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Abstract: This study investigates the time-domain motion 

response of a containership to wave excitation using the Boundary 
Element Method (BEM).  Accurate prediction of ship motions is 
crucial for safe and efficient maritime operations.  This research 
focuses on a comprehensive analysis of the vessel's six degrees of 
freedom (surge, sway, heave, roll, pitch, and yaw) to understand 
its dynamic behavior in realistic sea conditions.  A 3D model of the 
containership hull, derived from a SolidWorks-generated STL file 
with a surface area of 12,569,830,985.5274 mm² and overall 
dimensions of 213078.4316 mm (X), 36049.9816 mm (Y), and 
16344.666 mm (Z), serves as the geometric basis for the BEM 
calculations. The time-domain BEM approach allows for a 
detailed examination of the vessel's transient and steady-state 
responses to wave forces. The analysis encompasses the 
computation of wave-induced forces, added mass, and damping 
coefficients, which are then incorporated into the vessel's 
equations of motion.  The study presents time histories of 
displacement, velocity, and acceleration for each motion mode.  
Key findings reveal significant motion amplitudes in surge, sway, 
and heave, with peak displacements reaching approximately 0.5m, 
0.1m, and 0.5m, respectively.  Rotational motions, while smaller in 
displacement, exhibit significant velocities and accelerations, 
particularly in pitch and yaw.  Specifically, yaw velocity and 
acceleration reach substantial values of approximately 2000 rad/s 
and ±2000 rad/s², respectively, highlighting the critical role of 
stabilization systems. The results emphasize the importance of 
considering all six degrees of freedom in ship motion analysis.  The 
identified critical motion modes and their associated peak values 
provide crucial information for optimizing ship design, enhancing 
stability, and ensuring safe operation in challenging sea 
environments.  This study demonstrates the effectiveness of the 
time-domain BEM in capturing the complex hydrodynamic 
interactions and providing valuable data for improving vessel 
performance and safety. 
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1. Introduction 
The study of containership motions in the time domain is 

critical for understanding vessel dynamics, optimizing 
operational efficiency, and ensuring safety in maritime 
transportation. Containerships, which form the backbone of 
global trade by carrying vast amounts of cargo across oceans,  

 
are subjected to complex environmental forces, such as wave-
induced excitations, wind loads, and varying sea states. These 
forces lead to vessel motions—namely surge, sway, heave, roll, 
pitch, and yaw—which can significantly impact cargo integrity, 
fuel efficiency, and crew safety if not effectively managed [1], 
[2]. 

Time-domain analysis offers a detailed and realistic 
representation of ship motion responses compared to 
frequency-domain methods, as it allows for the simulation of 
transient effects, nonlinear behaviors, and varying 
environmental conditions [3]. This approach leverages 
numerical methods, such as the Boundary Element Method 
(BEM) and computational fluid dynamics (CFD), to solve 
hydrodynamic equations and assess the vessel’s response under 
time-varying wave forces. Time-domain simulations have 
become increasingly relevant for modern containership designs, 
as they enable predictions of critical phenomena such as 
parametric roll, slamming, and wave-induced vibrations, which 
can jeopardize vessel stability and cargo safety [4]. 

The critical assessment of containership motions in the time 
domain is essential for evaluating motion amplitudes, 
accelerations, and associated forces during real-world 
operations. This study provides insights into improving vessel 
design, optimizing loading configurations, and implementing 
effective stabilization mechanisms to mitigate excessive 
motions. Furthermore, with advancements in computational 
techniques and high-performance computing, time-domain 
methods are now more accessible, enabling a deeper 
understanding of containership behavior under dynamic sea 
conditions [5]. This research contributes to addressing the 
challenges of motion-induced cargo damage, fuel inefficiency, 
and operational safety, supporting the development of more 
resilient and efficient maritime transportation systems. 

2. Literature Review 
The study of containership motions in the time domain has 

garnered significant attention in marine hydrodynamics due to 
its critical role in ensuring vessel safety, operational efficiency, 
and cargo integrity. The six degrees of freedom (surge, sway, 
heave, roll, pitch, and yaw) associated with ship motions result 
from external forces such as wave excitations, wind, and 
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varying sea states. A robust understanding of these dynamic 
responses is essential to mitigating adverse effects, including 
parametric roll, slamming, and resonance [1], [2]. While early 
research primarily relied on frequency-domain approaches, 
time-domain methods have emerged as a more comprehensive 
solution, capturing transient responses and nonlinear 
phenomena often overlooked in linear frequency-domain 
analyses [5], [4]. 

Time-domain analysis enables detailed simulations of ship 
motion under irregular and dynamic wave conditions. 
Numerical methods, such as the Boundary Element Method 
(BEM), have been widely adopted for solving hydrodynamic 
forces and predicting vessel responses. [1] highlighted the 
advantages of BEM in analyzing wave-body interactions, 
where Green’s functions and potential flow theory serve as the 
foundation for hydrodynamic computations. Recent studies, 
such as [4], extended these approaches by incorporating 
nonlinear wave loads and hull interactions, providing greater 
accuracy in assessing ship motions, particularly in rough seas. 

Further advancements have been driven by Computational 
Fluid Dynamics (CFD), which offers higher fidelity for 
complex scenarios involving viscous effects, wave-breaking, 
and large-amplitude ship motions [6], [7]. CFD simulations 
complement traditional BEM-based methods by resolving 
fluid-structure interactions, although at higher computational 
costs. For example, studies comparing CFD and potential-flow-
based BEM solutions demonstrate that while BEM remains 
efficient for linear and quasi-linear problems, CFD excels in 
nonlinear and extreme wave conditions [8], [4]. These methods 
are particularly relevant for containerships, which are prone to 
phenomena like parametric roll and slamming during heavy 
seas due to their unique hull geometry and cargo distributions 
[9]. 

A critical challenge in containership motion analysis is the 
accurate prediction and control of roll motions, which have 
been extensively studied due to their impact on vessel stability. 
Parametric roll, a nonlinear phenomenon that occurs under 
certain wave conditions, can result in excessive roll amplitudes 
and loss of cargo integrity. [5] and [6] demonstrated that time-
domain simulations effectively capture the onset and 
progression of parametric roll compared to frequency-domain 
methods. These findings have been further validated through 
experimental studies and full-scale sea trials, emphasizing the 
importance of coupling numerical results with physical 
validation. 

The role of time-domain simulations in optimizing vessel 
performance has also been explored in the context of energy 
efficiency and operational planning. [4] illustrated that accurate 
time-domain analysis aids in assessing fuel consumption under 
varying sea states, allowing operators to adjust speed and 
heading to minimize resistance and fuel costs. Such analyses 
are critical in meeting regulatory requirements for energy 
efficiency, such as the International Maritime Organization’s 
Energy Efficiency Design Index (EEDI) standards. 

The literature underscores the significance of time-domain 
analysis in assessing containership motions, with 
methodologies like BEM and CFD playing pivotal roles. While 

BEM offers efficiency in linear and moderately nonlinear 
problems, CFD provides the accuracy needed for extreme 
scenarios, albeit at higher computational demands. Continued 
integration of numerical methods with experimental data is 
essential for enhancing the reliability of ship motion 
predictions, ensuring safety, and improving operational 
efficiency in global maritime transportation. 

3. Methodology 

A. Coupling with Numerical Time-Domain Solvers 
In the time domain, hydrodynamic forces are often 

represented using convolution integrals, combining the 
radiation forces with retardation functions, while the diffraction 
forces are directly derived from incident wave conditions. This 
approach ensures accurate modeling of transient responses in 
vessel dynamics [10]. 

Where φ is the complex amplitude of the potential ∅, and 
they both satisfy the Laplace Equation (1). 

 
∇2∅ = 0 𝑎𝑎𝑎𝑎𝑎𝑎 ∇2𝜑𝜑 = 0              (1) 
 
Our purpose is to solve the frequency domain potential 

function 𝜑𝜑 . Firstly, the total potential 𝜑𝜑 (Equation (2) is 
considered as the sum of three components. Incoming wave, 
scattered wave and radiated wave; and all three potentials 
satisfy the Laplace condition according to Equation (3) [11] and 
[12]. 

 
𝜑𝜑 = 𝜑𝜑𝑜𝑜 + 𝜑𝜑𝑠𝑠 + 𝜑𝜑𝑅𝑅                (2) 
 
∇2𝜑𝜑𝑜𝑜 = ∇2𝜑𝜑𝑠𝑠 = ∇2𝜑𝜑𝑅𝑅 = 0            (3) 
 
Where, 𝜑𝜑𝑜𝑜 is the potential of the incoming wave, 𝜑𝜑𝑠𝑠is the 

potential of the scattered wave due to the existence of the 
marine structure, 𝜑𝜑𝑅𝑅is the potential of the radiated wave. The 
fluid domain of interest is enclosed by the body surface𝑆𝑆𝑏𝑏, the 
free surface, 𝑆𝑆𝑓𝑓 the seabed 𝑆𝑆𝑧𝑧 and the control surface 𝑆𝑆𝑐𝑐 as 
shown in Figure 1. 

 

 
Fig. 1.  BEM Fluid domain of interest 
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Free Surface 𝑆𝑆𝑓𝑓 linearized free surface boundary conditions 
represented as Equations (4) to (6) for incident, scattered and 
radiation potentials respectively; 

 
𝜕𝜕𝜑𝜑𝑜𝑜
𝜕𝜕𝜕𝜕

= 𝐾𝐾𝜑𝜑𝑜𝑜                   (4) 
 
𝜕𝜕𝜑𝜑𝑠𝑠
𝜕𝜕𝜕𝜕

= 𝐾𝐾𝜑𝜑𝑠𝑠 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑧𝑧 = 0              (5) 
 
𝜕𝜕𝜑𝜑𝑅𝑅
𝜕𝜕𝜕𝜕

= 𝐾𝐾𝜑𝜑𝑅𝑅                   (6) 
 
Linearized free surface boundary condition according to 

Equations (7) or (8), 
 

 𝜕𝜕2𝜑𝜑
𝜕𝜕𝑡𝑡2

+ 𝑔𝑔 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0                (7) 
 
𝜕𝜕2𝜑𝜑
𝜕𝜕𝑡𝑡2

= −𝜔𝜔2𝜑𝜑                (8) 

 
Where 𝐾𝐾 = 𝜔𝜔2

𝑔𝑔
 

 
The Seabed 𝑆𝑆𝑧𝑧: Seabed boundary Conditions are captured as 

Equations (9), (10) and (11) for incident, scattered and radiation 
potentials respectively. 

 
𝜕𝜕𝜑𝜑𝑜𝑜
𝜕𝜕𝑧𝑧

= 0                   (9) 
 
𝜕𝜕𝜑𝜑𝑠𝑠
𝜕𝜕𝑧𝑧

= 0 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑧𝑧 = −ℎ             (10) 
 
𝜕𝜕𝜑𝜑𝑅𝑅
𝜕𝜕𝑧𝑧

= 0                   (11) 
 
Based on the free surface seabed conditions, the velocity 

potential for incoming wave can be solved using Equations (12) 

for for deep water when ℎ > 𝜆𝜆
2
, 

 
𝜑𝜑𝑜𝑜 = 𝑖𝑖𝑖𝑖𝑖𝑖

𝜔𝜔
𝑒𝑒𝑘𝑘𝑘𝑘−𝑖𝑖𝑖𝑖𝑖𝑖 cos𝛽𝛽−𝑖𝑖𝑖𝑖𝑖𝑖 sin𝛽𝛽           (12) 

 
Within the fluid domain, we suppose there are two velocity 

potential functions which satisfy the Laplace condition of 
Equation (1). 

The target potential function 𝜑𝜑, known as potential function 
∅𝑜𝑜 for instance, the potential for the green function or the 
Rankine source and suppose both functions satisfy the Laplace 
Equation (1) that is 

Using the gauss divergence theorem, we have the enclosed 
volume 𝑣𝑣 as Equation (13). 

 
∯ �𝜑𝜑 𝜕𝜕∅𝑜𝑜

𝜕𝜕𝜕𝜕
− ∅𝑜𝑜

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝑑𝑑𝑑𝑑 = ∭ ∇(𝜑𝜑∇∅𝑜𝑜 −𝑣𝑣𝑆𝑆𝑐𝑐+𝑆𝑆𝑏𝑏+𝑆𝑆𝑓𝑓+𝑆𝑆𝑧𝑧

∅𝑜𝑜∇𝜑𝜑)𝑑𝑑𝑑𝑑                    (13) 
 

Where 𝑣𝑣 = 𝑆𝑆𝑐𝑐 + 𝑆𝑆𝑏𝑏 + 𝑆𝑆𝑓𝑓 + 𝑆𝑆𝑧𝑧 
 
So, if we simplify the left-hand side of Equation (13) and 

Equate it to zero, we have Equation (14) and (15). 
 
∭ ∇(𝜑𝜑∇∅𝑜𝑜 − ∅𝑜𝑜∇𝜑𝜑)𝑑𝑑𝑑𝑑𝑣𝑣 = ∭ (∇.𝜑𝜑.∇.∅𝑜𝑜 + 𝜑𝜑∇2∅𝑜𝑜 −𝑣𝑣

∇.∅𝑜𝑜.∇.𝜑𝜑 − ∅𝑜𝑜∇2𝜑𝜑)𝑑𝑑𝑑𝑑              (14) 
 
∭ ∇(𝜑𝜑∇∅𝑜𝑜 − ∅𝑜𝑜∇𝜑𝜑)𝑑𝑑𝑑𝑑𝑣𝑣 = ∭ (𝜑𝜑∇2∅𝑜𝑜 − ∅𝑜𝑜∇2𝜑𝜑)𝑑𝑑𝑑𝑑𝑣𝑣 = 0

                       (15) 
 
So, we can obtain the Green’s theorem as Equation (16) by 

replacing or substituting the ∇2∅𝑜𝑜 term with 
𝜕𝜕∅𝑜𝑜
𝜕𝜕𝜕𝜕

 and ∇2𝜑𝜑 

with 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 respectively. 
 
∯ �𝜑𝜑 𝜕𝜕∅𝑜𝑜

𝜕𝜕𝜕𝜕
− ∅𝑜𝑜

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝑑𝑑𝑑𝑑 = 0𝑆𝑆𝑐𝑐+𝑆𝑆𝑏𝑏+𝑆𝑆𝑓𝑓+𝑆𝑆𝑧𝑧

        (16) 

 
For marine structures, the flow field is normally bounded 

with the free surface, 𝑆𝑆𝑓𝑓 and seabed boundary, 𝑆𝑆𝑧𝑧, together 
with the control surface 𝑆𝑆𝑐𝑐 and the body surface 𝑆𝑆𝑏𝑏: 𝑆𝑆𝑐𝑐 +
𝑆𝑆𝑏𝑏 + 𝑆𝑆𝑓𝑓 + 𝑆𝑆𝑧𝑧 = 𝑣𝑣, thus for simplifying the problem, the 
green function must be carefully chosen as that in WAMIT 
(Wave Analysis MIT), as following the analysis in WAMIT, 
the special green function, G, can be chosen in deep water as 
Equation (17). 

 

∅𝑜𝑜 = 𝐺𝐺�𝑋⃗𝑋,𝑋𝑋𝑜𝑜����⃗ � = 1
𝑟𝑟

+ 1
𝑟𝑟! + 2𝑘𝑘

𝜋𝜋 ∫
𝑒𝑒𝑘𝑘(𝑧𝑧+𝑧𝑧𝑜𝑜)

𝑘𝑘−𝐾𝐾
∞
0 𝐽𝐽𝑜𝑜(𝑘𝑘𝑘𝑘)𝑑𝑑𝑑𝑑  (17) 

 
Where, 
 

 𝑘𝑘 = 𝜔𝜔2

𝑔𝑔
  

 𝑟𝑟 = �(𝑥𝑥 − 𝑥𝑥𝑜𝑜)2 + (𝑦𝑦 − 𝑦𝑦𝑜𝑜)2 + (𝑧𝑧 − 𝑧𝑧𝑜𝑜)2  

 r’=�(𝑥𝑥 − 𝑥𝑥0)2 + (𝑦𝑦 − 𝑦𝑦0)2(𝑧𝑧 + 𝑧𝑧0)2 

 𝑅𝑅 = �(𝑥𝑥 − 𝑥𝑥𝑜𝑜)2 + (𝑦𝑦 − 𝑦𝑦𝑜𝑜)2  
All these potentials and the Green’s function on the body 

surface 𝑠𝑠𝑏𝑏, this is the equation we can use for solving the 
radiation potential 𝜑𝜑𝑗𝑗 . Similar to the numerical scheme for the 
scattering potential. We can assume the radiation potential 𝜑𝜑𝑗𝑗  
and the normal vector component 𝜑𝜑𝑗𝑗  would be constants on 
each small panel, as such the discrete boundary integral 
equation for the radiation potential is given as. 

 
2𝜋𝜋𝜑𝜑𝑗𝑗𝑗𝑗 + ∑ 𝜑𝜑𝑗𝑗𝑗𝑗𝑁𝑁

𝑖𝑖=1(𝑖𝑖≠𝑘𝑘) ∬ 𝜕𝜕𝐺𝐺𝑖𝑖𝑖𝑖
𝜕𝜕𝑛𝑛𝑖𝑖∆𝑠𝑠𝑖𝑖

𝑑𝑑𝑑𝑑 =

+∑ 𝑛𝑛𝑗𝑗𝑗𝑗 ∬ 𝐺𝐺𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑∆𝑠𝑠𝑖𝑖
𝑁𝑁
𝑖𝑖=1(𝑖𝑖≠𝑘𝑘)              (18) 

 
j = 1, 2, 3, ……, 6 
k = 1, 2, 3, ……., N 
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if we define the coefficient. 
 
𝑎𝑎𝑖𝑖𝑖𝑖 = 0 for i=k and 𝑏𝑏𝑖𝑖𝑖𝑖 = 0 for i=k 
 
𝑎𝑎𝑖𝑖𝑖𝑖 = ∬ 𝜕𝜕𝐺𝐺𝑖𝑖𝑖𝑖

𝜕𝜕𝑛𝑛𝑖𝑖∆𝑠𝑠𝑖𝑖
𝑑𝑑𝑑𝑑 𝑖𝑖 ≠ 𝑘𝑘 & 𝑏𝑏𝑖𝑖𝑖𝑖 = ∬ 𝐺𝐺𝑖𝑖𝑖𝑖∆𝑠𝑠𝑖𝑖

𝑑𝑑𝑑𝑑 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 ≠ 𝑘𝑘 (19) 

 
Then we can obtain the simultaneous equation for the 

radiation potential. This Equation (19) can be used to solve the 
radiation potential. 

 

⎣
⎢
⎢
⎢
⎢
⎡

2𝜋𝜋 𝑎𝑎12 𝑎𝑎13 . . 𝑎𝑎1𝑁𝑁
𝑎𝑎21 2𝜋𝜋 𝑎𝑎23 . . 𝑎𝑎2𝑁𝑁
𝑎𝑎31

..
𝑎𝑎𝑁𝑁1

𝑎𝑎32
..

𝑎𝑎𝑁𝑁2

2𝜋𝜋 . . 𝑎𝑎3𝑁𝑁
. . . .

.
𝑎𝑎𝑁𝑁3

.

.
. .

. 2𝜋𝜋 ⎦
⎥
⎥
⎥
⎥
⎤

⎝

⎜
⎛

𝜑𝜑𝑗𝑗1
𝜑𝜑𝑗𝑗2
𝜑𝜑𝑗𝑗3

..
𝜑𝜑𝑗𝑗𝑗𝑗⎠

⎟
⎞

=

⎣
⎢
⎢
⎢
⎢
⎡ 0 𝑏𝑏12 𝑏𝑏13 . . 𝑏𝑏1𝑁𝑁
𝑏𝑏21 0 𝑏𝑏23 . . 𝑏𝑏2𝑁𝑁
𝑏𝑏31

..
𝑏𝑏𝑁𝑁1

𝑏𝑏32
..

𝑏𝑏𝑁𝑁2

0 . . 𝑏𝑏3𝑁𝑁
. . . .
.

𝑏𝑏𝑁𝑁3
.
.

. .
. 0 ⎦

⎥
⎥
⎥
⎥
⎤

⎝

⎜
⎛

𝑛𝑛𝑗𝑗1
𝑛𝑛𝑗𝑗2
𝑛𝑛𝑗𝑗3

..
𝑛𝑛𝑗𝑗𝑗𝑗⎠

⎟
⎞

  

                      (20) 
 
From Equation (20), it can be seen that the unit amplitude 

motion 𝑛𝑛𝑗𝑗 of the structure is the forcing, thus if the forcing is 
zero, for instance, when the structure is fixed, the radiation 
potential would be zero. 

Once the relevant potentials functions have been solved, the 
hydrostatic, hydrodynamic forces and the moments can be 
calculated. Which would include the hydrostatic forces, wave 
exciting forces, as well as the radiation force in terms of added 
mass and the radiation damping coefficient. 

Principally, the hydrodynamic equation in time domain is 
actually derived from the hydrodynamic equation in Frequency 
domain. Since, in a linear dynamic system, we assume under 
the sinusoidal action, the motion would be sinusoidal 
accordingly, thus, 

  
𝐹𝐹𝑖𝑖(𝑡𝑡) = 𝐹𝐹𝑖𝑖𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖                (21) 
 
While 
 
𝑥𝑥𝑗𝑗(𝑡𝑡) = 𝐴𝐴𝑗𝑗𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖                (22) 
 
And the corresponding motion velocity and acceleration of 

the structure in time domain are express as Equation (23) and 
(24).  

 
𝑥̇𝑥(𝑡𝑡) = 𝑖𝑖𝑖𝑖𝑖𝑖𝑗𝑗𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖               (23) 
 
𝑥̈𝑥(𝑡𝑡) = 𝑖𝑖𝜔𝜔2𝐴𝐴𝑗𝑗𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖               (24) 
 
The time domain equation is given after applying the 

hydrostatic and hydrodynamic forces as Equation (25). 

��𝑀𝑀𝑖𝑖𝑖𝑖 + 𝑎𝑎𝑖𝑖𝑖𝑖�
6

𝑗𝑗=1

𝑥̈𝑥𝑗𝑗(𝑡𝑡) + �𝑏𝑏𝑖𝑖𝑖𝑖𝑥̇𝑥𝑗𝑗(𝑡𝑡)
6

𝑗𝑗=1

+ �𝐶𝐶𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗(𝑡𝑡)
6

𝑗𝑗=1

= 𝐹𝐹𝑖𝑖(𝑡𝑡) 

                      (25) 
 
By substituting Equation 25 becomes, 
 

��−�𝑀𝑀𝑖𝑖𝑖𝑖 + 𝑎𝑎𝑖𝑖𝑖𝑖�𝜔𝜔2𝐴𝐴𝑗𝑗 + �𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐴𝐴𝑗𝑗� + 𝐶𝐶𝑖𝑖𝑖𝑖𝐴𝐴𝑗𝑗�
6

𝑗𝑗=1

𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐹𝐹𝑖𝑖𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 

                      (26) 
 
However, we must be very careful when we transform the 

hydrodynamic equation in frequency domain to the equation in 
time domain as 𝑎𝑎𝑖𝑖𝑖𝑖 , 𝑏𝑏𝑖𝑖𝑖𝑖 and 𝐹𝐹𝑖𝑖  are all frequency dependent. 

It must be said that this linear time domain equation is only 
correct when the force 𝐹𝐹𝑖𝑖(𝑡𝑡) is sinusoidal for which the 
frequency of the dynamic system of the forces and the motions 
is well defined. However, 𝑎𝑎𝑖𝑖𝑖𝑖 , 𝑏𝑏𝑖𝑖𝑖𝑖 and 𝐹𝐹𝑖𝑖  would become 
meaningless if the force 𝐹𝐹𝑖𝑖(𝑡𝑡) is not sinusoidal, or without a 
uniquely defined frequency, since in such a case, all 𝑎𝑎𝑖𝑖𝑖𝑖 , 𝑏𝑏𝑖𝑖𝑖𝑖 
and 𝐹𝐹𝑖𝑖  are uncertain. 

Instead, the complete time-domain equation transformed 
from the frequency-domain equation is given by the expression 
in Equation (27). 

 
∑ �𝑀𝑀𝑖𝑖𝑖𝑖 + 𝑎𝑎𝑖𝑖𝑖𝑖(∞)�6
𝑗𝑗=1 𝑥̈𝑥𝑗𝑗(𝑡𝑡) + ∑ ∫ 𝐾𝐾𝑖𝑖𝑖𝑖(𝑡𝑡 − 𝜏𝜏)𝑥̇𝑥𝑗𝑗(𝑡𝑡)𝑡𝑡

0
6
𝑗𝑗=1 𝑑𝑑𝑑𝑑 +

∑ 𝐶𝐶𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗(𝑡𝑡)6
𝑗𝑗=1 = 𝐹𝐹𝑖𝑖(𝑡𝑡)               (27) 
 
𝑎𝑎𝑖𝑖𝑖𝑖(∞) is the added mass at the infinite frequency, and the 

impulse function 𝐾𝐾𝑖𝑖𝑖𝑖(𝑡𝑡) is a fourier transform of the radiation 
damping as. 

 
𝐾𝐾𝑖𝑖𝑖𝑖(𝑡𝑡) = 2

𝜋𝜋 ∫ 𝑏𝑏𝑖𝑖𝑖𝑖(𝜔𝜔)∞
0 cos(𝜔𝜔𝜔𝜔)𝑑𝑑𝑑𝑑         (28) 

 

 
Fig. 2.  Full scale model of a containership with ten bulkheads 

 
Figure 2 depicts a 3D model of a containership hull, created 

in SolidWorks and saved as an STL file.  The model is shown 
in a standard three-dimensional coordinate system, with X, Y, 
and Z axes clearly marked.  This coordinate system is essential 
for any analysis of the ship's motion, as it provides a reference 
frame for defining position, orientation, and movement.  We 
also see some key measurements: the total surface area of the 
hull is a staggering 12,569,830,985.5274 square millimeters.  
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This number is crucial for hydrodynamic calculations, as it 
directly influences the interaction between the hull and the 
surrounding water.  The overall dimensions of the hull in the X, 
Y, and Z directions are also provided, giving us a sense of the 
ship's size and proportions.  These dimensions are vital for 
understanding the scale of the model and for comparing it to 
real-world containerships.  The STL file, with its detailed 
geometric information, serves as the foundation for any further 
analysis of the ship's behavior, particularly its motions in 
response to waves and other forces.  It will be used to create a 
mesh, a network of interconnected elements that approximate 
the hull's shape, which is then used in computational methods 
like the Boundary Element Method.  These methods allow 
engineers to simulate how the ship moves in different sea states, 
providing critical data for design and safety assessments.  The 
accuracy of these simulations depends heavily on the quality of 
the STL file and the resulting mesh, highlighting the importance 
of precise and detailed geometric representation.  

4. Results 

 
Fig. 3.  Vessel displacement against time 

 
The time-domain displacement plots for the vessel's six 

motion modes (surge, sway, heave, roll, pitch, and yaw) in 
Figure 3 provide detailed insights into the vessel's dynamic 
response to wave excitation, calculated using the Boundary 
Element Method (BEM). In surge, the displacement peaks at 
approximately 0.5 m before oscillating and gradually 
stabilizing, reflecting the vessel's forward-backward response. 
The sway mode shows a peak lateral displacement of around 
0.1 m, indicating moderate side-to-side motion, which decays 
over time. The heave displacement, critical for vertical stability, 
peaks at about 0.5 m, similar to surge, with oscillations that 
gradually stabilize. In roll, displacements reach about 
5×10−3mm, demonstrating the rotational response about the 
longitudinal axis. The pitch mode exhibits displacements of 
approximately 3×10−3mm, reflecting rotational motion about 
the transverse axis. Finally, yaw displacements, indicative of 
rotational response about the vertical axis, stabilize around 
2×10−3mm. These results highlight the importance of roll and 
pitch stabilization to maintain vessel stability, with all modes 
showing effective damping over time. 

Figure 4 shows time-domain velocity plots for the vessel’s 
six motion modes (surge, sway, heave, roll, pitch, and yaw), 
calculated using the Boundary Element Method (BEM), offer 
insight into the vessel’s motion dynamics under wave-induced 
forces. In surge, the velocity peaks at approximately 0.1 m/s 

before oscillating and gradually stabilizing, indicating the 
vessel's forward-backward velocity response to wave 
excitation. Similarly, in sway, the velocity reaches a critical 
peak of 0.1 m/s, reflecting lateral motion, with oscillations 
damping over time. For heave, the maximum velocity is around 
0.1 m/s, showing the vertical motion’s response to wave 
loading. In roll, the velocity reaches approximately 
0.5×10−3rad/s, highlighting the rotational response around the 
longitudinal axis. The pitch velocity shows a peak of about 0.2 
rad/s, indicative of the rotational response about the transverse 
axis. Finally, the yaw velocity exhibits a peak of approximately 
2000 rad/s, representing rotational velocity about the vertical 
axis. These results highlight significant wave-induced motions, 
particularly in pitch and yaw modes, where effective 
stabilization is crucial to mitigate dynamic instability. 

 

 
Fig. 4.  Vessel velocity response against time 

 

 
Fig. 5.  Vessel acceleration response against time 

 
The presented Figure 5 shows the vessel’s acceleration 

response across six motion modes (surge, sway, heave, roll, 
pitch, and yaw) in the time domain, analyzed using the 
Boundary Element Method (BEM). In surge, the acceleration 
starts with an initial peak of approximately ±0.5 mm/s², 
oscillates, and stabilizes after about 80 seconds, indicating 
effective damping of longitudinal motions. Similarly, the sway 
acceleration reaches an initial amplitude of around ±0.5 mm/s² 
before gradually stabilizing, reflecting controlled lateral 
dynamics. Heave mode shows slightly lower accelerations, 
peaking near ±0.4 mm/s², with oscillations dampened over 
time, ensuring vertical motion stability. The roll acceleration is 
dominated by oscillations within ±0.02 rad/s², showcasing the 
vessel's dynamic response to rotational motions, while the pitch 
acceleration stabilizes around ±0.02 rad/s² after an initial spike. 
The yaw acceleration, with critical values peaking at ±2000 
rad/s², indicates higher rotational dynamics around the vertical 
axis, requiring robust control mechanisms to ensure stability. 
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Across all modes, the trends reveal that damping mechanisms 
effectively reduce oscillatory responses over time, with critical 
values highlighting key areas for design focus. 

5. Conclusion 
In conclusion, a comprehensive time-domain analysis of 

containership motions, employing the Boundary Element 
Method (BEM), has yielded crucial insights into the vessel's 
dynamic behavior under wave excitation. Examining 
displacement, velocity, and acceleration across all six degrees 
of freedom reveals distinct characteristics for each motion 
mode. Surge displacement peaks at approximately 0.5m, while 
sway reaches around 0.1m, and heave also reaches about 0.5m, 
demonstrating significant translational movement. However, 
all three modes show effective damping. Roll and pitch 
displacements are considerably smaller, around 5x10⁻³ mm and 
3x10⁻³ mm respectively, highlighting the importance of 
rotational stability. Yaw displacements stabilize around 2x10⁻³ 
mm. Velocity analysis reveals peak values of approximately 0.1 
m/s for surge, sway, and heave. Rotational velocities reach 
approximately 0.5x10⁻³ rad/s for roll, 0.2 rad/s for pitch, and a 
substantial 2000 rad/s for yaw, indicating potentially critical 
rotational dynamics. Acceleration analysis shows initial peaks 
of approximately ±0.5 mm/s² for surge and sway, and ±0.4 
mm/s² for heave, all effectively damped. Roll and pitch 
accelerations stabilize around ±0.02 rad/s², while yaw 
acceleration reaches a critical ±2000 rad/s², emphasizing the 
need for robust control mechanisms. These critical values, 
particularly the high yaw velocity and acceleration, underscore 
the importance of design considerations and control systems to 
ensure vessel stability and safe operation. The overall analysis 

provides valuable data for optimizing ship design and 
mitigating potential risks associated with wave-induced 
motions. 
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