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Abstract: The convergence of sequences of real numbers in 

metric spaces is a fundamental concept widely utilized in various 
problem-solving and mathematical development contexts. A 
sequence is said to converge to a real number 𝑥𝑥 if its elements 
approach 𝑥𝑥 as they tend to infinity. In 1951, the concept of 
convergence was extended to include statistical convergence. A 
sequence is termed statistically convergent to a real number 𝑥𝑥 if 
the proportion of its elements approaching 𝑥𝑥 tends to one as the 
elements tend to infinity. Any sequence that converges in the usual 
metric space R is also statistically convergent with the same limit. 
Despite ongoing advancements in convergence theory, necessary 
conditions for the ordinary convergence of sequences in the usual 
metric space R have yet to be established. Consequently, this 
article discusses the relationship between ordinary and statistical 
convergence in the usual metric space R. This research explores 
the interplay among three convergence concepts, aiming to 
introduce a novel approach for determining whether a sequence 
converges. One of the theorems found is that if a sequence is 
convergent, it is also statistically convergent; however, the 
converse does not hold. A statistically convergent sequence will be 
convergent if it is monotone. 
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1. Introduction 
A sequence of real numbers is said to converge to a real 

number 𝑥𝑥 if the sequence approaches 𝑥𝑥 as its elements tend to 
infinity [1]. This concept of convergence has continued to 
evolve. One of the developments in the study of sequence 
convergence is the concept of statistical convergence of 
sequences of real numbers. The concept of statistical 
convergence was first discussed by Zygmund in 1935 and was 
later formally introduced by Fast [2]. Unlike convergent 
sequences, a statistically convergent sequence to a real number 
𝑥𝑥 does not require all its elements to approach 𝑥𝑥; rather, the 
proportion of elements that approach 𝑥𝑥 must tend to one as the 
elements tend to infinity [3]. Numerous studies have been 
conducted to further explore the development of statistical 
convergence. The concept of statistical convergence in G-
metric spaces has also been introduced by previous researchers 
([6]-[10]). However, these studies have not detailed the 
relationship between ordinary convergence and statistical 
convergence, particularly within the usual metric space ℝ. 

2. Literature Survey 

A. Metric Spaces 
Definition 2.1. [8] A metric space is a pair (𝑋𝑋,𝑑𝑑) where 𝑋𝑋 is a 
non-empty set and 𝑑𝑑 is a function defined on 𝑋𝑋 𝑥𝑥 𝑋𝑋 such that 
for every 𝑎𝑎,𝑏𝑏, 𝑐𝑐 ∈ 𝑋𝑋 satisfies the following axiom 

1. 𝑑𝑑(𝑎𝑎, 𝑏𝑏) ≥ 0 
2. 𝑑𝑑(𝑎𝑎, 𝑏𝑏) = 0 if and only if 𝑎𝑎 = 𝑏𝑏 
3. 𝑑𝑑(𝑎𝑎, 𝑏𝑏) = 𝑑𝑑(𝑏𝑏,𝑎𝑎) 
4. 𝑑𝑑(𝑎𝑎, 𝑐𝑐) ≤ 𝑑𝑑(𝑎𝑎, 𝑏𝑏) + 𝑑𝑑(𝑏𝑏, 𝑐𝑐) 

Throughout this article, the metric space used is the usual metric 
space (ℝ,𝑑𝑑), where for every 𝑥𝑥,𝑦𝑦 ∈ ℝ the distance 𝑑𝑑 is defined 
as 𝑑𝑑(𝑥𝑥,𝑦𝑦) = |𝑥𝑥 − 𝑦𝑦|. 

B. Convergences 
Definition 2.2. [9] A real number 𝑎𝑎 is called the limit of a 
sequence 𝐴𝐴 = (𝑎𝑎𝑛𝑛) if for every real number 𝜀𝜀 >  0, there exists 
a natural number 𝑗𝑗 = 𝑗𝑗(𝜖𝜖) such that for every natural number 
𝑛𝑛 ≥ 𝑗𝑗 the inequality |𝑎𝑎𝑛𝑛 − 𝑎𝑎| < 𝜀𝜀 holds. This is denoted as 

𝑙𝑙𝑙𝑙𝑙𝑙𝐴𝐴 = 𝑙𝑙𝑙𝑙𝑙𝑙
𝑛𝑛→∞

(𝑎𝑎𝑛𝑛) = 𝑙𝑙𝑙𝑙𝑙𝑙(𝑎𝑎𝑛𝑛) = 𝑎𝑎 

    A sequence is said to be convergent if it has a limit. If a 
sequence does not have a limit, then it is not a convergent 
sequence. 
 
Theorem 2.1. [9] (Uniqueness of the Limit) A convergent 
sequence of real numbers has at most one limit. 
 
Definition 2.3. [11] A sequence of real numbers 𝑋𝑋 = (𝑥𝑥𝑛𝑛) is 
called a Cauchy sequence if for every real number 𝜖𝜖 >  0 there 
exists a natural number ℎ = ℎ(𝜖𝜖) such that for all natural 
numbers 𝑛𝑛,𝑙𝑙 with 𝑛𝑛,𝑙𝑙 ≥ ℎ then  

|𝑥𝑥𝑛𝑛 −  𝑥𝑥𝑚𝑚| <  𝜖𝜖 
Theorem 2.2. [9] Given a sequence of real numbers 𝑋𝑋 = (𝑥𝑥𝑛𝑛). 
If the sequence (𝑥𝑥𝑛𝑛) converges, then (𝑥𝑥𝑛𝑛) is a Cauchy 
sequence. 

C. Statistical Convergences 
To discuss the definition of statistical convergence, the concept 
of the cardinality of a set must first be understood. The number 
of elements in a set 𝐴𝐴 s called the cardinality of set 𝐴𝐴 and is 
denoted by |𝐴𝐴|or 𝑛𝑛(𝐴𝐴). 
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Definition 2.4. [12] Given  𝐾𝐾 ⊂ ℕ. the Natural Density or 
Asymptotic Density of 𝐾𝐾 is defined as follows: 

𝛿𝛿(𝐾𝐾) = lim
𝑛𝑛→∞

�
1
𝑛𝑛

|{𝑘𝑘 ∈ 𝐾𝐾: 𝑘𝑘 ≤ 𝑛𝑛}|� 
where |{𝑘𝑘 ∈ 𝐾𝐾: 𝑘𝑘 ≤ 𝑛𝑛}| denotes the cardinality of the set {𝑘𝑘 ∈
𝐾𝐾: 𝑘𝑘 ≤ 𝑛𝑛}. 
 
Definition 2.5. [13] A sequence of real numbers 𝑋𝑋 = (𝑥𝑥𝑛𝑛) is 
said to be statistically convergent to a real number L if for every 
real number 𝜀𝜀 > 0, the following holds:  

lim
𝑛𝑛→∞

�
1
𝑛𝑛

|{𝑘𝑘 ≤ 𝑛𝑛: |𝑥𝑥𝑘𝑘 − 𝐿𝐿| ≥ 𝜀𝜀}|� = 0 
and is denoted as 

𝑠𝑠𝑠𝑠 − lim(𝑥𝑥𝑛𝑛) = 𝐿𝐿. 
 
Theorem 2.3. [14] Given a sequence of real numbers (𝑥𝑥𝑛𝑛). If 
𝑠𝑠𝑠𝑠 − 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥𝑛𝑛) = 𝑥𝑥 and 𝑠𝑠𝑠𝑠 − 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥𝑛𝑛) = 𝑦𝑦 then 𝑥𝑥 = 𝑦𝑦.  
 
Definition 2.6. [15] A sequence 𝑋𝑋 = (𝑥𝑥𝑛𝑛) is said to be a 
statistically Cauchy sequence if for every real number 𝜀𝜀 > 0, 
there exists a natural number 𝑁𝑁 such that 

lim
𝑛𝑛→∞

�
1
𝑛𝑛

|{𝑘𝑘 ≤ 𝑛𝑛: |𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑁𝑁| ≥ 𝜀𝜀}|� = 0 

3. Main Result 
Several properties related to statistical convergence are 
encapsulated in the following theorem. 
 
Theorem 3.1. If a sequence converges to 𝑥𝑥, hen it converges 
statistically to 𝑥𝑥. 
Proof. Given a sequence (𝑥𝑥𝑛𝑛) that converges to 𝑥𝑥. This means 
that for every real number 𝜀𝜀 > 0 there exists 𝑗𝑗 ∈ ℕ such that for 
every natural number k ≥ 𝑗𝑗 then |𝑥𝑥k − 𝑥𝑥| < 𝜀𝜀. Let us form a set 
𝐴𝐴𝑗𝑗 as follows: 

𝐴𝐴(𝑗𝑗) = {k ∈ 𝐍𝐍: k ≥ 𝑗𝑗, |𝑥𝑥k − 𝑥𝑥| < 𝜀𝜀} 
It is clear that  

|𝐴𝐴(𝑗𝑗)| = ∞ 
Since there exists 𝑗𝑗 ∈ ℕ such that for every 𝑘𝑘 ≥ 𝑗𝑗 berlaku |𝑥𝑥𝑘𝑘 −
𝑥𝑥| < 𝜀𝜀 then the number of 𝑘𝑘 ∈ ℕ for which |𝑥𝑥𝑛𝑛0 − 𝑥𝑥| ≥ 𝜀𝜀 is at 
most 𝑗𝑗 − 1. Therefore, we have: 

lim
𝑛𝑛→∞

�
1
𝑛𝑛

|{𝑘𝑘 ≤ 𝑛𝑛: |𝑥𝑥k − 𝑥𝑥| ≥ 𝜀𝜀}|� < lim
𝑛𝑛→∞

�
𝑗𝑗
𝑛𝑛
� = 0. 

Thus, it is proven that (𝑥𝑥𝑛𝑛) converges statistically to 𝑥𝑥.  
 
The converse of the above theorem does not hold because not 
all statistically convergent sequences are convergent. Below, 
we provide an example of a statistically convergent sequence 
that is not convergent.  
 
Example 3.1. Given a sequence of real numbers (𝑥𝑥𝑛𝑛) with 

𝑥𝑥𝑛𝑛 = �1, 𝑛𝑛 = 𝑘𝑘2, 𝑘𝑘 = 1,2,3,⋯
0, lainnya  

To prove that this sequence converges statistically, the proof 
will be divided into two cases. 
Given any real number 𝜀𝜀 > 0   

Case 1, for  𝜀𝜀 > 1.  

When 𝜀𝜀 > 1, then |{𝑘𝑘 ∈ ℕ: |𝑥𝑥𝑘𝑘 − 0| ≥ 𝜀𝜀}| = 0, because for 
every 𝑘𝑘 ∈ 𝑁𝑁, |𝑥𝑥𝑘𝑘 − 0| < 𝜀𝜀. Thus, it is clear that 

lim
𝑛𝑛→∞

�
1
𝑛𝑛

|{𝑘𝑘 ≤ 𝑛𝑛: |𝑥𝑥𝑘𝑘 − 0| ≥ 𝜀𝜀}|� = lim
𝑛𝑛→∞

�
1
𝑛𝑛

|⌀|�

= lim
𝑛𝑛→∞

�
0
𝑛𝑛
�

= 0

 

Case 2, for  0 < 𝜀𝜀 ≤ 1.  
When 𝜀𝜀 ≤ 1, then {𝑘𝑘 ∈ ℕ: |𝑥𝑥𝑘𝑘 − 0| ≥ 𝜀𝜀} = {1,4,9,16,25, . . . }. 
Thus, 

lim
𝑛𝑛→∞

�
1
𝑛𝑛

|{𝑘𝑘 ≤ 𝑛𝑛: |𝑥𝑥𝑘𝑘 − 0| ≥ 𝜀𝜀}|� = lim
𝑛𝑛→∞

�
1
𝑛𝑛

|{1,4,9,16, , … }|�

= lim
𝑛𝑛→∞

�
�√𝑛𝑛)�
𝑛𝑛

�

≤ lim
𝑛𝑛→∞

�
1
√𝑛𝑛

�

= 0

 

Thus, it is demonstrated that the sequence (𝑥𝑥𝑛𝑛) converges 
statistically to 0. 
To prove that the sequence does not converge, consider the 
following. From the given formulas, we have two subsequences 
of (𝑥𝑥𝑛𝑛), 𝑋𝑋 =  (𝑥𝑥𝑛𝑛 = 1) and 𝑌𝑌 =  (𝑦𝑦𝑛𝑛 = 0) with lim

⬚
𝑋𝑋 = 1 ≠

0 = lim
⬚
𝑌𝑌. 

 
Several conditions for a statistically convergent sequence to 
also be convergent are outlined in the following theorems. 
 
Theorem 3.2. Given a sequence (𝑥𝑥𝑛𝑛) statistically converging 
to 𝑥𝑥. If for every real number 𝜀𝜀 > 0, |𝐴𝐴𝜀𝜀| = |{𝑘𝑘 ∈ ℕ: |𝑥𝑥𝑘𝑘 −
𝑥𝑥| ≥ 𝜀𝜀}| < ∞, then the sequence converges to 𝑥𝑥. 
Proof. Consider any real number 𝜀𝜀 > 0. Since the sequence 
(𝑥𝑥𝑛𝑛) statistically converges to 𝑥𝑥, it follows that for 𝜀𝜀 > 0, then 

lim
𝑛𝑛→∞

�
1
𝑛𝑛

|𝑘𝑘 ≤ 𝑛𝑛: |𝑥𝑥𝑘𝑘 − 𝑥𝑥| ≥ 𝜀𝜀|� = 0. 
Given that 

|𝐴𝐴𝜀𝜀| = |{𝑘𝑘 ∈ ℕ: |𝑥𝑥𝑘𝑘 − 𝑥𝑥| ≥ 𝜀𝜀}| < ∞. 
Then for every 𝜀𝜀 > 0 there exists 𝑁𝑁(𝜀𝜀)  ∈ ℕ  such that for all 
natural numbers 𝑙𝑙 ≥ 𝑁𝑁(𝜀𝜀) then |𝑥𝑥𝑖𝑖 − 𝑥𝑥| < 𝜖𝜖. Hence, it is 
proven that the sequence (𝑥𝑥𝑛𝑛) converges to 𝑥𝑥. 
 
Example 3.2. The sequence (𝑥𝑥𝑛𝑛) = ((−1)𝑛𝑛

𝑛𝑛
) converges to 0. 

Proof: Consider any real number 𝜀𝜀 > 0. Let 𝑘𝑘 be the largest 
natural number such that 𝑘𝑘 ≤  1

𝜀𝜀
, then 

lim
𝑛𝑛→∞

�
1
𝑛𝑛

|{𝑘𝑘 ≤ 𝑛𝑛: |𝑥𝑥𝑘𝑘 − 0| ≥ 𝜀𝜀}|� = lim
𝑛𝑛→∞

�
1
𝑛𝑛

|{1,2,3, . . k}|�

= lim
𝑛𝑛→∞

�
𝑘𝑘
𝑛𝑛
�

= k lim
𝑛𝑛→∞

�
1
𝑛𝑛
�

= 0

 

Therefore, (𝑥𝑥𝑛𝑛) converges statistically to 0.  
Because  

|𝐴𝐴𝜖𝜖| =  |{𝑘𝑘 ≤ 𝑛𝑛: |𝑥𝑥𝑘𝑘 − 0| ≥ 𝜀𝜀}| =  |{1,2,3, . . k}| = k < ∞ 
according to Theorem 3.2, the sequence (𝑥𝑥𝑛𝑛) converges to 0. 
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Theorem 3.3. A sequence (𝑥𝑥𝑛𝑛) that converges statistically to 𝑥𝑥 
will converge to 𝑥𝑥 if and only if the sequence is monotonic. 
Furthermore: 

(i) If 𝑋𝑋 = (𝑥𝑥𝑛𝑛) is a monotonically increasing sequence 
and converges statistically to 𝑥𝑥, then 

𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥𝑛𝑛) = 𝑥𝑥 ≥ 𝑥𝑥𝑘𝑘 for every 𝑘𝑘 ∈ ℕ 
 

(ii) If 𝑋𝑋 = (𝑥𝑥𝑛𝑛) is a monotonically decreasing sequence 
and converges statistically to 𝑥𝑥, then 

𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥𝑛𝑛) = 𝑥𝑥 ≤ 𝑥𝑥𝑘𝑘 for every 𝑘𝑘 ∈ ℕ 
Proof. Since every convergent sequence always converges 
statistically, it remains to prove that the sequence (𝑥𝑥𝑛𝑛) 
converges.   
Let 𝜀𝜀 > 0 be any real number. Since the sequence (𝑥𝑥𝑛𝑛) 
converges statistically to 𝑥𝑥, it holds for the real number 𝜀𝜀 > 0 
that 

lim
𝑛𝑛→∞

�1
𝑛𝑛

|𝑘𝑘 ≤ 𝑛𝑛: |𝑥𝑥𝑘𝑘 − 𝑥𝑥| ≥ 𝜀𝜀|� = 0. 
(i) For the case of a monotonically increasing sequence (𝑥𝑥𝑛𝑛): 

Since (𝑥𝑥𝑛𝑛) is monotonically increasing, we have 𝑥𝑥1 ≤ 𝑥𝑥2 ≤
⋯ ≤ 𝑥𝑥𝑛𝑛 ≤ 𝑥𝑥𝑛𝑛+1 ≤ ⋯ .  
Jika |𝑥𝑥𝑘𝑘 − 𝑥𝑥| ≥ 𝜀𝜀 for some 𝑘𝑘 ∈ ℕ,  then for every 𝑙𝑙 < 𝑘𝑘, 
|𝑥𝑥𝑖𝑖 − 𝑥𝑥| ≥ 𝜀𝜀, because  

lim𝑛𝑛→∞(
1
𝑛𝑛

|{𝑘𝑘 ≤ 𝑛𝑛: |𝑥𝑥𝑘𝑘 − 𝑥𝑥| ≥ 𝜀𝜀}|) = 0, 

This means for the real number 𝜀𝜀 > 0, there exists 𝑁𝑁 = 𝑘𝑘 +
1 ∈ ℕ such that for every 𝑗𝑗 ∈ ℕ, 𝑗𝑗 ≥ N then |𝑥𝑥𝑗𝑗 − 𝑥𝑥| < 𝜀𝜀 
and lim(𝑥𝑥𝑛𝑛) = 𝑥𝑥 ≥ 𝑥𝑥𝑘𝑘 for every 𝑘𝑘 ∈ ℕ. 

(ii) For the case of a monotonically decreasing sequence (𝑥𝑥𝑛𝑛) : 
A monotonically decreasing sequence (𝑥𝑥𝑛𝑛) means 𝑥𝑥1 ≥
𝑥𝑥2 ≥ ⋯ ≥ 𝑥𝑥𝑛𝑛 ≥ 𝑥𝑥𝑛𝑛+1 ≥ ⋯ .  
Jika |𝑥𝑥𝑘𝑘 − 𝑥𝑥| ≥ 𝜀𝜀 for some 𝑘𝑘 ∈ ℕ, then for every 𝑙𝑙 > 𝑘𝑘, 
|𝑥𝑥𝑖𝑖 − 𝑥𝑥| ≥ 𝜀𝜀 because  

lim𝑛𝑛→∞(1
𝑛𝑛

|{𝑘𝑘 ≤ 𝑛𝑛: |𝑥𝑥𝑘𝑘 − 𝑥𝑥| ≥ 𝜖𝜖}|) = 0. 
This implies that for the real number 𝜀𝜀 > 0, there exists 
𝑀𝑀 ∈ ℕ such that for every 𝑗𝑗 ∈ ℕ with 𝑗𝑗 ≥ 𝑀𝑀 then |𝑥𝑥𝑗𝑗 − 𝑥𝑥| <
𝜀𝜀 and lim(𝑥𝑥𝑛𝑛) = 𝑥𝑥 ≤ 𝑥𝑥𝑘𝑘 for every 𝑘𝑘 ∈ ℕ. 

        

Example 3.3. The sequence (𝑥𝑥𝑛𝑛) = �4
5

, 5
5

, 5,5
5

, 5,75
5

, … � is an 

convergent sequence to 3
2
. 

Proof: Clearly, the sequence (𝑥𝑥𝑛𝑛) is monotonically increasing 
because 𝑥𝑥𝑛𝑛+1 > 𝑥𝑥𝑛𝑛. Next, it will be proven that (𝑥𝑥𝑛𝑛) converges 
statistically to 3

2
. Let 𝜀𝜀 > 0 be arbitrary. The proof is divided 

into two cases: 
If 𝜀𝜀 > 1

2
, then |{𝑘𝑘 ∈ ℕ: |𝑥𝑥𝑘𝑘 −

3
2

| ≥ 𝜀𝜀}| = 0, because for every 

𝑘𝑘 ∈ ℕ, |𝑥𝑥𝑘𝑘 −
3
2

| < 𝜀𝜀. Thus, 

lim
𝑛𝑛→∞

�
1
𝑛𝑛
��𝑘𝑘 ≤ 𝑛𝑛: �𝑥𝑥𝑘𝑘 −

3
2
� ≥ 𝜀𝜀��� = lim

𝑛𝑛→∞
�

1
𝑛𝑛

|⌀|�

= lim
𝑛𝑛→∞

�
0
𝑛𝑛
� = 0.

 

If 0 < 𝜀𝜀 ≤ 1
2
, then 

lim
𝑛𝑛→∞

1
𝑛𝑛

(|{𝑘𝑘 ≤ 𝑛𝑛: |𝑥𝑥𝑘𝑘 − 0| ≥ 𝜀𝜀}|) ≤ lim
𝑛𝑛→∞

�
� 1

2𝜀𝜀�
𝑛𝑛

�

=
1

2𝜀𝜀
lim
𝑛𝑛→∞

�
1
𝑛𝑛
�

=
1

2𝜀𝜀
. 0 = 0

 

Thus, it is proven that (𝑥𝑥𝑛𝑛) converges statistically to 3
2
.  

Since (𝑥𝑥𝑛𝑛) is monotonic and statistically converges to 3
2
, by 

Theorem 3.3, (𝑥𝑥𝑛𝑛) converges to 3
2
. 

 
Theorem 3.4. If (𝑥𝑥𝑛𝑛) converges statistically, then (𝑥𝑥𝑛𝑛) is a 
statistically Cauchy sequence. 
Proof.  Let 𝜀𝜀 > 0 be arbitrary. Suppose st − 𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥𝑛𝑛) = 𝑥𝑥. 
Since 𝜖𝜖 is a real number and 𝜀𝜀 > 0, then 𝜀𝜀

2
 is also a real number 

and 𝜀𝜀
2

 > 0. Hence, the set 𝐴𝐴𝜀𝜀 = {𝑛𝑛 ∈ ℕ: |𝑥𝑥𝑛𝑛 − 𝑥𝑥| ≥ 𝜀𝜀
2
 } has an 

asymptotic density of 0 and 𝐵𝐵𝜀𝜀  = {𝑛𝑛 ∈ ℕ: |𝑥𝑥𝑛𝑛 − 𝑥𝑥| < 𝜀𝜀
2
 } has an 

asymptotic density of 1. If we choose 𝑙𝑙 ∈ ℕ such that 
|𝑥𝑥𝑚𝑚 − 𝑥𝑥| < 𝜀𝜀

2
 , then 
|𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑚𝑚| = |𝑥𝑥𝑛𝑛 − 𝑥𝑥 + 𝑥𝑥 − 𝑥𝑥𝑚𝑚|

≤ |𝑥𝑥𝑛𝑛 − 𝑥𝑥| + |𝑥𝑥𝑚𝑚 − 𝑥𝑥|

<
𝜀𝜀
2

+
𝜀𝜀
2

= 𝜀𝜀.
 

Therefore, the set {𝑛𝑛 ∈ ℕ: |𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑚𝑚| < 𝜀𝜀} has an asymptotic 
density of 1, or equivalently, {𝑛𝑛 ∈ ℕ: |𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑚𝑚| ≥ 𝜀𝜀} has an 
asymptotic density of 0, which means (𝑥𝑥𝑛𝑛) is a statistically 
Cauchy sequence. 
 
Corollary  3.2. If the sequence (𝑥𝑥𝑛𝑛) is a Cauchy sequence, then 
(𝑥𝑥𝑛𝑛) is statistically Cauchy. 
 
Theorem 3.5.  If (𝑥𝑥𝑛𝑛) statistically converges to 𝐿𝐿, then there 
exists 𝐴𝐴 ⊂ ℕ with 𝛿𝛿(𝐴𝐴)  = 1, such that the subsequence (𝑥𝑥𝑚𝑚)  
of (𝑥𝑥𝑛𝑛) where 𝑙𝑙 ∈  𝐴𝐴 converges to 𝐿𝐿. 
Proof. Let 𝜀𝜀 >  0 be any real number. Since (xn) statistically 
converges to 𝐿𝐿, for this 𝜀𝜀, we have 

lim
𝑛𝑛 → ∞

�
1
𝑛𝑛

|{𝑘𝑘  ≤  𝑛𝑛 :  |𝑦𝑦𝑘𝑘  −  𝐿𝐿|  ≥  𝜀𝜀 }|�   =  0 
Choosing 𝐴𝐴 = {𝑛𝑛 ∈ ℕ: |𝑥𝑥𝑛𝑛 − 𝐿𝐿| < 𝜀𝜀}, it is evident that 𝛿𝛿(𝐴𝐴)  =
1. Therefore, if we select the subsequence (𝑥𝑥𝑚𝑚) of (xn) with 
𝑙𝑙 ∈ A it follows that |𝑥𝑥𝑚𝑚 − 𝐿𝐿| < 𝜀𝜀, or in other words, (𝑥𝑥𝑚𝑚) 
converges to 𝐿𝐿. 

4. Conclusion 
By examining the concepts and properties of ordinary 

convergence and statistical convergence in the usual metric, 
several conditions were identified under which a statistically 
convergent sequence in the usual metric is also an convergent 
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sequence. Since this article focuses solely on convergence and 
statistical convergence in the usual metric space ℝ, there is an 
opportunity to conduct research in broader metric spaces, such 
as G-metric spaces, and on more general sequences, such as 
sequences of complex numbers or function sequences. 
Additionally, other types of convergence could be explored to 
determine if there are relationships that could provide new 
approaches for identifying whether a sequence converges. 
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