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Abstract: In this research paper it is verified that S becomes f-

primary if proper f-prime ideals are maximal in S.  It is verified 
that for S being quasi-commutative, right cancellative and S is 
either a f-primary (or) S being a semi group with f-semi primary 
ideals are f-primary then proper f-prime ideals are maximal. We 
proved that S being cancellative and commutative with either S is 
f-primary (or) an ideal Q is f - primary in S ⟺ rf(Q) is a f-prime 
ideal, and therefore the proper f-prime ideals in S are maximal. It 
is verified that for S is quasi-commutative and right cancellative 
having identity, then these statements are equivalent.  (1) proper 
f-prime ideals are maximal. (2) S being f-primary (3) f-semi 
primary ideals are f-primary. (4) If g & h are not the units in S, 
then ∃ n, m∈N ∋ gn = hs and hm = gr for any s, r  ∈ S. It is shown 
that if S is a quasi-commutative and right cancellative without 
identity then these conditions are equivalent (1) S being f- primary 
(2) f-semi primary ideals are f- primary (3) There are no proper f-
prime ideals in S (4) g and h are not units in S, then ∃ n, m∈N ∋ gn 
= hs and hm = gr for any s, r ∈ S. It is verified that for S being 
quasi-commutative and right cancellative then these statements (1) 
S is f-primary (2) f-semi primary ideals are f-primary (3) proper 
f-prime ideals are maximal, are equivalent.  
 

Keywords: f - prime & f - semiprime ideals, f-primary & f-semi 
primary ideals, maximal ideal. 

1. Introduction 
“The algebraic theory of semigroups” was introduced by 

Clifford and Preston [5], [6]; Petrich [7] “Structure and ideal 
theory of semigroups” & “Primary ideals in semigroups” were 
presented by Anjaneyulu.A [1][2] “A generalization of prime 
ideals in semigroups” was presented by Hyekyung Kim [3] 
“generalization of prime ideals in rings” was introduced by 
Murata. K, Kurata. Y and Murabayashi. H [8] “prime and 
maximal ideals in semigroups” was presented by Scwartz. S [4] 
“Commutative primary semigroups” was developed by M. 
Satyanarayana [9]. “f-primary ideals in semigroups”, “f-
semiprime ideal in semigroups” and “f-prime radical in 
semigroups” were developed by T. Radha Rani, A. Gangadhara 
Rao [10]-[12]. 

2. Preliminaries 
Definition 2.1: Let (S,.) be a set and S≠ ∅  If ‘.’ Is a binary 

operation on S and it holds associative then S is defined as a 
“Semigroup”. 

Note 2.2: Throughout this paper S will indicate a semigroup. 
Definition 2.3: If qr=rq ∀ q,r∈S then S is called as 

“commutative” 
Definition 2.4: If qs = s∀s ∈S then the element q in S is called 

as “left identity” of S. 
Definition 2.5: If sq = s ∀s∈S then the element q in S is called 

as “right identity” of S.  
Definition 2.6: An element q in S is both left and right 

identity in S so it is called as “identity”. 
Definition 2.7: Let Q(≠ ∅) is a set in S. Q is entitled as “left 

ideal” in S when SQ⊆Q.    
Definition 2.8: Let Q(≠ ∅ ) is a set in S. Q is entitled as “right 

ideal” in S when QS⊆Q. 
Definition 2.9: A subset Q in S is both left and right ideal in 

S then it is known as “ideal” in S. 
Definition 2.10: The intersection of each one of the ideals in 

S carrying a non-void set P is known as the “ideal generated by 
P”. It is signified as <P>. 

Definition 2.11: Some ideal Q of S is called as “principal 
ideal” if Q is an ideal generated by single element set. On the 
off chance that an ideal Q is generated by q, at that point Q is 
indicated as <q> or J[q]  

Definition 2.12: Some ideal Q of S is called as “completely 
prime ideal” given k,l ∈Q, kl ∈Q,  either k ∈Q or l ∈Q. 

Definition 2.13: Some ideal D in S is known as “prime 
ideal” when Q, R be ideals of S,  

QR⊆D infers either Q⊆D or R⊆D. 
Definition 2.14: Let P be some ideal in S, then the 

intersection of each one of the prime ideals carrying P is said to 
be “prime radical” or just “radical of P” and it is meant by 

P or rad P.  
Definition 2.15: Let P be some ideal in S, then the 

intersection of each one of the completely prime ideals carrying 
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P is entitled as “complete prime radical” or “complete radical” 
of Pand indicated as “c.rad P”. 

Definition 2.16: Some ideal K in S is known to be 
“completely semiprime” if k∈S, k ∈K for some n∈ 𝑁𝑁⇒kn∈K. 

Theorem 2.17: An ideal K of S is completely semiprime⟺ 
k ∈ S, k2 ∈ K implies k ∈ K. 

Definition 2.18: Some ideal K in S is known to be 
“semiprime” if X is an ideal of S, Xn ⊆K for some n∈ 𝑁𝑁⇒X ⊆ 
K. 

Theorem 2.19: An ideal K of S is semiprime ⟺ X is an ideal 
of S, X2⊆ K ⇒ X ⊆ K. 

Theorem 2.20:  If f(w) is an ideal in S then f(W) = 
⋃ 𝑓𝑓(𝑤𝑤)𝑤𝑤∈𝑊𝑊  is an ideal. 

Definition 2.21: A Subset K of S is named as “p-system” 
⟺<k><l> ∩ Q ≠ ∅for any 

k, l in K. 
Definition 2.22: A Subset K of S is known as “sp-system” 

⟺ <k>2 ∩ Q ≠ ∅for any k ∈K.  
Definition 2.23: For any f ∈ F a subset K of S is known as an 

“f-system” ⟺ it consists of a p-system K* ∋ K*∩f(k) ≠ ∅for 
each k ∈ K. 

Definition 2.24: For any f ∈ F a subset K of S is known as an 
“sf-system” ⟺ it consists of a sp-system K*∋ K*∩f(k) ≠ ∅for 
each k ∈ K. 

Definition 2.25: A proper ideal J in S is called “f-prime” 
⟺its complement Jc is a f-system. 

Definition 2.26: A proper ideal J in S is called “f-
semiprime”⟺its complement Jc a sf-system. 

Theorem 2.27: Let J be some ideal in S then Jc is a f-system 
⇒ f(j1) f(j2)⊆ J ⇒ j1∈Jor j2∈J. 

Theorem 2.28: Let J be some ideal in S then Jc is a f-system 
⇒ f(K) f(R)⊆ J ⇒f(K)⊆J or f(R)⊆ J. 

Corollary 2.29: Let J be a f-prime ideal in S. Then for any 
two ideals K, R in S such that f(K) f(R)⊆ J implies either f(K)⊆ 
J or f(R)⊆ J.  

Theorem 2.30: Let J bean f-prime ideal of S, so the 
subsequent statements are equivalent. 

(i) f(k) f(r)⊆ J ⇒ k ∈ J or r ∈ J.  
(ii) f(K) f(R)⊆ J ⇒ f(K)⊆ J or f(R)⊆ J, for all ideals K, R of 

S. 
Theorem 2.31: Let J be some ideal in S then Jc is a sf-

system⇒ f(j1)2⊆ J ⇒ j1∈J. 
Theorem 2.32: Let J be some ideal in S then Jc is a sf-

system⇒ f(K)2⊆ J ⇒f(K)⊆ J. 
Here f(K) = ⋃ 𝑓𝑓(𝑘𝑘)𝑘𝑘∈𝐾𝐾  
Corollary 2.33: Let J be some ideal of S. J is called as “f-

semiprime ideal” if K is some ideal in S.  f(K)2⊆ J implies f(K) 
⊆ J. here f(K) = ⋃ 𝑓𝑓(𝑘𝑘)𝑘𝑘∈𝐾𝐾 . 

Theorem 2.34: An ideal J of S is f-semiprime⟺for any k ∈ 
S if f(k) S f(k) ⊆ J ⇒ k∈J. 

Definition 2.35: Let J be some ideal in S then “f-rad J” = 
{x/K ∩ J ≠ ∅for each f-system K containing x}is the f-radical 
of J and is specified by rf (J). 

Definition 2.36: Let J be some ideal in S then “sf-rad J” = 
{x/K ∩ J ≠ ∅for each sf-system K containing x}is the sf-radical 
of J and is specified by rsf (J). 

Theorem 2.37: Let J be some ideal in S then sf- rad J 
=⋂ 𝑃𝑃𝑖𝑖𝐽𝐽⊆𝑃𝑃𝑖𝑖 ,, Where Pi is f-semiprime ideal in S containing J. 

Theorem 2.38: Let G be some ideal in S then rf(G) 
=⋂ 𝑃𝑃𝑖𝑖𝐺𝐺⊆𝑃𝑃𝑖𝑖 ,1≤ 𝑖𝑖 ≤ 𝑛𝑛 Where Pi is f-prime ideal in S. 

Theorem 2.39: Let G and H be two ideals of S. If G⊆H, then 
rf (G) ⊆rf (H). 

Definition 2.40: Q is both left and right f-primary ideal 
implies Q is “f - primary ideal.” 

Definition 2.41: An ideal A of S is said to be sf-primary if rf 
(Q)is f-prime ideal. 

Definition 2.42: S is said to be sf-Primary semigroup if every 
ideal of S is a sf -Primary ideal. 

Theorem 2.43: Let J be some ideal in S then sf- rad J 
=⋂ 𝑃𝑃𝑖𝑖𝐽𝐽⊆𝑃𝑃𝑖𝑖 ,, Where Pi is f-semiprime ideal in S containing J. 

Theorem 2.44: Let G be some ideal in S then rf(G) 
=⋂ 𝑃𝑃𝑖𝑖𝐺𝐺⊆𝑃𝑃𝑖𝑖 ,1≤ 𝑖𝑖 ≤ 𝑛𝑛Where Pi is f-prime ideal in S. 

Theorem 2.45: An ideal J in S is f-semiprime ideal⟺ rf (J)= 
J. 

Corollary 2.46: An ideal J of S is a f-semiprime ideal⟺J is 
the intersection of all f-prime ideals of S contains J. 

Corollary 2.47: If J is an ideal in S, then rf (J) is the smallest 
semiprime ideal of S. 

Theorem2.48: Let S has identity and J be a unique maximal 
ideal in S.If rf (W) = J for any ideal W in S, then W is a f-primary 
ideal. 

3. Main Results 
Theorem 3.1: Let S be a semigroup and it contains 

identity. If (non-zero, assume this if S has zero) proper f-
prime ideals are maximal in S, then S is a f-primary 
semigroup. 

Proof: If S is not a simple semigroup with identity, then S 
contains a unique maximal ideal J, it is the union of proper 
ideals in S. 

Suppose G be a (nonzero) proper ideal in S.  
Then rf (G) = J. 
From the theorem 2.48, G is a f-primary ideal.   
Suppose S contains zero and < 0 > be a f-prime ideal.  
Then < 0 > is f-primary and consequently S remains f-

primary.   
Suppose < 0 > should not be a f-prime ideal. 
Then rf (< 0 >) = J 
Therefore, from the theorem 2.48, < 0 > be a f-primary ideal.   
Hence S is f-primary. 
Example 3.2: Consider S = {u, v, w, 1} is the semigroup by 

the operation multiplication and it is given in below table. 
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Here S is f-primary, the f-prime ideal <u > not being a 
maximal ideal. 

Theorem 3.3: Let S be a right cancellative quasi 
commutative semigroup.  If S is a f-primary semigroup or a 
semigroup in which f-semiprimary ideals are f-primary, 
then for any f-primary ideal W, rf (W) is non maximal 
implies W = rf (W) and it is f-prime. 

Proof: Let S be right cancellative and quasi commutative. 
Since rf(W) is not maximal, then ∃ an ideal Q in S ∋ rf(W) 

⊂Q ⊂S.  
Suppose q ∈ Q \ rf (W) and t ∈ rf (W). 
Then W ⊆ W ⋃ < qt >⊆ rf (W).   
By the theorem 2.39, rf (W) ⊆ rf (W ⋃ <qt >) ⊆ rf (rf (W)).  
Therefore rf (W ⋃ <qt >) = rf (W). 
∴ By assumption W ⋃<qt >is a f-primary ideal.   
Suppose s ∈ S \ Q.  
Then qst ∈W ⋃ <qt >. 
Since q ∈ rf (W) = rf (W ⋃<qt >) and W ⋃ <qt > is a f-primary 

ideal, then st ∈ W ⋃ <qt >. 
If st ∈ <qt >, then st = rqt for certain r ∈ S. 
Therefore, by right cancellative property, we get s = rq ∈ Q, 

which is a contradiction.   
∴ st ∈ W ⇒ s ∉rf(W) and t ∈ rf (W). 

Hence W = rf (W) and W is f-prime. 
Theorem 3.4: Let S be a right cancellative quasi 

commutative semigroup.  If S is either f-primary or a 
semigroup in which f-semi primary ideals are f-primary 
then proper f-prime ideals are maximal in S. 

Proof: Suppose that J is not a maximal ideal.  
Consider ℒ = S \ J and   Q = {q ∈ S / qu ∈ < h >for any u ∈ 

ℒ}.   
Obviously, Q is an ideal in S.  
If q ∈ Q, then qu ∈ < h >⊆ J ⇒q ∈ J. 
Therefore Q ⊆ J. 
Suppose v ∈ J and G = {vku / u ∈ ℒ and k is whole number}. 
Since vu ∈ G and vu ∉ ℒ, then G is a sub-semigroup 

containing ℒ properly.  
By the assumption, J be a minimal f-prime ideal containing 

<h > and ℒ is a maximal sub-semigroup not meeting <h >.  
Since ℒ ⊂G and G ⋂< h > ≠ ∅, then ∃ k ∈N∋ vk u ∈< h >⇒vk 

∈ Q. 
Therefore v ∈ rf (Q).  
Now J ⊆ rf (Q) ⊆ rf (J) = J ⇒J = rf (Q).   
Then by our supposition Q being a f-primary ideal.  
Since J is not a maximal ideal, then by Theorem 3.4, J = Q.  
Now J is also a minimal f-prime ideal containing <h 2 >. 
Suppose ℬ = {w ∈ S / wu ∈< h2 > for any u ∈ ℒ}.   
In the similar way, we get ℬ = J. 
Since h ∈ J = Q = ℬ, then hu = sh2 for any s ∈ S1. 
Since S is quasi commutative, then hu = unh for some n ∈N. 
By the right cancellative property, un = sh ∈ < h >. It is a 

conflict.  
Therefore, J be a maximal ideal.  
If J is some proper f-prime ideal, then for any h ∈ J a minimal 

f-prime ideal contains < h >. 
Hence J is a maximal ideal.   

Corollary 3.5: Let S be a cancellative commutative 
semigroup. Then S is a f-primary semigroup or an ideal Q 
in S is f-primary if and only if rf (Q) is a f-prime ideal and 
the proper f-prime ideals are maximal in S. 

Proof: Since S being commutative, then u, v ∈ S, uv = vu 
Now uv = v1u ⇒uv = vnu, for n = 1, that represents S is quasi 

commutative.  
Therefore, S is cancellative and quasi commutative. 
Hence by the theorem 3.4, the proof of the corollary is clear.  
Theorem 3.6: If S is a quasi-commutative right 

cancellative semigroup and it contains identity, then the 
following constrains are equivalent. 

1) Proper f-prime ideals are maximal in S. 
2) S is a f-primary semigroup 
3) f-semi primary ideals are f-primary in S. 
4) If g and h are not units in S, then there exists some 

natural numbers n and m such that gn = hs and hm = gr for 
some s, r ∈ S. 

Proof: By the theorems 3.1 and 3.4, we have (1), (2) and (3) 
are equivalent. 

Suppose (1) that is proper f-prime ideals are maximal in S. 
Since S contains identity, then a unique maximal ideal exists 

in S, say J. 
Clearly J is the only f-prime ideal.  
Suppose g & h are not the units in S and <g >and <h > are 

ideals in S.  
Then rf (<g >), rf (<h >) are proper f-prime ideals.  

Since proper f-prime ideals are maximal in S, then we get g, h 
∈ J. 

Therefore rf (<g >) = rf (<h >) = J.  
∴∃ n, m ∈N ∋ gn = hs and hm = gr for any s, r ∈ S. 
Thus (1) ⇒ (4). 
Assume (4): Suppose Q is a f-semiprimary ideal in S. 
Let <q >, <l > are any two ideals in S ∋ <q ><l >⊆ Q and l ∉ 

Q.  
Then by the hypothesis q ∈ rf (Q).  
Therefore, Q is left f-primary. 
In the same way, we can show that Q will be right f-primary. 
Therefore, Q being f-primary.  
Hence (4) ⇒ (3).    
Theorem 3.7: If S is a quasi-commutative right 

cancellative semigroup and it does not contain identity, then 
the following constrains are equivalent. 

1) S is f-primary. 
2) f-semi primary ideals become f-primary in S. 
3) There are no proper f-prime ideals in S.  
4) If g and h are not units in S, then there exists n, m ∈N 

such that gn = hs and hm = gr for any s, r ∈S. 
Proof: Let S be quasi commutative and right cancellative 

without the identity. 
Then (1) ⇒ (2) is clear. 
(1) ⇒ (2): Assume that f-semiprimary ideals are f-primary in 

S. 
By the Theorem 3.5, proper f-prime ideals become maximal 

in S. 
Let Q be some f-prime ideal. 
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If Q is maximal, then S \ Q be a group.  
Let u be an identity element in S \ Q.  
Then u becomes an idempotent in S. 
Since S is right cancellative, then u is the right identity in S. 
Since S is quasi commutative, then idempotents is commute 

in S. 
Therefore, u is the identity in S, which is a conflict. 
∴ S does not contain f-prime ideals.  
Thus (2) ⇒ (3).  
(3) ⇒ (4): Assume that there are no proper f-prime ideals in 

S.  
Then for some ideal W in S, rf (W) = S. 
Suppose k, l ∈ S.  
Now rf (<k >) = rf (<l >) = S, by this (4) follows. 
By the theorem 3.6, (4) ⇒ (1) is clear.   
Corollary 3.8: Let S be quasi commutative and right 

cancellative semigroup. Then the following constrains are 
equivalent. 

1) S is f-primary  
2) f-semi primary ideals are f-primary in S. 
3) Proper f-prime ideals become maximal in S. 
Moreover, there are no idempotents in S excluding the 

identity. 
Proof: By the theorem 3.4, S is f-primary or a semigroup such 

that where the f-semi primary ideals become f-primary. 

Then proper f-prime ideals become maximal in S. 
Therefore, by the theorems 3.6 and 3.7, the proof of this 

theorem is clear. 

References 
[1] Anjaneyulu A, “structure & ideal theory of semi groups,” Thesis ANU. 
[2] Anjaneyulu A., “Primary ideals in semigroups,” Semigroup Form, Vol. 

20(1980), 129-144. 
[3] Hyekyung Kim, “A generalization of prime ideals in semi groups”, J. 

Korean math. Soc., 24(1987), no. 2, pp. 207-216. 
[4] Scwartz. S “prime ideals and maximal ideals in semi groups”-

Czechoslovak Mathematical Journal.,19(94), 1969, 72-79. 
[5] Clifford A.H Preston G.B, “The algebraic Theory of semigroups” Vol-I, 

American mathematical society, providence (1961). 
[6] Clifford A.H Preston G.B, “The algebraic theory of semigroups” Vol-II, 

American mathematical society, providence (1967). 
[7] Petrich M., “Introduction to semigroups,” Merril publishing company, 

Columbus, Ohio, (1973). 
[8] Murata K., Kurata. Y and Murabayashi H., “A generalization of prime 

ideals in rings” Osaka J. Math. 6. 
[9] M. Satyanarayana “Commutative primary semigroups” Czechoslovak 

Mathematical Journal, vol. 22 (1972), no. 4, 509-516. 
[10] T. Radha Rani, A. Gangadhara Rao, M. Sowjanya, “f-primary ideals in 

Semigroups,” Turkish Journal of Computer and Mathematics Education, 
vol. 12, no. 5, 2021. 

[11] T. Radha Rani, A. Gangadhara Rao, M. Sowjanya, Ch. Srimannarayana 
“F-Semiprime ideal In Semi Groups,” Journal of Advanced Research in 
Dynamical and Control Systems, vol. 12, no. 2, March 2020. 

[12] T. Radha Rani, A. Gangadhara Rao, A. Anjaneyulu, M. Sowjanya “f-
prime radical in semi group,” International journal of research, pp. 1696 -
1707, March 2019.

 
 


	1. Introduction
	2. Preliminaries
	3. Main Results
	References

