
International Journal of Research in Engineering, Science and Management
Volume 7, Issue 5, May 2024
https://www.ijresm.com | ISSN (Online): 2581-5792

*Corresponding author: manjunathchoudri297@gmail.com

116

Abstract: Face recognition attendance systems have gained

significant attention due to their ability to automate attendance
tracking while ensuring accuracy and security. This abstract
presents a face recognition attendance system developed using
Python Flask Framework and various libraries including OpenCV
and face_recognition. The system consists of modules for student
and faculty authentication, registration, attendance marking,
viewing, exporting, and statistical analysis. For students, the
system provides a secure login interface and allows registration
with unique identifiers. Students can view their attendance
records and logout securely. Faculty members have access to a
dashboard where they can mark attendance by uploading images,
view attendance records, and export them for further analysis.
The system also provides statistical insights into attendance
patterns.

Keywords: face recognition, face detection, attendance,
OpenCV, image processing.

1. Introduction
In today's technologically advanced world, there is

widespread usage of digital devices, including smartphones and
other computing devices. These devices have become an
integral part of our daily lives, offering various functionalities
such as communication, organization, and entertainment. The
system should be capable of accurately identifying individuals
and recording their attendance based on predefined criteria. It
should display the attendance status in real-time, providing
instant feedback to users.

Additionally, the system should have the ability to generate
detailed attendance reports, including timestamps and
attendance records of individuals. It should also offer features
such as notification alerts for late arrivals or absences.

This system aims to streamline the attendance management
process for various organizations, eliminating the need for
manual attendance tracking methods. The attendance data
generated by this system will serve as a reliable and efficient
means of monitoring attendance patterns and enhancing
organizational efficiency. This system represents a paradigm
shift in the way attendance is managed, offering a seamless and
secure alternative to conventional methods. The Face
Recognition Attendance System leverages the capabilities of
advanced computer vision and machine learning technologies
to automate the process of attendance tracking. Unlike
traditional methods that rely on manual data entry, cards, or
biometric scans, FRAS identifies and records attendance

through the analysis of facial features unique to each individual.
This contactless and non- intrusive approach not only enhances
security but also provides a more convenient and user-friendly
experience.

2. Related Work
In [1], NFC (Near Field Communication) Technology with a

camera incorporated in a mobile device," according to a study
publication, NFC technology and a mobile application are used
to improve the attendance system. At the time of enrolment in
the faculty, each student is issued an NFC tag with a unique ID,
according to the research article. The travelling instructor will
then take attendance at each lesson by touching or distributing
these tags. The integrated camera will then take a picture of the
student's face before sending all of the data to the college server
for verification. The benefits of this technology include the ease
of use of NFC and the fast connection speed. It greatly
facilitates the process of being in the present moment. However,
if the NFC tag was not tagged by the user, the system would not
be able to identify infringement automatically. Aside from that,
the usage of a mobile app was necessary since the NFC student
was interrupting the teacher. Would it be a support system to
record everyone present if a pastor failed to bring his mobile
phone to work? Furthermore, because of a confidential topic,
most professors would not want their iPhones to be used in this
manner. As a result, instead of the NFC marker, unique student
information such as biometrics or face recognition, guanine to
the student should be employed. This ensures that a specific
student will be the first to take attendance. Whereas [2] involves
taking images of the employee using a camera in order to
capture their faces and visions. When the result is located on the
face website, the taken image is compared individually with the
face mask to display the employee's face, where presence is
noted. The key benefit of this method is that the presence is
recorded on a highly secure server that no one else can access.
Furthermore, the face detection algorithm in this suggested
system is built employing a skin-splitting approach to improve
the accuracy of the detection process. Despite ongoing efforts
to improve the accuracy of the face detection algorithm, the
system remains unaffected at this time.

This system [3] has been implemented with the help of three
basic steps: A. detect and extract face image and save the face
information in an xml file for future references. B. Learn and
train the face image and calculate eigen value and eigen vector

Face Recognition Attendance System
Anuj Golasangi1, Manjunath Choudri2*, Pragati Bulla3, Vinutana Devaraddi4, P. K. Deshpande5

1,2,3,4Student, Department of Information Science and Engineering, Basaveshwar Engineering College, Bagalkote, India
5Professor, Department of Information Science and Engineering, Basaveshwar Engineering College, Bagalkote, India

Golasangi et al. International Journal of Research in Engineering, Science and Management, VOL. 7, NO. 5, MAY 2024 117

of that image. C. Recognise and match face images with
existing face images information stored in xml file. At first,
openCAM_CB() is called to open the camera for image capture.
Next the frontal face [2] is extracted from the video frame by
calling the function ExtractFace(). The ExtractFace() function
uses the OpenCv HaarCascade method to load the haarcascade_
frontalface_alt_tree.xml as the classifier. The classifier outputs
a "1" if the region is likely to show the object (i.e., face), and
"0" otherwise. The classifier is designed [4] such a manner that
it can be easily "resized" in order to be able to find the objects
of interest at different sizes, which is more efficient than
resizing the image itself. So, to find an object of an unknown
size in the image the scan procedure is done several times at
different scales. After the face is detected it is clipped into a
gray scale image of 50x50 pixels. An image in which each pixel
contains the average value for that pixel across all face images
in the training set. The dataset is centred by subtracting the
average face's pixel values from each training image. It happens
inside cvCalcEigenObjects(),.Recognize() function, which
implements the recognition phase of the Eigenface program [5].
It has just three steps. Two of them loading the face images and
projecting them onto the subspace are already familiar. The call
to loadFaceImgArray() loads the face images, listed in the
train.txt, into the faceImgArr and stores the ground truth for
person ID number in personNumTruthMat. Here, the number
of face images is stored in the local variable, n TestFaces.

Another system [7] where it involves the steps. The first step
of the face recognition process is face detection. Face detection
presents the well-studied field in the computer vision domain.
As a result of decades of research, nowadays there are
numerous machine learning algorithms applicable for this task.
In recent years, CNNs achieved advanced results in image
classification and object detection. Due to its runtime
performance, for this step, a state-of-the art CNN cascade is
used for a face detection task, introduced by Haoxiang Li et al
in [8]. The cascade consists of 6 CNNs, 3 CNNs for binary
classification (face and non-face) and 3 CNNs for bounding box
calibration. The final step of developing the face recognition
model for tracking employees' attendance consists of training
the classifier based on the previously generated embedding
from employees' dataset by the deep CNN. Due to the fact that
this system is based on smaller dataset, linear Support Vector
Machine (SVM) was applied for this classification task.

3. Proposed Work
The proposed system for face recognition attendance marks

a departure from traditional physical attendance tracking
methods by leveraging the power of image uploading and facial
recognition technology. In this system, rather than relying on
dedicated cameras at entry points, individuals can upload their
images through a designated platform or application. These
images are then processed using sophisticated facial recognition
algorithms that analyze facial features to identify individuals
accurately. Once the system successfully recognizes a person's
face, it automatically marks their attendance, eliminating the
need for manual entry or physical presence at a specific
location.

A. System Design
1) Architecture

Face Recognition Module: This is the core component
responsible for detecting and recognizing faces in images or
video streams. It employs algorithms such as deep learning-
based convolutional neural networks (CNNs) to extract facial
features and match them against known identities.

Database: The database stores information about registered
users, including their biometric data (such as facial templates)
and associated metadata (e.g., user ID, name, role). It also
maintains attendance records, storing timestamps and user
identifiers for each attendance event.

User Interface: The user interface provides an interface for
users, administrators, faculty, and other stakeholders to interact
with the system.

Fig. 1. Architecture

Fig. 2. Class diagram

• User: Initiates the attendance process by presenting their

face to the system.
• Admin: Manages system settings, user accounts, and access

privileges.
• Student: Represents individuals whose attendance is being

recorded.
• Faculty: Responsible for overseeing attendance and

accessing attendance records.
• Database: Stores information about registered users,

attendance records, and system configurations.

Golasangi et al. International Journal of Research in Engineering, Science and Management, VOL. 7, NO. 5, MAY 2024 118

Fig. 3. Sequence diagram

Fig. 4. Use case diagram

Use cases:
Upload Image: Users uploads the images of individuals

which is stored in the local drive of the system. This step is
crucial for enrolling new students or updating existing records.

Start System: The system is initiated, either manually by an
administrator or automatically at scheduled intervals, to begin
processing attendance tasks.

Register New Students: Administrators or authorized users
input relevant information for new students, such as name,
student ID, and any other required details, into the system. The
captured images are associated with these records for future
recognition.

Train Images: The system processes the captured images to
extract facial features and trains its recognition algorithms. This
step is essential for improving accuracy in identifying
individuals during the recognition process. Face Recognition:
When individuals arrive, the system compares their faces with
the enrolled images in its database to find matches. If a match
is found, the system retrieves the associated student
information.

B. Methodology
Flask handles user requests based on URLs. Separate routes

are defined for student and faculty login, registration,
dashboards, and functionalities like viewing attendance or
uploading attendance images. HTML templates are used to
render user interfaces for forms, data displays, and informative
messages.

A connection is established to the MySQL database using the
MySQL Connector/Python library.Separate tables store student
information, faculty information, and attendance records.The
application interacts with the database using queries.

The faculty member initiates the attendance marking process
by uploading an image containing students. This image could
be captured by a camera or uploaded from a file.

The system uses the face_recognition library to detect faces
within the uploaded image. This detection is performed using
the face_recognition.face_locations() function, which identifies
the bounding boxes around faces in the image.

Once the faces are detected, the system extracts facial
features, or "face encodings", from each detected face using the
face_recognition.face_encodings() function. These face
encodings represent unique numerical representations of facial
features.

The system has pre-trained data consisting of face encodings
and corresponding student identifiers (e.g., USNs).

Using this pre-trained data, the system employs a machine
learning classifier, typically a Support Vector Machine (SVM),
trained with student face encodings and their corresponding
identifiers.

The classifier predicts the identities (USNs) of the students
present in the uploaded image based on the extracted face
encodings. This prediction is made using the predict() function
of the classifier.

Fig. 5. Face recognition

After predicting the identities of students in the image, the

system potentially looks up each predicted USN in the database
to verify the student's enrolment.

If a match is found between the predicted USN and a
student's USN in the database, the system marks the student's
attendance as "Present" for the corresponding class.

The attendance marking process involves updating the
attendance records in the database, typically by adding new
entries indicating the student's presence in the class.The system
may also record additional information such as the date and
time of the attendance marking, the faculty member
responsible, and the subject of the class.

C. Algorithm for Face Recognition
Input: The uploaded image file.
Output: Recognition of faces in the uploaded image.

1. Check if an image file is present in the HTTP request.
2. If an image file is present: Retrieve the image.
3. Check if the filename of the image is not empty.

Golasangi et al. International Journal of Research in Engineering, Science and Management, VOL. 7, NO. 5, MAY 2024 119

4. Save the uploaded image temporarily to a specified
directory.

5. Create a temporary directory named 'temp' if it does
not exist already.

6. Save the uploaded image to the temporary directory.
7. Define the directory containing training images.
8. Loop through each person's directory in the training

directory: List all images of the person.
9. For each image of the person:

• Get the image path
• Load the image file using face_recognition library
• Detect face bounding boxes in the image.
• If exactly one face is detected:
• Encode the face
• Append the encoding and the person's name to

lists
10. Create and train the Support Vector Classifier (SVC)

using the encodings and corresponding name.
11. Load the test image file.
12. Detect face locations in the test image.
13. Encode faces found in the test image.
14. If no faces are found in the test image:

• Flash an error message indicating no face detected
in the uploaded image.

D. Algorithm for storing the recognised faces into the
database
1. Check if the HTTP request method is POST.
2. Retrieve form data:

Retrieve selected semester from the form
(request.form['semester']).
Retrieve selected branch from the form
(request.form['branch']).
Retrieve selected subject from the form
(request.form['subject']).

3. Establish a connection to the database.
4. Create a cursor object to execute SQL queries.
5. Iterate over each predicted USN in predicted_identities:

Query the database for student record based on the predicted
USN (SELECT * FROM students WHERE usn = %s). Fetch
the student record.

6. If a student record is found:
Construct an SQL query to add attendance record.
Execute the query to insert attendance record into the
database (cursor.execute()).
Commit the changes to the database (connection.commit()).

7. Flash a success message indicating successful attendance
upload (flash("Attendance successfully uploaded.",
'success')).

8. Redirect to the attendance upload page (return
redirect(url_for('upload_attendance'))).

9. If an error occurs during the process:
Flash an error message indicating the error (flash(f"An error

occurred during face recognition: {e}", 'error')).
Redirect to the attendance upload page (return

redirect(url_for('upload_attendance'))).
10. Finally, close the database connection (connection.close()).

E. Results and Discussions
The code aims to handle the attendance upload process based

on the predicted identities of students recognized from
uploaded images.

It retrieves form data such as semester, branch, and subject
from the HTTP request.

For each predicted identity (USN) obtained from the face
recognition process, it queries the database to fetch the student
record.

If a student record is found, it adds an attendance record for
that student with details such as datetime, faculty id, subject,
semester, and status ('Present') to the 'attendance' table in the
database.

After successfully adding attendance records for all
recognized students, it flashes a success message indicating the
successful attendance upload. The code appears to handle the
attendance upload process for a single subject and semester. If
the application needs to scale to handle multiple subjects,
semesters, or even multiple faculties, additional functionalities
and database structures may need to be implemented to support
this scalability. Flash messages are used to provide feedback to
users regarding the outcome of the attendance upload process.
This helps in improving the user experience by providing clear
feedback on the success or failure of the operation.

Overall, this project provides a foundation for automating the
attendance upload process based on face recognition and
database integration. Continuous monitoring, testing, and
potential enhancements can further improve its robustness and
effectiveness in real-world usage.

4. Conclusion
This paper presented an overview on face recognition

attendance system.

References
[1] A brief history of Facial Recognition, NEC, New Zealand, 26 May 2020.

[Online]. Available:
https://www.nec.co.nz/market-leadership/publications-media/a-brief-
history-of-facialrecognition/

[2] Face detection, TechTarget Network, Corinne Bernstein, Feb, 2020.
[Online]. Available:
https://searchenterpriseai.techtarget.com/definition/face-detection

[3] Face Detection with Haar Cascade, Towards Data Science, Dec. 24, 2020.
[Online]. Available :
https://towardsdatascience.com/face-detectionwith-haar-cascade-
727f68dafd0

[4] SenthamilSelvi, Chitrakala, Antony Jenitha, “Face Recognition System
Based on Face Recognition,” 2014.

[5] Kawaguchi, “Lecture attendance system with continue monitoring,”
2011.

[6] Smitha, Pavithra S. Hegde, Afshin, “Automatic attendance management
system,” 2018.

[7] N. Kar, “Automated attendance management system using face
recognition,” 2002.

[8] Dhanush Gowda, K Vishal, Keertiraj B, Neha Kumari Dubey, Pooja M.
R, 2020, “Automatic attendance using face recognition by MATLAB.”

[9] Jyotshana Kanti, “Smart attendance marking system,” 2012.
[10] Priyanka Thakare, “Face detection using Eigenface,” 2015.
[11] Sharma S, Karthikeyan Shanmugasundaram, Sathees Kumar Ramasamy,

“CNN Based Efficient Face Recognition Technique using Dlib,” 2016.
[12] Arun Katara et al, “Student attendance using iris recognition system,”

2017.

https://www.nec.co.nz/market-leadership/publications-media/a-brief-history-of-facialrecognition/
https://www.nec.co.nz/market-leadership/publications-media/a-brief-history-of-facialrecognition/
https://searchenterpriseai.techtarget.com/definition/face-detection
https://towardsdatascience.com/face-detectionwith-haar-cascade-727f68dafd0
https://towardsdatascience.com/face-detectionwith-haar-cascade-727f68dafd0

	1. Introduction
	2. Related Work
	3. Proposed Work
	A. System Design
	1) Architecture

	B. Methodology
	C. Algorithm for Face Recognition
	D. Algorithm for storing the recognised faces into the database
	E. Results and Discussions

	4. Conclusion
	References

