

Some Results on Semi groups when *f*-Prime Ideals are Maximal

Koppula Jaya Babu^{1*}, A. Gangadhara Rao², T. Radha Rani³, A. Anjaneyulu⁴, Kishore Kanaparthi⁵

¹Department of Mathematics, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India

²Department of Mathematics, Sri ABR Government Degree College, Repalle, Andhra Pradesh, India

³Department of Mathematics, Lakireddy Bali Reddy College of Engineering (Autonomous), Mylavaram, Jawaharlal Nehru Technological

University Kakinada, Kakinada, Andhra Pradesh, India

⁴Department of Mathematics, V.S.R. & N.V.R. College, Tenali, Andhra Pradesh, India ⁵Department of Mathematics, Government Polytechnic, Repalle, Andhra Pradesh, India

Abstract: In this research paper it is verified that S becomes fprimary if proper f-prime ideals are maximal in S. It is verified that for S being quasi-commutative, right cancellative and S is either a f-primary (or) S being a semi group with f-semi primary ideals are f-primary then proper f-prime ideals are maximal. We proved that S being cancellative and commutative with either S is f-primary (or) an ideal Q is f - primary in $S \Leftrightarrow r_f(Q)$ is a f-prime ideal, and therefore the proper f-prime ideals in S are maximal. It is verified that for S is quasi-commutative and right cancellative having identity, then these statements are equivalent. (1) proper f-prime ideals are maximal. (2) S being f-primary (3) f-semi primary ideals are f-primary. (4) If g & h are not the units in S, then \exists n, m \in N \ni gⁿ = hs and h^m = gr for any s, r \in S. It is shown that if S is a quasi-commutative and right cancellative without identity then these conditions are equivalent (1) S being f- primary (2) f-semi primary ideals are f- primary (3) There are no proper fprime ideals in S (4) g and h are not units in S, then \exists n, m \in N \exists gⁿ = hs and h^m = gr for any s, $r \in S$. It is verified that for S being quasi-commutative and right cancellative then these statements (1) S is f-primary (2) f-semi primary ideals are f-primary (3) proper f-prime ideals are maximal, are equivalent.

Keywords: f - prime & f - semiprime ideals, f-primary & f-semi primary ideals, maximal ideal.

1. Introduction

"The algebraic theory of semigroups" was introduced by Clifford and Preston [5], [6]; Petrich [7] "Structure and ideal theory of semigroups" & "Primary ideals in semigroups" were presented by Anjaneyulu.A [1][2] "A generalization of prime ideals in semigroups" was presented by Hyekyung Kim [3] "generalization of prime ideals in rings" was introduced by Murata. K, Kurata. Y and Murabayashi. H [8] "prime and maximal ideals in semigroups" was presented by Scwartz. S [4] "Commutative primary semigroups" was developed by M. Satyanarayana [9]. "f-primary ideals in semigroups", "fsemiprime ideal in semigroups" and "f-prime radical in semigroups" were developed by T. Radha Rani, A. Gangadhara Rao [10]-[12].

2. Preliminaries

Definition 2.1: Let (S,.) be a set and $S \neq \emptyset$ If '.' Is a binary operation on S and it holds associative then S is defined as a "Semigroup".

Note 2.2: Throughout this paper S will indicate a semigroup. Definition 2.3: If $qr=rq \forall q, r\in S$ then S is called as "commutative"

Definition 2.4: If $qs = s \forall s \in S$ then the element q in S is called as "*left identity*" of S.

Definition 2.5: If $sq = s \forall s \in S$ then the element q in S is called as "*right identity*" of S.

Definition 2.6: An element q in S is both left and right identity in S so it is called as "*identity*".

Definition 2.7: Let $Q(\neq \emptyset)$ is a set in *S*. *Q* is entitled as "*left ideal*" in *S* when $SQ \subseteq Q$.

Definition 2.8: Let $Q(\neq \emptyset)$ is a set in *S*. *Q* is entitled as "*right ideal*" in *S* when $QS \subseteq Q$.

Definition 2.9: A subset Q in S is both left and right ideal in S then it is known as "*ideal*" in S.

Definition 2.10: The intersection of each one of the ideals in S carrying a non-void set P is known as the "*ideal generated by* P". It is signified as $\langle P \rangle$.

Definition 2.11: Some ideal Q of S is called as "*principal ideal*" if Q is an ideal generated by single element set. On the off chance that an ideal Q is generated by q, at that point Q is indicated as $\langle q \rangle$ or J[q]

Definition 2.12: Some ideal Q of S is called as "*completely prime ideal*" given $k, l \in Q, kl \in Q$, either $k \in Q$ or $l \in Q$.

Definition 2.13: Some ideal D in S is known as "*prime ideal*" when Q, R be ideals of S,

 $QR \subseteq D$ infers either $Q \subseteq D$ or $R \subseteq D$.

Definition 2.14: Let *P* be some ideal in *S*, then the intersection of each one of the prime ideals carrying *P* is said to be "*prime radical*" or just "*radical of P*" and it is meant by \sqrt{P} or *rad P*.

Definition 2.15: Let P be some ideal in S, then the intersection of each one of the completely prime ideals carrying

^{*}Corresponding author: jayababumathematics@gmail.com

P is entitled as "*complete prime radical*" or "*complete radical*" of *P*and indicated as "*c.rad P*".

Definition 2.16: Some ideal K in S is known to be "completely semiprime" if $k \in S$, $k \in K$ for some $n \in N \Rightarrow k^n \in K$.

Theorem 2.17: An ideal K of S is completely semiprime $\Leftrightarrow k \in S, k^2 \in K$ implies $k \in K$.

Definition 2.18: Some ideal K in S is known to be "semiprime" if X is an ideal of S, $X^n \subseteq K$ for some $n \in N \Rightarrow X \subseteq K$.

Theorem 2.19: An ideal *K* of *S* is semiprime $\Leftrightarrow X$ is an ideal of *S*, $X^2 \subseteq K \Rightarrow X \subseteq K$.

Theorem 2.20: If f(w) is an ideal in S then $f(W) = \bigcup_{w \in W} f(w)$ is an ideal.

Definition 2.21: A Subset K of S is named as "*p*-system" $\Leftrightarrow <k > <l > \cap Q \neq \emptyset$ for any

k, l in *K*.

Definition 2.22: A Subset *K* of *S* is known as "*sp-system*" $\Leftrightarrow \langle k \rangle^2 \cap Q \neq \emptyset$ for any $k \in K$.

Definition 2.23: For any $f \in F$ a subset K of S is known as an "*f-system*" \Leftrightarrow it consists of a *p-system* $K^* \ni K^* \cap f(k) \neq \emptyset$ for each $k \in K$.

Definition 2.24: For any $f \in F$ a subset K of S is known as an "*sf-system*" \Leftrightarrow it consists of a *sp-system* $K^* \ni K^* \cap f(k) \neq \emptyset$ for each $k \in K$.

Definition 2.25: A proper ideal J in S is called "*f-prime*" \Leftrightarrow its complement J^c is a *f-system*.

Definition 2.26: A proper ideal J in S is called "*f*-semiprime" \Leftrightarrow its complement J^c a *sf*-system.

Theorem 2.27: Let *J* be some ideal in *S* then J^c is a *f*-system $\Rightarrow f(j_1) f(j_2) \subseteq J \Rightarrow j_1 \in J$ or $j_2 \in J$.

Theorem 2.28: Let *J* be some ideal in *S* then J^c is a *f*-system $\Rightarrow f(K) f(R) \subseteq J \Rightarrow f(K) \subseteq J$ or $f(R) \subseteq J$.

Corollary 2.29: Let *J* be a *f*-prime ideal in *S*. Then for any two ideals *K*, *R* in *S* such that $f(K) f(R) \subseteq J$ implies either $f(K) \subseteq J$ or $f(R) \subseteq J$.

Theorem 2.30: Let J bean f-prime ideal of S, so the subsequent statements are equivalent.

(i) $f(k) f(r) \subseteq J \Rightarrow k \in J$ or $r \in J$.

(ii) $f(K) f(R) \subseteq J \Rightarrow f(K) \subseteq J$ or $f(R) \subseteq J$, for all ideals K, R of S.

Theorem 2.31: Let *J* be some ideal in *S* then J^c is a *sf*-system $\Rightarrow f(j_1)^2 \subseteq J \Rightarrow j_1 \in J$.

Theorem 2.32: Let J be some ideal in S then J^c is a sf-system $\Rightarrow f(K)^2 \subseteq J \Rightarrow f(K) \subseteq J$.

Here $f(K) = \bigcup_{k \in K} f(k)$

Corollary 2.33: Let *J* be some ideal of *S*. *J* is called as "*f*-semiprime ideal" if *K* is some ideal in *S*. $f(K)^2 \subseteq J$ implies $f(K) \subseteq J$. here $f(K) = \bigcup_{k \in K} f(k)$.

Theorem 2.34: An ideal *J* of *S* is *f*-semiprime \Leftrightarrow for any $k \in S$ if $f(k) S f(k) \subseteq J \Rightarrow k \in J$.

Definition 2.35: Let *J* be some ideal in *S* then "*f-rad J*" = $\{x/K \cap J \neq \emptyset$ for each *f*-system *K* containing $x\}$ is the *f-radical* of *J* and is specified by $r_f(J)$.

Definition 2.36: Let *J* be some ideal in *S* then "*sf-rad J*" = $\{x/K \cap J \neq \emptyset$ for each *sf*-system *K* containing *x*} is the *sf-radical* of *J* and is specified by $r_{sf}(J)$.

Theorem 2.37: Let J be some ideal in S then sf- rad J $= \bigcap_{J \subseteq P_i} P_i$, Where P_i is f-semiprime ideal in S containing J.

Theorem 2.38: Let G be some ideal in S then $r_f(G) = \bigcap_{G \subseteq P_i} P_i, l \le i \le n$ Where P_i is f-prime ideal in S.

Theorem 2.39: Let *G* and *H* be two ideals of *S*. If $G \subseteq H$, then $r_f(G) \subseteq r_f(H)$.

Definition 2.40: *Q* is both left and right *f*-primary ideal implies *Q* is "*f* - *primary ideal*."

Definition 2.41: An ideal A of S is said to be *sf-primary* if r_f (Q) is *f*-prime ideal.

Definition 2.42: *S* is said to be *sf-Primary semigroup* if every ideal of *S* is a *sf -Primary* ideal.

Theorem 2.43: Let *J* be some ideal in *S* then *sf-* rad *J* = $\bigcap_{I \subseteq P_i} P_i$, Where P_i is *f-semiprime* ideal in *S* containing *J*.

Theorem 2.44: Let G be some ideal in S then $r_j(G) = \bigcap_{G \subseteq P_i} P_i, l \le i \le n$ Where P_i is f-prime ideal in S.

Theorem 2.45: An ideal J in S is f-semiprime ideal \Leftrightarrow $r_f(J) = J$.

Corollary 2.46: An ideal J of S is a f-semiprime ideal \Leftrightarrow J is the intersection of all f-prime ideals of S contains J.

Corollary 2.47: If *J* is an ideal in *S*, then $r_f(J)$ is the smallest semiprime ideal of *S*.

Theorem2.48: Let *S* has identity and *J* be a unique maximal ideal in *S*. If $r_f(W) = J$ for any ideal *W* in *S*, then *W* is a *f*-primary ideal.

3. Main Results

Theorem 3.1: Let S be a semigroup and it contains identity. If (non-zero, assume this if S has zero) proper f-prime ideals are maximal in S, then S is a f-primary semigroup.

Proof: If S is not a simple semigroup with identity, then S contains a unique maximal ideal J, it is the union of proper ideals in S.

Suppose G be a (nonzero) proper ideal in S.

Then $r_f(G) = J$.

From the theorem 2.48, *G* is a *f*-primary ideal.

Suppose *S* contains zero and < 0 > be a *f*-prime ideal.

Then < 0 > is *f*-primary and consequently *S* remains *f*-primary.

Suppose < 0 > should not be a *f*-prime ideal.

Then $r_f (< 0 >) = J$

Therefore, from the theorem 2.48, < 0 > be a *f*-primary ideal. Hence *S* is *f*-primary.

Example 3.2: Consider $S = \{u, v, w, 1\}$ is the semigroup by the operation multiplication and it is given in below table.

÷	и	v	w	1
и	u	и	и	u
v	и	v	v	v
w	u	v	w	w
1	u	v	w	1

Here S is f-primary, the f-prime ideal $\langle u \rangle$ not being a maximal ideal.

Theorem 3.3: Let S be a right cancellative quasi commutative semigroup. If S is a f-primary semigroup or a semigroup in which f-semiprimary ideals are f-primary, then for any f-primary ideal W, $r_f(W)$ is non maximal implies $W = r_f(W)$ and it is f-prime.

Proof: Let S be right cancellative and quasi commutative. Since $r_f(W)$ is not maximal, then \exists an ideal Q in $S \ni r_f(W) \subset Q \subset S$.

Suppose $q \in Q \setminus r_f(W)$ and $t \in r_f(W)$. Then $W \subseteq W \cup \langle qt \rangle \subseteq r_f(W)$.

Then $w \subseteq w \cup \langle q_l \rangle \subseteq r_f(w)$.

By the theorem 2.39, $r_f(W) \subseteq r_f(W \cup \langle qt \rangle) \subseteq r_f(r_f(W))$. Therefore $r_f(W \cup \langle qt \rangle) = r_f(W)$.

 \therefore By assumption $W \bigcup \langle qt \rangle$ is a *f*-primary ideal.

Suppose $s \in S \setminus Q$.

Then $qst \in W \cup \langle qt \rangle$.

Since $q \in r_f(W) = r_f(W \cup \langle qt \rangle)$ and $W \cup \langle qt \rangle$ is a *f*-primary ideal, then $st \in W \cup \langle qt \rangle$.

If $st \in \langle qt \rangle$, then st = rqt for certain $r \in S$.

Therefore, by right cancellative property, we get $s = rq \in Q$, which is a contradiction.

 \therefore st $\in W \implies s \notin r_f(W)$ and $t \in r_f(W)$. Hence $W = r_f(W)$ and W is f-prime.

Theorem 3.4: Let S be a right cancellative quasi commutative semigroup. If S is either f-primary or a semigroup in which f-semi primary ideals are f-primary then proper f-prime ideals are maximal in S.

Proof: Suppose that J is not a maximal ideal.

Consider $\mathscr{L} = S \setminus J$ and $Q = \{q \in S \mid qu \in \langle h \rangle \text{ for any } u \in \mathscr{L}\}.$

Obviously, Q is an ideal in S.

If $q \in Q$, then $qu \in \langle h \rangle \subseteq J \Longrightarrow q \in J$.

Therefore $Q \subseteq J$.

Suppose $v \in J$ and $G = \{v^k u \mid u \in \mathscr{L} \text{ and } k \text{ is whole number}\}$. Since $vu \in G$ and $vu \notin \mathscr{L}$, then G is a sub-semigroup containing \mathscr{L} properly.

By the assumption, J be a minimal f-prime ideal containing <h> and \mathscr{L} is a maximal sub-semigroup not meeting <h>.

Since $\mathscr{L} \subset G$ and $G \cap \langle h \rangle \neq \emptyset$, then $\exists k \in N \exists v^k u \in \langle h \rangle \Rightarrow v^k \in Q$.

Therefore $v \in r_f(Q)$.

Now $J \subseteq r_f(Q) \subseteq r_f(J) = J \Longrightarrow J = r_f(Q)$.

Then by our supposition Q being a f-primary ideal.

Since J is not a maximal ideal, then by Theorem 3.4, J = Q.

Now *J* is also a minimal *f*-prime ideal containing $< h^2 >$.

Suppose $\mathscr{B} = \{ w \in S \mid wu \in \langle h^2 \rangle \text{ for any } u \in \mathscr{L} \}.$

In the similar way, we get $\mathcal{B} = J$.

Since $h \in J = Q = \mathcal{B}$, then $hu = sh^2$ for any $s \in S^1$.

Since S is quasi commutative, then $hu = u^n h$ for some $n \in N$. By the right cancellative property, $u^n = sh \in \langle h \rangle$. It is a conflict.

Therefore, J be a maximal ideal.

If *J* is some proper *f*-prime ideal, then for any $h \in J$ a minimal *f*-prime ideal contains < h >.

Hence J is a maximal ideal.

Corollary 3.5: Let S be a cancellative commutative semigroup. Then S is a f-primary semigroup or an ideal Q in S is f-primary if and only if $r_f(Q)$ is a f-prime ideal and the proper f-prime ideals are maximal in S.

Proof: Since S being commutative, then $u, v \in S$, uv = vu

Now $uv = v^1 u \Rightarrow uv = v^n u$, for n = 1, that represents *S* is quasi commutative.

Therefore, S is cancellative and quasi commutative.

Hence by the theorem 3.4, the proof of the corollary is clear.

Theorem 3.6: If S is a quasi-commutative right cancellative semigroup and it contains identity, then the following constrains are equivalent.

1) Proper *f*-prime ideals are maximal in *S*.

2) S is a f-primary semigroup

3) *f*-semi primary ideals are *f*-primary in *S*.

4) If g and h are not units in S, then there exists some natural numbers n and m such that $g^n = hs$ and $h^m = gr$ for some s, $r \in S$.

Proof: By the theorems 3.1 and 3.4, we have (1), (2) and (3) are equivalent.

Suppose (1) that is proper *f*-prime ideals are maximal in *S*.

Since S contains identity, then a unique maximal ideal exists in S, say J.

Clearly J is the only f-prime ideal.

Suppose g & h are not the units in S and $\langle g \rangle$ and $\langle h \rangle$ are ideals in S.

Then $r_f (\langle g \rangle)$, $r_f (\langle h \rangle)$ are proper *f*-prime ideals. Since proper *f*-prime ideals are maximal in *S*, then we get *g*, *h* $\in J$.

Therefore $r_f(\langle g \rangle) = r_f(\langle h \rangle) = J$.

 $\therefore \exists n, m \in N \ni g^n = hs \text{ and } h^m = gr \text{ for any } s, r \in S.$

Thus $(1) \Rightarrow (4)$.

Assume (4): Suppose *Q* is a *f*-semiprimary ideal in *S*.

Let $\langle q \rangle$, $\langle l \rangle$ are any two ideals in $S \ni \langle q \rangle \langle l \rangle \subseteq Q$ and $l \notin Q$.

Then by the hypothesis $q \in r_f(Q)$.

Therefore, Q is left *f*-primary.

In the same way, we can show that Q will be right f-primary. Therefore, Q being f-primary.

Hence $(4) \Rightarrow (3)$.

Theorem 3.7: If S is a quasi-commutative right cancellative semigroup and it does not contain identity, then the following constrains are equivalent.

1) S is f-primary.

2) *f*-semi primary ideals become *f*-primary in *S*.

3) There are no proper *f*-prime ideals in *S*.

4) If g and h are not units in S, then there exists $n, m \in N$ such that $g^n = hs$ and $h^m = gr$ for any $s, r \in S$.

Proof: Let S be quasi commutative and right cancellative without the identity.

Then $(1) \Rightarrow (2)$ is clear.

(1) \Rightarrow (2): Assume that *f*-semiprimary ideals are *f*-primary in *S*.

By the Theorem 3.5, proper *f*-prime ideals become maximal in *S*.

Let *Q* be some *f*-prime ideal.

If Q is maximal, then $S \setminus Q$ be a group.

Let *u* be an identity element in $S \setminus Q$.

Then *u* becomes an idempotent in *S*.

Since *S* is right cancellative, then *u* is the right identity in *S*.

Since *S* is quasi commutative, then idempotents is commute in *S*.

Therefore, *u* is the identity in *S*, which is a conflict.

 \therefore S does not contain *f*-prime ideals.

Thus $(2) \Rightarrow (3)$.

(3) \Rightarrow (4): Assume that there are no proper *f*-prime ideals in *S*.

Then for some ideal W in S, $r_f(W) = S$.

Suppose $k, l \in S$.

Now $r_f(<k>) = r_f(<l>) = S$, by this (4) follows.

By the theorem 3.6, $(4) \Rightarrow (1)$ is clear.

Corollary 3.8: Let S be quasi commutative and right cancellative semigroup. Then the following constrains are equivalent.

1) S is f-primary

2) *f*-semi primary ideals are *f*-primary in *S*.

3) Proper *f*-prime ideals become maximal in *S*.

Moreover, there are no idempotents in S excluding the identity.

Proof: By the theorem 3.4, S is f-primary or a semigroup such that where the f-semi primary ideals become f-primary.

Then proper *f*-prime ideals become maximal in *S*.

Therefore, by the theorems 3.6 and 3.7, the proof of this theorem is clear.

References

- [1] Anjaneyulu A, "structure & ideal theory of semi groups," Thesis ANU.
- [2] Anjaneyulu A., "Primary ideals in semigroups," Semigroup Form, Vol. 20(1980), 129-144.
- [3] Hyekyung Kim, "A generalization of prime ideals in semi groups", J. Korean math. Soc., 24(1987), no. 2, pp. 207-216.
- [4] Scwartz. S "prime ideals and maximal ideals in semi groups"-Czechoslovak Mathematical Journal., 19(94), 1969, 72-79.
- [5] Clifford A.H Preston G.B, "The algebraic Theory of semigroups" Vol-I, American mathematical society, providence (1961).
- [6] Clifford A.H Preston G.B, "The algebraic theory of semigroups" Vol-II, American mathematical society, providence (1967).
- [7] Petrich M., "Introduction to semigroups," Merril publishing company, Columbus, Ohio, (1973).
- [8] Murata K., Kurata. Y and Murabayashi H., "A generalization of prime ideals in rings" Osaka J. Math. 6.
- [9] M. Satyanarayana "Commutative primary semigroups" Czechoslovak Mathematical Journal, vol. 22 (1972), no. 4, 509-516.
- [10] T. Radha Rani, A. Gangadhara Rao, M. Sowjanya, "f-primary ideals in Semigroups," Turkish Journal of Computer and Mathematics Education, vol. 12, no. 5, 2021.
- [11] T. Radha Rani, A. Gangadhara Rao, M. Sowjanya, Ch. Srimannarayana "F-Semiprime ideal In Semi Groups," Journal of Advanced Research in Dynamical and Control Systems, vol. 12, no. 2, March 2020.
- [12] T. Radha Rani, A. Gangadhara Rao, A. Anjaneyulu, M. Sowjanya "fprime radical in semi group," International journal of research, pp. 1696 -1707, March 2019.