

Some Results on Semi groups when *f*-Prime Ideals are Maximal

Koppula Jaya Babu^{1*}, A. Gangadhara Rao², T. Radha Rani³, A. Anjaneyulu⁴, Kishore Kanaparthi⁵

1 Department of Mathematics, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India

2 Department of Mathematics, Sri ABR Government Degree College, Repalle, Andhra Pradesh, India

3 Department of Mathematics, Lakireddy Bali Reddy College of Engineering (Autonomous), Mylavaram, Jawaharlal Nehru Technological

University Kakinada, Kakinada, Andhra Pradesh, India

4 Department of Mathematics, V.S.R. & N.V.R. College, Tenali, Andhra Pradesh, India 5 Department of Mathematics, Government Polytechnic, Repalle, Andhra Pradesh, India

*Abstract***: In this research paper it is verified that S becomes fprimary if proper f-prime ideals are maximal in S. It is verified that for S being quasi-commutative, right cancellative and S is either a f-primary (or) S being a semi group with f-semi primary ideals are f-primary then proper f-prime ideals are maximal. We proved that S being cancellative and commutative with either S is f-primary (or) an ideal Q is f - primary in** $S \Leftrightarrow r_f(Q)$ **is a f-prime ideal, and therefore the proper f-prime ideals in S are maximal. It is verified that for S is quasi-commutative and right cancellative having identity, then these statements are equivalent. (1) proper f-prime ideals are maximal. (2) S being f-primary (3) f-semi primary ideals are f-primary. (4) If g & h are not the units in S, then** \exists **n**, m∈**N** \exists **g**ⁿ = **hs** and **h**^m = gr for any s, r ∈ S. It is shown **that if S is a quasi-commutative and right cancellative without identity then these conditions are equivalent (1) S being f- primary (2) f-semi primary ideals are f- primary (3) There are no proper fprime ideals in S (4) g and h are not units in S, then** \exists **n**, m∈**N** \exists gⁿ $=$ hs and h^m $=$ gr for any s, r \in S. It is verified that for S being **quasi-commutative and right cancellative then these statements (1) S is f-primary (2) f-semi primary ideals are f-primary (3) proper f-prime ideals are maximal, are equivalent.**

*Keywords***: f - prime & f - semiprime ideals, f-primary & f-semi primary ideals, maximal ideal.**

1. Introduction

"*The algebraic theory of semigroups"* was introduced by *Clifford* and *Preston* [5], [6]; *Petrich* [7] "*Structure and ideal theory of semigroups" &* "*Primary ideals in semigroups"* were presented by *Anjaneyulu.A* [1][2] "*A generalization of prime ideals in semigroups"* was presented by *Hyekyung Kim* [3] "*generalization of prime ideals in rings"* was introduced by *Murata. K*, *Kurata. Y* and *Murabayashi. H* [8] "*prime and maximal ideals in semigroups"* was presented by *Scwartz. S* [4] "*Commutative primary semigroups"* was developed by M. Satyanarayana [9]. **"***f-primary ideals in semigroups*", "*fsemiprime ideal in semigroups*" and "*f-prime radical in semigroups*" were developed by *T. Radha Rani, A. Gangadhara Rao* [10]-[12].

2. Preliminaries

Definition 2.1: Let (S_n) be a set and $S \neq \emptyset$ If '.' Is a binary operation on *S* and it holds associative then *S* is defined as a "*Semigroup*".

Note 2.2: Throughout this paper *S* will indicate a semigroup**. Definition** 2.3: If $qr = rq \forall q, r \in S$ then *S* is called as "*commutative"*

Definition 2.4: If $qs = s \forall s \in S$ then the element *q* in *S* is called as "*left identity"* of *S*.

Definition 2.5: If $sq = s \forall s \in S$ then the element *q* in *S* is called as "*right identity"* of *S*.

Definition 2.6: An element *q* in *S* is both left and right identity in *S* so it is called as "*identity".*

Definition 2.7: Let $Q(\neq \emptyset)$ is a set in *S*. *Q* is entitled as "*left ideal*" in *S* when *SQ*⊆*Q***.**

Definition 2.8: Let $O(\neq \emptyset)$ is a set in *S. Q* is entitled as "*right*" *ideal*" in *S* when *QS*⊆*Q*.

Definition 2.9: A subset *Q* in *S* is both left and right ideal in *S* then it is known as "*ideal*" in *S*.

Definition 2.10: The intersection of each one of the ideals in *S* carrying a non-void set *P* is known as the "*ideal generated by P".* It is signified as <*P*>.

Definition 2.11: Some ideal *Q* of *S* is called as "*principal ideal"* if *Q* is an ideal generated by single element set. On the off chance that an ideal *Q* is generated by *q*, at that point *Q* is indicated as $\leq q$ or $\int q$]

Definition 2.12: Some ideal *Q* of *S* is called as "*completely prime ideal* " given $k, l \in Q$, $kl \in Q$, either $k \in Q$ or $l \in Q$.

Definition 2.13: Some ideal *D* in *S* is known as "*prime ideal"* when *Q, R* be ideals of *S*,

QR⊆*D* infers either *Q*⊆*D* or *R*⊆*D.*

Definition 2.14: Let *P* be some ideal in *S*, then the intersection of each one of the prime ideals carrying *P* is said to be "*prime radical"* or just "*radical of P*" and it is meant by \sqrt{P} or *rad P*.

Definition 2.15: Let *P* be some ideal in *S*, then the intersection of each one of the completely prime ideals carrying

^{*}Corresponding author: jayababumathematics@gmail.com

P is entitled as "*complete prime radical"* or "*complete radical*" of *P*and indicated as "*c.rad P"*.

Definition 2.16: Some ideal *K* in *S* is known to be "*completely semiprime*" if *k*∈*S*, *k* ∈*K* for some *n*∈ *N*⇒*k*ⁿ∈*K*.

Theorem 2.17: An ideal *K* of *S* is completely semiprime \Leftrightarrow $k \in S$, $k^2 \in K$ implies $k \in K$.

Definition 2.18: Some ideal *K* in *S* is known to be "*semiprime*" if *X* is an ideal of *S*, $X^n \subseteq K$ for some $n \in N \Rightarrow X \subseteq$ *K.*

Theorem 2.19: An ideal *K* of *S* is semiprime \Leftrightarrow *X* is an ideal of *S*, $X^2 \subseteq K$ ⇒ $X \subseteq K$.

Theorem 2.20: If $f(w)$ is an ideal in *S* then $f(W)$ = $U_{w \in W} f(w)$ is an ideal.

Definition 2.21: A Subset *K* of *S* is named as *"p-system"* ⟺*<k><l> ∩ Q ≠* ∅for any

k, l in *K.*

Definition 2.22: A Subset *K* of *S* is known as *"sp-system"* \Leftrightarrow $\leq k$ >² ∩ $Q \neq \emptyset$ for any $k \in K$.

Definition 2.23: For any $f \in F$ a subset *K* of *S* is known as an *"f-system"* \Leftrightarrow it consists of a *p-system K*^{*} ∋ $K^* \cap f(k) \neq \emptyset$ for each *k* ∈ *K.*

Definition 2.24: For any *f* ∈ *F* a subset *K* of *S* is known as an *"sf-system"* \Leftrightarrow it consists of a *sp-system* $K^* \ni K^* \cap f(k) \neq \emptyset$ for each *k* ∈ *K.*

Definition 2.25: A proper ideal *J* in *S* is called *"f-prime"* \Leftrightarrow its complement *J^c* is a *f-system*.

Definition 2.26: A proper ideal *J* in *S* is called *"fsemiprime* "⇔its complement *J*^c a *sf-system*.

Theorem 2.27: Let *J* be some ideal in *S* then J^c is a *f-system* \Rightarrow *f*(*j*₁) *f*(*j*₂)⊆ *J* \Rightarrow *j*₁∈*J*or *j*₂∈*J*.

Theorem 2.28: Let *J* be some ideal in *S* then J^c is a *f-system* ⇒ *f*(*K*) *f*(*R*)⊆ *J* ⇒*f*(*K*)⊆*J* or *f*(*R*)⊆ *J.*

Corollary 2.29: Let *J* be a *f-*prime ideal in *S.* Then for any two ideals *K*, *R* in *S* such that $f(K) f(R) \subseteq J$ implies either $f(K) \subseteq$ *J* or $f(R) \subseteq J$.

Theorem 2.30: Let *J* bean *f-*prime ideal of *S,* so the subsequent statements are equivalent*.*

(i) $f(k) f(r) \subseteq J \Rightarrow k \in J$ or $r \in J$.

(ii) $f(K) f(R) ⊆ J \Rightarrow f(K) ⊆ J$ or $f(R) ⊆ J$, for all ideals *K*, *R* of *S.*

Theorem 2.31: Let *J* be some ideal in *S* then J^c is a *sf*- $\text{system} \Rightarrow f(j_1)^2 \subseteq J \Rightarrow j_1 \in J$.

Theorem 2.32: Let *J* be some ideal in *S* then J^c is a *sf*system \Rightarrow *f*(*K*)²⊆ *J* \Rightarrow *f*(*K*)⊆ *J*.

Here $f(K) = \bigcup_{k \in K} f(k)$

Corollary 2.33: Let *J* be some ideal of *S. J* is called as *"fsemiprime ideal* " if *K* is some ideal in *S.* $f(K)^2 \subseteq J$ implies $f(K)$ ⊆ *J*. here $f(K) = \bigcup_{k \in K} f(k)$.

Theorem 2.34: An ideal *J* of *S* is *f*-semiprime⇔for any $k \in$ *S* if *f*(*k*) *S f*(*k*) ⊆ *J* ⇒ *k*∈*J*.

Definition 2.35: Let *J* be some ideal in *S* then "*f*-*rad J"* = {*x/K ∩ J ≠* ∅for each *f*-system *K* containing *x*}is the *f-radical* of *J* and is specified by $r_f(J)$.

Definition 2.36: Let *J* be some ideal in *S* then "*sf-rad J*" = {*x/K ∩ J ≠* ∅for each *sf*-system *K* containing *x*}is the *sf-radical* of *J* and is specified by $r_{sf}(J)$.

Theorem 2.37: *Let J be some ideal in S then sf- rad J* $= \bigcap_{I \subseteq P_i} P_i$, Where P_i is *f-semiprime* ideal in *S* containing *J*.

Theorem 2.38: Let G be some ideal in S then $r_f(G)$ $=\bigcap_{G\subseteq P_i} P_i, l\leq i\leq n$ Where P_i *is f-prime ideal in S.*

Theorem 2.39: Let *G* and *H* be two ideals of *S*. If *G*⊆*H,* then *r_f* (*G*) ⊆*r_f* (*H*).

Definition 2.40: *Q* is both left and right *f*-primary ideal implies *Q* is "*f - primary ideal."*

Definition 2.41: An ideal *A* of *S* is said to be *sf-primary* if *rf (Q)*is *f-*prime ideal.

Definition 2.42: *S* is said to be *sf-Primary semigroup* if every ideal of *S* is a *sf -Primary* ideal.

Theorem 2.43: Let *J* be some ideal in *S* then *sf- rad J* $= \bigcap_{j \in P_i} P_i$, Where P_i is *f-semiprime* ideal in *S* containing *J*.

Theorem 2.44: Let *G* be some ideal in *S* then $r_f(G)$ $=\bigcap_{G \subseteq P_i} P_i, l \leq i \leq n$ Where P_i *is f*-prime ideal in *S*.

Theorem 2.45: An ideal *J* in *S* is *f*-semiprime ideal \Leftrightarrow $r_f(J) =$ *J.*

Corollary 2.46: An ideal *J* of *S* is a *f*-semiprime ideal \iff *J* is the intersection of all *f-*prime ideals of *S* contains *J.*

Corollary 2.47: If *J* is an ideal in *S*, then r_f *J*) is the smallest semiprime ideal of *S.*

Theorem2.48: Let *S* has identity and *J* be a unique maximal ideal in *S*.If $r_f(W) = J$ for any ideal *W* in *S*, then *W* is a *f*-primary ideal.

3. Main Results

Theorem 3.1: Let *S* **be a semigroup and it contains identity. If (non-zero, assume this if** *S* **has zero) proper** *f***prime ideals are maximal in** *S***, then** *S* **is a** *f***-primary semigroup**.

*Proof***:** If *S* is not a simple semigroup with identity, then *S* contains a unique maximal ideal *J*, it is the union of proper ideals in *S*.

Suppose *G* be a (nonzero) proper ideal in *S*.

Then $r_f(G) = J$.

From the theorem 2.48, *G* is a *f-*primary ideal.

Suppose *S* contains zero and ≤ 0 > be a *f*-prime ideal.

Then < 0 > is *f-*primary and consequently *S* remains *f*primary.

Suppose < 0 > should not be a *f-*prime ideal.

Then r_f (< 0 >) = *J*

Therefore, from the theorem 2.48, < 0 > be a *f*-primary ideal. Hence *S* is *f*-primary.

Example 3.2: Consider $S = \{u, v, w, 1\}$ is the semigroup by the operation multiplication and it is given in below table.

Here *S* is *f*-primary, the *f*-prime ideal $\langle u \rangle$ not being a maximal ideal.

Theorem 3.3: Let *S* **be a right cancellative quasi commutative semigroup. If** *S* **is a** *f***-primary semigroup or a semigroup in which** *f***-semiprimary ideals are** *f***-primary, then for any** *f***-primary ideal** *W***,** $r_f(W)$ **is non maximal implies** $W = r_f(W)$ and it is *f*-prime.

Proof: Let *S* be right cancellative and quasi commutative. Since $r_f(W)$ is not maximal, then \exists an ideal *Q* in $S \ni r_f(W)$ ⊂*Q* ⊂*S*.

Suppose $q \in Q \setminus r_f(W)$ and $t \in r_f(W)$.

Then $W \subseteq W \cup \langle qt \rangle \subseteq r_f(W)$.

By the theorem 2.39, $r_f(W) \subseteq r_f(W \cup \langle qt \rangle) \subseteq r_f(r_f(W))$.

Therefore $r_f(W \cup \langle qt \rangle) = r_f(W)$.

∴ By assumption *W* U $\leq qt$ > is a *f*-primary ideal.

Suppose $s \in S \setminus Q$.

Then *qst* \in *W* \cup \leq *qt* >.

Since $q \in r_f(W) = r_f(W \cup \leq qt)$ and $W \cup \leq qt$ is a *f*-primary ideal, then $st \in W \cup \langle qt \rangle$.

If $st \in \langle qt \rangle$, then $st = rqt$ for certain $r \in S$.

Therefore, by right cancellative property, we get $s = rq \in Q$, which is a contradiction.

∴ *st* ∈ *W* \Rightarrow *s* ∉*r_f*(*W*) and *t* ∈ *r_f* (*W*). Hence $W = r_f(W)$ and *W* is *f*-prime.

Theorem 3.4: Let *S* **be a right cancellative quasi commutative semigroup. If** *S* **is either** *f-***primary or a semigroup in which** *f-***semi primary ideals are** *f-***primary then proper** *f***-prime ideals are maximal in** *S***.**

*Proof***:** Suppose that *J* is not a maximal ideal.

Consider $\mathcal{L} = S \setminus J$ and $Q = \{q \in S \mid qu \in \{h \geq \text{for any } u \in \mathcal{L}\}$ *ℒ*}.

Obviously, *Q* is an ideal in *S*.

If $q \in Q$, then $qu \in \{h \geq \subseteq J \Rightarrow q \in J$.

Therefore $Q \subseteq J$.

Suppose $v \in J$ and $G = \{v^k u \mid u \in \mathcal{L} \text{ and } k \text{ is whole number} \}.$ Since $vu \in G$ and $vu \notin \mathcal{L}$, then *G* is a sub-semigroup containing *ℒ* properly.

By the assumption, *J* be a minimal *f*-prime ideal containing <*h* > and *ℒ* is a maximal sub-semigroup not meeting <*h* >.

Since $\mathcal{L} \subset G$ and $G \cap \{k \geq \phi\}$, then $\exists k \in N \exists v^k u \in \{k \geq \Rightarrow v^k v\}$ ∈ *Q*.

Therefore $v \in r_f(Q)$.

Now *J* ⊆ *r_f*(Q) ⊆ *r_f*(J) = *J* ⇒ *J* = *r_f*(Q).

Then by our supposition *Q* being a *f-*primary ideal.

Since *J* is not a maximal ideal, then by Theorem 3.4, *J = Q*.

Now *J* is also a minimal *f*-prime ideal containing $\langle h^2 \rangle$.

Suppose $\mathcal{B} = \{w \in S \mid w \in \leq h^2 > \text{ for any } u \in \mathcal{L}\}\.$

In the similar way, we get $\mathcal{B} = J$.

Since $h \in J = Q = \mathcal{B}$, then $hu = sh^2$ for any $s \in S^1$.

Since *S* is quasi commutative, then $hu = uⁿh$ for some $n \in N$. By the right cancellative property, $u^n = sh \in \langle h \rangle$. It is a conflict.

Therefore, *J* be a maximal ideal.

If *J* is some proper *f*-prime ideal, then for any $h \in J$ a minimal *f-*prime ideal contains *< h >*.

Hence *J* is a maximal ideal.

Corollary 3.5: Let *S* **be a cancellative commutative semigroup. Then** *S* **is a** *f***-primary semigroup or an ideal** *Q* in *S* is *f*-primary if and only if $r_f(Q)$ is a *f*-prime ideal and **the proper** *f***-prime ideals are maximal in** *S*.

Proof: Since *S* being commutative, then $u, v \in S$, $uv = vu$

Now $uv = v^1u \implies uv = v^n u$, for $n = 1$, that represents *S* is quasi commutative.

Therefore, *S* is cancellative and quasi commutative.

Hence by the theorem 3.4, the proof of the corollary is clear.

Theorem 3.6: If *S* **is a quasi-commutative right cancellative semigroup and it contains identity, then the following constrains are equivalent.**

1) Proper *f-***prime ideals are maximal in** *S***.**

2) *S* **is a** *f***-primary semigroup**

3) *f***-semi primary ideals are** *f***-primary in** *S***.**

4) If *g* **and** *h* **are not units in** *S***, then there exists some natural numbers** *n* **and** *m* **such that** $g^n = hs$ **and** $h^m = gr$ **for some** *s***,** *r* ∈ *S***.**

Proof: By the theorems 3.1 and 3.4, we have (1), (2) and (3) are equivalent.

Suppose (1) that is proper *f-*prime ideals are maximal in *S*.

Since *S* contains identity, then a unique maximal ideal exists in *S*, say *J*.

Clearly *J* is the only *f-*prime ideal.

Suppose *g & h* are not the units in *S* and \leq *g* > and \leq *h* > are ideals in *S*.

Then $r_f \leq g \geq 0$, $r_f \leq h \geq 0$ are proper *f*-prime ideals. Since proper *f*-prime ideals are maximal in *S*, then we get *g*, *h* ∈ *J*.

Therefore $r_f \times g > f = r_f \times h > f = J$.

∴∃ *n*, *m* ∈*N* ∋ g^n = *hs* and h^m = gr for any *s*, $r \in S$.

Thus $(1) \Rightarrow (4)$.

Assume (4): Suppose *Q* is a *f-*semiprimary ideal in *S*.

Let $\leq q$ >, $\leq l$ > are any two ideals in *S* $\exists \leq q \leq l$ > $\subseteq Q$ and *l* \notin *Q*.

Then by the hypothesis $q \in r_f(Q)$.

Therefore, *Q* is left *f-*primary.

In the same way, we can show that *Q* will be right *f-*primary. Therefore, *Q* being *f*-primary.

Hence $(4) \Rightarrow (3)$.

Theorem 3.7: If *S* **is a quasi-commutative right cancellative semigroup and it does not contain identity, then the following constrains are equivalent.**

1) S is f -primary.

2) *f***-semi primary ideals become** *f***-primary in** *S***.**

3) There are no proper *f***-prime ideals in** *S***.**

4) If *g* and *h* are not units in *S*, then there exists $n, m \in N$ such that $g^n = hs$ and $h^m = gr$ for any $s, r \in S$.

Proof: Let *S* be quasi commutative and right cancellative without the identity.

Then $(1) \Rightarrow (2)$ is clear.

(1) ⇒ (2): Assume that *f*-semiprimary ideals are *f-*primary in *S*.

By the Theorem 3.5, proper *f*-prime ideals become maximal in *S*.

Let *Q* be some *f-*prime ideal.

If *Q* is maximal, then $S \setminus Q$ be a group.

Let *u* be an identity element in $S \setminus Q$.

Then *u* becomes an idempotent in *S*.

Since *S* is right cancellative, then *u* is the right identity in *S*.

Since *S* is quasi commutative, then idempotents is commute in *S*.

Therefore, *u* is the identity in *S*, which is a conflict.

∴ *S* does not contain *f-*prime ideals.

Thus $(2) \Rightarrow (3)$.

 $(3) \Rightarrow (4)$: Assume that there are no proper *f*-prime ideals in *S*.

Then for some ideal *W* in *S*, $r_f(W) = S$.

Suppose $k, l \in S$.

Now $r_f(\leq k>) = r_f(\leq l>) = S$, by this (4) follows.

By the theorem 3.6, $(4) \Rightarrow (1)$ is clear.

Corollary 3.8: Let *S* **be quasi commutative and right cancellative semigroup. Then the following constrains are equivalent.**

1) S is f -primary

2) *f-***semi primary ideals are** *f***-primary in** *S***.**

3) Proper *f-***prime ideals become maximal in** *S***.**

Moreover, there are no idempotents in *S* **excluding the identity.**

*Proof***:** By the theorem 3.4, *S* is *f*-primary or a semigroup such that where the *f*-semi primary ideals become *f*-primary.

Then proper *f*-prime ideals become maximal in *S*.

Therefore, by the theorems 3.6 and 3.7, the proof of this theorem is clear.

References

- [1] Anjaneyulu A, "*structure & ideal theory of semi groups,"* Thesis ANU.
- [2] Anjaneyulu A., "*Primary ideals in semigroups,"* Semigroup Form, Vol. 20(1980), 129-144.
- [3] Hyekyung Kim, "*A generalization of prime ideals in semi groups",* J. Korean math. Soc., 24(1987), no. 2, pp. 207-216.
- [4] Scwartz. S "*prime ideals and maximal ideals in semi groups"* Czechoslovak Mathematical Journal.,19(94), 1969, 72-79.
- [5] Clifford A.H Preston G.B, "*The algebraic Theory of semigroups" Vol-I*, American mathematical society, providence (1961).
- [6] Clifford A.H Preston G.B, "*The algebraic theory of semigroups" Vol-II*, American mathematical society, providence (1967).
- [7] Petrich M., "*Introduction to semigroups,"* Merril publishing company, Columbus, Ohio, (1973).
- [8] Murata K., Kurata. Y and Murabayashi H., "*A generalization of prime ideals in rings" Osaka* J. Math. 6.
- [9] M. Satyanarayana "Commutative primary semigroups*"* Czechoslovak Mathematical Journal, vol. 22 (1972), no. 4, 509-516.
- [10] T. Radha Rani, A. Gangadhara Rao, M. Sowjanya, "f-primary ideals in Semigroups," Turkish Journal of Computer and Mathematics Education, vol. 12, no. 5, 2021.
- [11] T. Radha Rani, A. Gangadhara Rao, M. Sowjanya, Ch. Srimannarayana "F-Semiprime ideal In Semi Groups," Journal of Advanced Research in Dynamical and Control Systems, vol. 12, no. 2, March 2020.
- [12] T. Radha Rani, A. Gangadhara Rao, A. Anjaneyulu, M. Sowjanya "fprime radical in semi group," International journal of research, pp. 1696 - 1707, March 2019.