output of the model is 
represented by �̂�𝑦𝑤𝑤. 

 

 
Fig. 1. Architecture of ANN adopted 

D. Optimization Algorithm 
After training, combinations of input variables were 

investigated using a grid search method under realistic 
limitations. Reducing the cement content while keeping the 
compressive strength over 40 MPa was the aim. The method of 
Artificial Neural Networks (ANN) Artificial neural networks 
(ANNs) are made up of interconnected neurons arranged in 
layers, such as input, hidden, and output layers. Data is received 
by the input layer, processed by hidden layers, and predictions 
are made by the output layer. Through forward and backward 
operations (forward propagation and backpropagation), the 
network modifies its weights and biases throughout training in 
order to identify patterns in the data (Hong, 2023). The 
following is how the output is predicted in the forward process.  

4. Results and Discussion 

A. Model Performance 
The ANN model employed in this study was found to predict 

compressive strength with a high degree of accuracy:  
• R² (test set): 0.95 
• RMSE: 2.45 MPa 
• MAE: 1.75 MPa 

This demonstrates a robust relationship between expected 
and actual strengths, confirming the efficacy of the ANN.  

B. Optimization Results 
Several mix designs with high fly ash and slag concentration 

(up to 50% cement substitution) that produced compressive 
strengths > 35 MPa with 20–30% less cement were found 
throughout the optimization phase. In keeping with 
environmental goals, these blends also decreased heat of 
hydration and enhanced workability.  

The output optimized mix is given below: 

• Cement: 280 kg/m³ 
• Fly Ash: 60 kg/m³ 
• Water-to-binder ratio: 0.40 
• Coarse Aggregate: 960 kg/m³ 
• Recycled Aggregate:300 kg/m³ 
• Fine Aggregate: 700 kg/m³ 
• Superplasticizer: 1.0% by binder weight 
• Predicted 28-day strength: 37.5 MPa 

C. Discussion 
Generally speaking, as compressive strength improves, so 

does the amount of SCMs added to the best RAC blends. 
Interestingly, fly ash is used more often than the other SCMs 
since it is less expensive and emits less CO2 per unit. Slag and 
silica fume consumption increases in tandem with increased 
compressive strength due to their strong latent hydraulic and 
pozzolanic reactivity, which significantly influences the 
achievement of higher compressive strength.  The rate of 
growth sharpens as the amount of binder gradually rises until it 
exceeds 57 MPa.  There is a discernible rise in cement 
consumption over 60 MPa compressive strength, indicating that 
more cement is being utilized for hydration to achieve higher 
compressive strength values. On the other hand, because 
cement contributes significantly to CO2 emissions and costs, 
the optimization algorithm aims to reduce its content for lower 
compressive strengths. With regard to compressive strength, 
there is no obvious trend in the water content, which varies 
between 110 and 200 kg/m3.  This pattern demonstrates that the 
optimization algorithm tries to reduce the super-plasticizer 
content due to its high cost and maintains the water content 
within this range despite its detrimental effect on compressive 
strength.  Up until it reaches roughly 62 MPa, the amount of 
recycled coarse aggregate gradually declines before dropping 
off suddenly. This design highlights the significance of 
employing natural coarse aggregate to strengthen the 
connection with mortar and produce a robust interfacial 
transition zone, particularly at higher compressive strengths.  

In general, the amount of natural fine aggregate grows along 
with compressive strength. At higher compressive strengths, 
this pattern is linked to a greater natural fine aggregate 
contribution to the packing density of RAC. By helping to fill 
in the spaces between bigger aggregate particles, this increased 
packing density improves load transfer and interlocking within 
the concrete matrix. The use of superplasticizer is still restricted 
for compressive strengths lower than 47 MPa. The usage of 
super-plasticizer steadily rises between around 47 MPa and 58 
MPa. After about 58 MPa, a noticeable jump is subsequently 
seen, emphasizing the necessity of increased superplasticizer 
dosages for reaching higher compressive strengths as well as 
improved workability and flow characteristics. 

The ANN model successfully learned the complex linkages 
in the dataset and provided feasible sustainable mix options.  
Nonetheless, the model's performance is greatly influenced by 
the quality and representativeness of the training data.  Before 
extrapolating outside of the dataset, more validation could be 
required.  
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5. Conclusion 
The feasibility of using artificial neural networks to optimize 

sustainable concrete mix designs is demonstrated in this study. 
ANN models can lessen the need for trial-and-error techniques 
and greatly aid in achieving environmental goals in 
construction by precisely forecasting compressive strength and 
investigating different binder combinations. For this inquiry, a 
comprehensive database on the compressive strength (CS) of 
recycled aggregate concrete (RAC) with supplemental 
cementitious materials (SCMs) must be constructed. The 
database was derived from 60 peer-reviewed articles. We 
employed machine learning (ML) techniques, such as Artificial 
Neural Networks (ANN), to model the CS of RAC.  Our study's 
independent variables included the amounts of cement, fly ash, 
slag, fly ash, water, natural fine aggregate, and superplasticizer; 
the ratio of recycled aggregate to water absorption; and the 
testing age.  

These were linked to the CS of RAC, our dependent variable, 
and other different ML models by achieving an R-squared value 
greater than 0.95. Furthermore, employing these models in the 
stacking model construction process greatly improved the 
accuracy of CS predictions.  However, it was demonstrated that 
the cement content and the concrete's age were the two most 
significant parameters affecting the CS of RAC. The cement 
grade, water content, and natural fine aggregate content came 
next, with minor variations. As CS increased, so did the fraction 
of SCMs in ideal RAC compositions. Due to its lower cost and 
CO2 emissions per unit, fly ash was utilized most often. 
However, because of its strong pozzolanic reactivity, slag and 
silica fume were also employed more frequently as CS rose. In 
order to maximize compressive strength while reducing 
environmental effect, this research explores how artificial 
neural networks (ANNs) might be used to optimize mix designs 
for sustainable concrete.  
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