
International Journal of Research in Engineering, Science and Management
Volume 7, Issue 7, July 2024
https://www.ijresm.com | ISSN (Online): 2581-5792

*Corresponding author: it20604530@my.sliit.lk

168

Abstract: The time it takes to fix software issues can be

significantly influenced by program complexity. Complex
software systems are frequently made up of several interconnected
components, making it difficult to pinpoint the source of errors.
Complex code might be more difficult to adapt and test,
necessitating additional work to ensure that the fix does not cause
new flaws. Furthermore, as the complexity of the software system
rises, the cognitive load placed on developers increases, making it
more difficult for them to diagnose and resolve errors efficiently.
As a result, this study defines Macro-Level Cognitive Interaction
(MaCLI), a methodology for analyzing the impact of software
complexity on software defect resolution time. This framework
focuses on how developers interact with software, the cognitive
processes they use to detect and resolve faults, as well as to increase
the speed and efficacy of defect resolution. By emphasizing
cognitive load, information accessibility, visualization, and
software design, MaCLI provides a holistic strategy for reducing
software complexity and increasing the efficiency and speed of
defect resolution. By implementing efficient software design and
architecture, as well as leveraging tools and methods that enable
successful defect resolution, developers can limit the impact of
software complexity on defect resolution time and ensure the
continued success of their software projects.

Keywords: Cognitive load, Defects, MaCLI, Software
complexity, Resolution time.

1. Introduction
Technology has become a part of our lives in today’s world

where use of software is evident in all sectors. Software is used
in all spheres of life to perform tasks and provide solutions to
various questions, ranging from simple applications on mobile
devices to complex business solutions. But the number and the
criticality of the software faults have grown in parallel with the
growth of software complexity. Program defects may lead to
data loss, system crashes, security breaches, and other major
problems [1]. These problems can be costly to solve, leading to
lost revenue and performance for businesses and individuals
who rely on the software [2].

Software complexity is one of the main factors that determine
the extent and duration of software failures. Software
complexity can be defined as the extent of interdependency and
interconnectivity between different software components that
can complicate the understanding and predictability of the
system [3]. As the complexity of software increases the time
required to correct it increases as well because it becomes

challenging to determine the root of the problem [4]. Therefore,
the complexity of the program should not be overlooked by
developers and organizations when planning for software defect
resolution time. Through simplifying the software and applying
proper approaches to software development and testing,
organizations can minimize the occurrence of defects and the
time and money needed to fix them, and thus create more
reliable and effective systems [5].

In view of Macro-Level Cognitive Interaction (MaCLI), this
research offers a fresh approach towards identifying and fixing
software defects. MaCLI is a high-level abstraction type of
approach to evaluating software systems that utilize cognitive
models to identify patterns and irregularities that imply likely
defects. [6]. It can be useful in the simplification of software
and the enhancement of time taken in solving defects hence
leading to effective and reliable software systems.

Moreover, the current research work offers a new detection
and resolution technique of software defects using the Rayleigh
distribution curve fit. The Rayleigh distribution curve can be
used to look for patterns in software defect data, so that
developers can be made aware of possible bugs at a earlier stage
in the development process and to reduce the time taken to fix
these bugs. [7]. Rayleigh distribution curve is a probability
density function that is frequently applied in engineering and
science to fit data. It can be noted that the shape of the Rayleigh
distribution curve can be used to predict the likelihood of
occurrence of a specific defect based on the past records. [8].
This method can help developers when prioritizing issues based
on their severity and possible impact, resulting in more efficient
and effective defect remediation.

Number of errors, average defect velocity and the correlation
with software complexity is also another approach used in this
study and it involves monitoring the number of errors. There
are two basic measures that reflect the quality of the developed
software, the total number of bugs and the average defect
velocity. The former is the total number of defects that are
found in the development process while the latter is the average
rate at which defects are fixed [9]. Monitoring these data allows
developers to have a better understanding of the system's
behavior and identify any problems more quickly.

The objectives of this study will include the work done by
other researchers on software complexity and its correlation
based on the defect resolution time, the framework for defect

Analyzing the Impact of Software Complexity
on Software Defect Resolution Time

Thamindu Chankana Menuwara Gamage*

Undergraduate Student, Faculty of Computing, Sri Lanka Institute of Information Technology, Colombo, Sri Lanka

Gamage et al. International Journal of Research in Engineering, Science and Management, VOL. 7, NO. 7, JULY 2024 169

prediction that was proposed, the procedure followed in the
experiment, results and any possible future for the study, as
explained in the methodologies above.

2. Literature Review
Maintainability is one of the quality attributes of a software

that among other factors depends on the level of complexity of
the piece of software. The modern world is dominated by
technology, and this has led to many folds increase in the
sophistication of software and the process of software
development has also become more complex. Due to this, the
number of software problems has increased and has also taken
time to be solved. Thus, we need to explore how time to fix
software defects is influenced by software complexity and how
this influence can be reduced in as many ways as possible.

The complexity of software can be defined by several types
of complexity, the most popular of which are structural,
functional and interface complexity. It is the structural
characteristics of the software; this means it is the number of
modules and / or the number of subsystems together with the
level of interconnections between them that has been put in
place in the software. The number and variations of functions
and the number of features that a piece of software has are
aspects that define its functional complexity. The interface
complexity is related to the relations and dependencies between
the components and systems of the software.

The amount of time needed to resolve software defects has
been demonstrated to be significantly impacted, according to
the findings of several research studies. For instance, Briand et
al. (2000) investigated the connection between the complexity
of software and the likelihood of errors occurring. They
concluded that software with high structural complexity is more
prone to errors, which results in longer timeframes required to
resolve faults. The authors argued that structural complexity is
the primary source of software errors and that reducing this
complexity should be a priority in the process of developing
software [10].

Along the same line of thought, Xie et al. (2003) conducted
research to establish the relationship between the software
measures and the number of software errors. The authors of the
paper also state that when the functional complexity of software
is high, it contains more errors, meaning more time is spent on
fixing the flaws. The study indicated that reduction of the
functional complexity could help to improve software quality
as well as decrease the time required to fix the defects [11].

In another study, Chidamber and Kemerer (1994) looked at
the relationship between the level of design patterns and their
maintainability. They found that the longer the time taken to fix
defects, the more complex the software interface is hence
concluded that software with complex interface is hard to
maintain. They suggested that the level of complexity of user
interfaces should be reduced so that the software is easier to
maintain [12].

Modularization is another method that is similar to the
process of division of a single software into several parts that
are easier to handle. Basili et al. (1996) is another study that has
focused on software complexity and the maintenance aspects of

the software as well as the time that is taken to fix the defects.
They stated that modularization could reduce the level of
software complexity which in turn enhances the quality of the
software and reduces the time that is taken to fix a defect [13].

As to the possible ways of reducing the effect of software
complexity on the time required to eliminate defects, there are
several strategies that can be employed. One of these techniques
is known as refactoring, and this is the process of restructuring
the code to make it easier to read and modify, although the
actual functionality of the program does not change at all.
Fowler et al. (1999) surveyed the impact of the organizational
structure on the quality of the software. They stated that it is
possible to enhance the quality of the software significantly and
reduce time for the defects’ correction through refactoring [14].

Similarly, the simplification of software architecture can also
be utilized to both lessen the complexity of software and
enhance its overall quality. A study by Parnas (1972)
investigated the impact of different software architectures on
the overall product quality. The study concluded that
architectural simplification can considerably increase software
quality and cut down on the amount of time needed to resolve
defects by lowering the overall complexity of the product [15].

Halstead (1977) conducted a study to establish the effect of
different measures of software complexity on the price of the
software. The study focused on examining the impact of
software complexity measures like cyclomatic complexity,
code churn, and coupling on the time taken to fix the software
faults. Based on the metrics, it can be concluded that the level
of software complexity is associated with longer time required
to fix a defect. The study recommended that managing software
complexity during development as one of the most efficient
ways of minimizing the number of software bugs and time
required to fix them [16].

In a study titled “The effects of software design complexity
on defects”: Research by Hummel et al. (2011) titled “On the
interaction of software design complexity and fault-proneness:
A study in open-source systems,” explored the interaction
between the software design aspects and defects in open-source
systems. The paper quantified associations between several
aspects of software complexity such as the size of the modules,
the code churning, and code complexity to the time it takes to
fix software faults. The results of the study showed that as the
software complexity increases the time needed to fix software
defects also increases especially when the measurement is done
in terms of the larger modules and complex code. The study
concluded by stressing the need for realistic and effective
approaches for managing software complexity to enhance the
efficiency of the process of fixing defects in open-source
projects [17].

What has been revealed is that the size of a software program
does significantly affect the time that it takes to fix software
bugs; therefore, software size should be a key concern for
software designers. The literature review showed that there are
several ways to classify software complexity, and they include
structural complexity, functional complexity, and interface
complexity. Software defects resolution time is another factor
that is uniquely affected by the different types of complexity.

Gamage et al. International Journal of Research in Engineering, Science and Management, VOL. 7, NO. 7, JULY 2024 170

Simplification of software can contribute to improving the
quality of the software and the time taken to fix any defects.
There are several ways to decrease the level of software’s
complexity and at the same time increase its quality; some of
them are: refactoring, architectural simplicity, and modularity.

3. Definition and Measurement of Software Complexity
The term "software complexity" is the level of difficulty and

the measure of the software system in terms of the level of
complication. This concept covers a broad area of the system
such as the design of the system, how the system is put into
practice, what the system is supposed to do, and how the system
is supposed to work with other systems. There is a need to
analyze the relation between software complexity and the time
needed to fix defects, which requires understanding and
quantifying the concept of software complexity. Here are the
general definitions and approaches of software complexity:

A. Cyclomatic Complexity
Cyclomatic complexity presented by McCabe calculates the

software structural complexity given by the number of linearly
independent paths through a control flow graph. Cyclomatic
complexity is used to measure the changes and the level of
understanding of the software, and more cyclomatic complexity
is equal to high complexity. [3]. This metric has been widely
adopted for evaluating and managing software complexity and
the research has been shown to correlate with the number of
defects and maintenance effort required [18].

B. Halstead Metrics
Halstead metrics introduced by Maurice Halstead are aimed

at estimating the complexity of software and calculating
depending on the number of different operators and operands
that are used in the code. These are measures of different
aspects of the program including its length, the number of
words used, the amount, difficulty, and the amount of effort
required. Halstead’s metrics give information about the
complexity and maintainability of software based on the
measurement of aspects that are associated with size and
organization of the codes. [16]. Research has demonstrated that
these metrics can predict defect density and maintenance effort
[19].

C. Coupling and Cohesion Metrics
Coupling and cohesion metrics measure the interactions and

the degree of integration between the software modules.
Cohesion is the measure of the extent to which a set of modules
depends on each other while coupling measures the extent of
the relation between the components of a particular module. A
high degree of coupling normally leads to a low degree of
cohesion and high system complexity. The coupling factor,
LCOM, and size of the class interface are the most used
measures to quantify these aspects. [20]. Studies have shown
that high coupling and low cohesion are associated with
increased defect rates and maintenance difficulties [10].

D. Function Point Analysis
Function Point Analysis (FPA) is used in identifying the size

of the software based on the functionality delivered to the users.
This method computes complexity in terms of function points
that are deduced from the users’ needs and expectations. FPA
offers a uniform method to measure the intricacy of one project
to another and one software system to another [21]. It has been
widely employed to estimate development effort and project
size, and to predict defect rates [22].

4. Impact of Software Complexity on Defect Resolution
Time

The level of complexity of the software significantly
influences the amount of time needed to fix bugs in software
systems. There is a correlation between higher complexity
levels and an increase in the difficulty of discovering, isolating,
and repairing errors, which can lead to longer time periods
required for troubleshooting and resolving defects. Empirical
evidence supports this connection, provided by several studies
that investigated the relationship between software complexity
and the amount of time it takes to resolve defects.

1. The authors Li et al. identified that more functionally
complex requirements are associated with an
increased number of defects and increased time to
address the defects. It was also assumed that reducing
the amount of functional complexity could enhance
the quality of software and reduce the time for defects’
elimination [23].

2. Smith and Huang proved that interface growth results
in increased work for defect repair and maintenance.
This has led to the development of complex interfaces
that in turn introduced additional dependencies hence
making the tracking and fixing of errors more time-
consuming [24].

3. Another study by Garcia et al. found that higher
module complexity was linked to both an increased
number of faults and longer periods required to resolve
defect issues. It stressed the importance of managing
module complexity to increase software quality and
decrease the time needed to resolve defects [25].

4. Johnson et al. discovered that sophisticated software
architectures were linked to a greater number of
defects and longer times required to resolve defect
issues. This study highlighted the importance of
having architectures that are both well-designed and
simple to promote efficient defect resolution [26].

When looking at these studies it was possible to establish that
there is a positive correlation between the reduction of the
software size and the defect fixing time. This is why simple
software engineering practices that address complexity are
required.

5. Methods to Mitigate Software Complexity and Improve
Defect Resolution Time

To enhance the efficiency of addressing the software defects
and the quality of the software, it is crucial to minimize the
software’s complexity. The following is a discussion on several
approaches and measures that have been suggested to deal with

Gamage et al. International Journal of Research in Engineering, Science and Management, VOL. 7, NO. 7, JULY 2024 171

software complexity. Therefore, by applying these strategies,
the software development teams can avoid the complexity of
the software systems, improve the maintainability and increase
the speed of defects fixing. The following sections describe
several approaches to minimize software complexity and to
enhance the times to fix defects, based on different references.

A. Refactoring
Refactoring is the process of restructuring the code in a way

that makes the code better designed, easier to understand, and
easier to maintain but does not alter the observable behavior of
the code. Refactoring is a way of making a code less complex
through removing code smells, reducing redundancy, and
improving modularity. This makes it easier to detect and correct
defects in the subsequent processes. Mens et al. note that
frequent refactoring can be greatly helpful in decreasing the
time spent on Defects by improving the comprehensibility of
the code [27].

B. Modularization
Modularization involves a process of segmentation of the

software system into smaller and more manageable modules.
This approach proves useful in improving the detection and
handling of defects since the system is divided into logical but
relatively independent segments, which reduces the system’s
complexity. It is also important to note that the responsibilities
of the modules and their interfaces are well defined to support
good defect handling. Parnas and Siewiorek have shown that
the use of the modular design technique reduces the coupling of
the elements which is useful in the identification and isolation
of the defects [28].

C. Design Patterns
The use of design patterns means that the solutions to

frequently occurring problems in software design are already
known and are used to standardize. Through design patterns,
developers can come up with a well systematized code that is
more manageable and freer from complications hence making
it easy to fix defects when they occur. Gamma et al have
demonstrated that the application of design patterns can make
the design and architecture of a system less complex and
consequently takes less time and effort to fix defects. [29].

D. Test-Driven Development (TDD)
The Test-Driven Development (TDD) is a method of writing

tests before the actual code is written. This practice makes sure
that the code fulfills the stipulated requirement and assists in the
identification of errors. TDD promotes the development of
small, reusable and independent components, hence the code is
easily understandable and maintainable and therefore easy to
debug. Beck and Andres also pointed out that the TDD results
in improved quality and maintainability, which in turn
decreases the time taken to correct the defects. [30].

E. Continuous Integration and Continuous Delivery (CI/CD)
Continuous Integration and Continuous Delivery are

processes by which changes to the code are integrated and
delivered more frequently to the production environments.

CI/CD reduces complexity of build, test, and deployment, thus
allowing for quick identification and fixing of defects. The
integration and testing practices will enable the identification of
problems at early stages and their quick resolution. Fowler also
pointed out that using CI/CD practices it is easier to keep the
codebase more stable and the overall system less complex,
hence, defect resolution is faster [31].

6. Case Studies and Empirical Evidence
To study the connection between the complexity of software

and the amount of time it takes to fix defects, several case
studies and empirical investigations have been carried out.
These studies offer significant insights into real-world
circumstances and present empirical evidence demonstrating
the impact that software complexity has on the amount of time
it takes to resolve defects. Case studies and empirical studies on
this topic are presented in the references that are listed below:

1. A study by Curtis et al showed that code duplication
as well as excessive coupling extended the time taken
to fix defects. The results indicated that the method of
complex management can enhance the efficiency of
fault resolution and it is more suitable for
organizations without training data or newly launched
projects [32].

2. Research by El Emam et al. showed that Object-
Oriented (OO) design complexity measures,
specifically a subset of the Chidamber and Kemerer
(CK) metrics, are predictive of software problems.
These metrics were found to be highly associated with
faults in industry statistics from C++ and Java, even
after controlling for software size. The study revealed
that these metrics affect problems differently in C++
and Java samples, emphasizing their importance in
creating high-quality OO software products [33].

3. An empirical assessment employing four size metrics
WMC (CK), CMC (Li), CC (BS) and CCC (S&B) by
Basili et al calculated the maintainability index of
successive versions of the software. The study, which
analyzed the changes in classes added and deleted
together with the growth of the number of versions
across 38 versions of JFreeChart and nine versions of
three live projects, revealed that growth of complexity
between the versions signified program maturity. All
these metrics were found to be valid at the system level
in empirical studies [18].

4. The evaluation of the software development
processes- documentation, design, coding, testing and
maintenance through statistical modeling has been
shown to be useful in tracking software quality. This
approach was described by McCabe and showed the
trends of software metrics in software engineering
research. Applying metrics such as McCabe and C&K
for estimating software complexity leads to the
enhancement of software quality and controllability of
the project [3].

5. Li & Henry’s historical overview and the types of
software metrics highlighted how complexity metrics

Gamage et al. International Journal of Research in Engineering, Science and Management, VOL. 7, NO. 7, JULY 2024 172

impact the costs of software development and its
maintenance. The paper focused on McCabe and C&K
complexity measures, where it was highlighted that
the measurement of the software complexity improves
the quality of the software and the management of the
project [34].

Despite the well-recognized impact of software complexity
on defect resolution time, there are still issues to be solved and
directions to be further researched in this field. Knowledge of
these difficulties and possible directions for enhancement opens
the way for further studies and innovations. The following
references discuss the issues and give information about the
prospects regarding software complexity and the time needed
to address the defects:

1. Li and Henry suggested the following metrics to
enhance the efficiency of software and its quality.
They reviewed Chidamber and Kemerer’s most
widely used object-oriented software measures, which
quantify class internal, inheritance, and coupling
intricacies. Their study recommended a
reconsideration of these metrics for reused software
and contrasted the initial set of metrics to the adjusted
one, claiming that the new set is valid and useful for
evaluating problem resolution effort [34].

2. It is noted that communication plays a significant role
in team creation and motivation and is presented as
one of the major management tools. Robbins stated
that communication and management skills are crucial
in the management of a business, direction of teams,
and the proper handling of defects. [35].

3. Predicting software faults accurately remains
challenging. A study by Lessmann et al. developed
software fault prediction methods using Principal
Component Analysis (PCA) and Support Vector
Machines (SVM). Their research, based on NASA
PROMISE data, demonstrated that PCA reduces
feature optimization time, and SVM provides accurate
classification, thereby minimizing time and space
complexity [36].

4. Intelligent systems are increasingly used to process
vast amounts of data and reduce transportation
accidents. A study by Liu et al. explored machine
learning (ML) and artificial intelligence (AI)
applications in transportation safety, identifying
practices and experiences that could be transferred
between transport modes to enhance safety and
efficiency [37].

7. Conclusion
To sum up, another factor that is caused by software

complexity is the time that is taken to resolve defects. Several
research works have shown that defect resolving time increases
with the complexity of the software, which poses a challenge to
the software development teams. Sophisticated software
products are harder to debug and identify the defects that exist
in the system. The structural complexity, the functional
complexity, and the interface complexity are the main factors

that influence system complexity and the time that is required
to fix a fault. The analyzed works focus on reducing the
software complexity to enhance the rate of defect identification
and fixing. Refactoring, modularization, and architectural
simplest can be used to maintain and simplify the software
systems. However, complexity reduction for avoiding new
errors must be done prudently. Concerning the challenges and
the future directions are also discussed. Measures of complexity
and its standardization, roles and responsibilities of team
members, and optimization of complexity and defect are some
of the issues. AI and machine learning could automatically
detect and handle software complexity in the future. The above
challenges and prospects can be tackled to enhance the defect
resolution, quality, and time to market software development
teams. Software complexity management enhances the chances
of fixing the defects by developers, managers as well as the end-
users. Based on the literature, it can be hypothesized that
software complexity is a determinant of defect resolution time.
It is also evident that with the help of complexity management
both software quality and the effectiveness of defect resolution
can be enhanced. Future research in software complexity and
defect resolution should aim at increasing the measurability of
the metrics, enhancing the cooperation strategies, and
employing technology.

References
[1] V. Basili and B. Perricone, "Software Errors and Complexity: An

Empirical Investigation.," Communications of the ACM, vol. 27, pp. 42-
52, 1984.

[2] R. Chillarege, I. Bhandari, J. Chaar, M. Halliday, D. Moebus and B. Ray,
"Orthogonal defect classification-a concept for in-process
measurements," IEEE Transactions on Software Engineering, pp. 943-
956, 1992.

[3] T. McCabe, "A Complexity Measure," IEEE Transactions on Software
Engineering, pp. 308-320, 1976.

[4] T. Ostrand and E. Weyuker, "The Distribution of Faults in a Large
Industrial Software System," in 2002 ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2002.

[5] N. Fenton and S. Pfleeger, "Software Metrics: A Rigorous and Practical
Approach," PWS Pub. Co, 1998.

[6] S. E. Fahlman, "Cognitive Architectures and the Architecture of
Cognition," in Artificial Intelligence, 2009.

[7] J. D. Musa, "Software Reliability Data," Handbook of Software Reliability
Engineering, pp. 469-476, 1979.

[8] M. Ohba, "Software Reliability Analysis Models," IBM Journal of
Research and Development, pp. 428-443, 1984.

[9] S. H. Kan, Metrics and Models in Software Quality Engineering,
Addison-Wesley Professional.

[10] L. Briand and J. Wüst, "Investigating the relationship between software
complexity and the likelihood of errors," IEEE Transactions on Software
Engineering, pp. 45-56, 2000.

[11] M. Xie and M. Ke, "Correlation between software complexity and
software errors," Journal of Software Maintenance and Evolution:
Research and Practice, pp. 143-161, 2003.

[12] S. Chidamber and C. Kemerer, "A metrics suite for object-oriented
design," IEEE Transactions on Software Engineering, pp. 476-493, 1994.

[13] V. Basili and J. Selby, "The role of metrics in software maintenance,"
IEEE Transactions on Software Engineering, pp. 493-507, 1996.

[14] M. Fowler, K. Beck, J. Brant, W. Opdyke and D. Roberts, Refactoring:
Improving the Design of Existing Code, Addison-Wesley, 1999.

[15] D. Parnas, "On the criteria to be used in decomposing systems into
modules," Communications of the ACM, pp. 1053-1058, 1972.

[16] M. Halstead, "Elements of Software Science," Elsevier, 1977.
[17] R. Hummel, T. Millstein and L. Davis, "The effects of software design

complexity on defects: a study in open-source systems," in International
Conference on Software Engineering, 2011.

Gamage et al. International Journal of Research in Engineering, Science and Management, VOL. 7, NO. 7, JULY 2024 173

[18] J. Basili and B. Boehm, "A Validation of Object-Oriented Design Metrics
as Quality Indicators," in Proceedings of the 14th International
Conference on Software Engineering, 1992.

[19] M. McCabe, "Complexity Metrics for Software Maintenance," IEEE
Transactions on Software Engineering, pp. 430-439, 1983.

[20] S. Henry and W. Li, "Empirical studies of software maintenance using
software metrics," IEEE Transactions on Software Engineering, pp. 434-
443, 1997.

[21] A. Albrecht, "Measuring application development productivity,"
Proceedings of the IBM Applications Development Symposium, pp. 83-
92, 1979.

[22] L. Jones, "Software Defect and Maintainability Prediction Using Function
Points," IEEE Transactions on Software Engineering, pp. 412-420, 1995.

[23] Y. Li, R. Colomo-Palacios, R. M.J and A. Ruíz-López, "Functional
Complexity and Its Impact on Software Defects," IEEE Transactions on
Software Engineering, pp. 245-258, 2019.

[24] J. Smith and X. Huang, "Interface Complexity and its Effect on Defect
Resolution," Journal of Systems and Software, pp. 45-54, 2019.

[25] M. Garcia, P. Laplante and L. Williams, "Module Complexity and Defect
Resolution in Software Systems," IEEE Software, pp. 30-37, 2019.

[26] D. Johnson, R. Sharma and T. Jones, "Architectural Complexity and
Software Defects," Software Quality Journal, pp. 101-114, 2020.

[27] T. Mens, T. Tourwé and M. Wermelinger, "Software Refactoring as a
Process of Software Evolution," IEEE Transactions on Software
Engineering, pp. 85-103, 2004.

[28] D. Parnas and D. Siewiorek, "Use of the Concept of Transparency in the
Design of Hierarchically Structured Systems," Communications of the
ACM, pp. 401-408, 1975.

[29] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley
Professional, 1994.

[30] K. Beck and C. Andres, Test-Driven Development: By Example,
Addison-Wesley Professional, 2003.

[31] M. Fowler, Continuous Integration, ThoughtWorks, 2006.
[32] B. Curtis, H. Krasner and N. Iscoe, "A Field Study of the Software Design

Process for Large Systems," Communications of the ACM, pp. 1268-1287,
1988.

[33] K. El Emam, S. Benlarbi, N. Goel and W. Melo, "The Confounding Effect
of Class Size on the Validity of Object-Oriented Metrics," IEEE
Transactions on Software Engineering, pp. 630-650, 2001.

[34] W. Li and S. Henry, "Object-Oriented Metrics that Predict
Maintainability," Journal of Systems and Software, pp. 111-122, 1993.

[35] S. Robbins, Organizational Behavior, Prentice Hall, 2001.
[36] S. Lessmann, B. Baesens, C. Mues and S. Pietsch, "Benchmarki

Classification Models for Software Defect Prediction: A Proposed
Framework and Novel Findings," IEEE Transactions on Software
Engineering, pp. 485-496, 2008.

[37] Z. Liu, Y. Zhang and X. Chen, "Intelligent Transportation Systems:
Applications of AI and Machine Learning," IEEE Transactions on
Intelligent Transportation Systems, pp. 1510-1521, 2020.

	1. Introduction
	2. Literature Review
	3. Definition and Measurement of Software Complexity
	A. Cyclomatic Complexity
	B. Halstead Metrics
	C. Coupling and Cohesion Metrics
	D. Function Point Analysis

	4. Impact of Software Complexity on Defect Resolution Time
	5. Methods to Mitigate Software Complexity and Improve Defect Resolution Time
	A. Refactoring
	B. Modularization
	C. Design Patterns
	D. Test-Driven Development (TDD)
	E. Continuous Integration and Continuous Delivery (CI/CD)

	6. Case Studies and Empirical Evidence
	7. Conclusion
	References

