International Journal of Research in Engineering, Science and Management 170

Volume 7, Issue 4, April 2024

IURESM https://www.ijresm.com | ISSN (Online): 2581-5792

Software Defect Density Prediction Using Deep
Learning

V. Raaga Varsini', S. Abitha Lakshmi?, Devarshi®, B. Gokul**

! Assistant Professor, Department of Computer Science and Engineering, Velalar College of Engineering and Technology, Erode, India

234Student, Department of Computer Science and Engineering, Velalar College of Engineering and Technology, Erode, India

Abstract: Software defect prediction is the use of various
approaches and procedures to discover and anticipate future flaws
in a software project before they become costly and disruptive
problems. Organizations may use data analysis, machine learning,
and historical defect data to make educated decisions about
resource allocation, software testing methodologies, and,
ultimately, software product quality. Software defect prediction is
the technique of identifying software modules that are likely to
have flaws. The suggested system is intended for software defect
prediction, combining PCA with a software business analysis
model and employing Rank SVM as its primary predictive
modeling approach. It includes data collecting from historical
defects and relevant data sources, preprocessing to clean and
convert the data, feature selection to identify critical indicators,
and training a PCA using a software business analysis model
utilizing Rank SVM. This methodology, once installed, forecasts
the risk of faults in software modules based on their
characteristics. The system's output influences resource allocation
and testing procedures, hence improving software quality and
development efficiency. Continuous monitoring and adjustments
assure continuing correctness, making this an efficient option for
proactive defect control in software development.

Keywords: Defect Density Prediction, Data Sparsity, Machine
Learning.

1. Introduction

A. Defect Density Prediction

In the realm of software development and quality assurance,
the ability to forecast defect density is paramount for ensuring
software product reliability and performance. Defect density,
denoting the quantity of bugs or defects within a software
system relative to specific measurement units like lines of code,
function points, or modules, plays a pivotal role. This predictive
capability empowers software development teams to
proactively identify potential quality issues, optimize resource
allocation, and make informed decisions throughout the
development lifecycle. Software defects span from minor
nuisances to critical vulnerabilities that can trigger system
failures or security breaches. Thus, the skill to anticipate defect
density is indispensable for the efficient management of
software projects and the delivery of top-notch products to end-
users.

*Corresponding author: gokul161002@gmail.com

B. Data Sparsity

In today's data-driven landscape, both organizations and
individuals constantly gather and analyze extensive data to
glean insights, make informed choices, and foster innovation.
Nevertheless, not all data holds the same value, and a key
challenge in data analysis often emerges as data sparsity,
wherein the available data is either incomplete or insufficient
for meaningful analysis or modeling. Data sparsity takes
various forms, including missing values, limited data points, or
imbalanced datasets, and it transcend s diverse domains like
finance, healthcare, natural language processing, and machine
learning. Recognizing and addressing data sparsity is crucial, as
it can significantly affect the quality and dependability of
analytical outcomes.

C. Machine Learning

In the digital era, the exponential growth in data collection
and generation has presented both remarkable opportunities and
challenges. Within this landscape, machine learning, a subset of
artificial intelligence, has emerged as a formidable tool for
leveraging this data to automate tasks, make predictions, and
extract valuable insights. Its transformative impact spans across
diverse industries such as healthcare, finance, transportation,
and entertainment, fundamentally altering our problem-solving
and decision-making approaches. At its core, machine learning
is the science of enabling computers to learn from data and
make informed predictions or decisions without explicit, fixed
programming. Instead, these algorithms continuously adapt and
enhance their performance as they process more data, filling
crucial roles where conventional programming methods fall
short.

2. Literature Review

In their paper, Chakra Tanti thamthavorn [1] et al. address
the critical issue of defect prediction models trained on
imbalanced datasets, where the proportion of defective and
clean modules is uneven. The authors highlight the conflicting
findings in prior research on the impact of class rebalancing
techniques on defect prediction model performance, attributing
these disparities to variations in dataset choices, classification
methods, and performance metrics. To resolve this uncertainty,

Varsini et al.

their study comprehensively investigates the effects of four
widely-used class rebalancing techniques on ten commonly-
applied performance measures and the interpretability of defect
prediction models. By analyzing a diverse set of 101 datasets
from both proprietary and open-source systems, the authors
ultimately recommend the adoption of class rebalancing
techniques when aiming to enhance the identification of
software defects, particularly in terms of Recall, providing
valuable insights for quality assurance teams.

In their paper, Yenny Villuendas Rey [2] et.al. Introduce the
significance of software defect prediction within the realm of
software engineering, emphasizing the key metric of defect
density (DD) as a pivotal measure for assessing software
process effectiveness. They advocate for the adoption of a
transformed k-nearest neighborhood output distance
minimization (TkDM) algorithm as a novel approach for
predicting DD in software projects.

This approach is pitted against established techniques such
as statistical regression, support vector regression, and neural
networks to evaluate its predictive accuracy, marking a notable
contribution to the field of software prediction.

In their system, Lei Qiao [3] et al. address the increasing
complexity of software systems, emphasizing the pressing need
to predict software defects automatically. Such predictions are
essential for optimizing resource allocation among developers.
Despite various existing approaches for defect identification
and rectification, their performance falls short of expectations.
Therefore, their paper introduces an innovative method
harnessing deep learning techniques to forecast the number of
defects in software modules. Their methodology involves
preprocessing a publicly available dataset, which includes log
transformation and data normalization, followed by data
modeling to prepare input for the deep learning model.
Subsequently, the modeled data is fed into a specially designed
deep neural network-based model for defect prediction.
Evaluation on established datasets demonstrates the accuracy
and superiority of their approach, with a substantial reduction
of over 14% in mean square error and an increase of more than
8% in squared correlation coefficient compared to state-of-the-
art methods on average.

In this system, Mr. Suraj Rathaur [4] et al. propose software
quality as a key indicator of a software system's ability to align
with customer requirements. The maintenance of satisfactory
software quality hinges significantly on defect density, a pivotal
factor influenced by the escalating software complexity. This
paper introduces a machine learning-driven model, utilizing the
multiple linear regression technique, to forecast defect density
in forthcoming versions of open-source software (OSS). Data
pertaining to OSS versions has been sourced from the Git
version control system, encompassing software metrics like
source lines of code, developer count, commit frequency, and
code churn, all chosen as predictor variables. Furthermore,
normality tests have been conducted on each variable to affirm
their adherence to a normal distribution.

In their work, Igbal H. Sarker [5] et al. emphasize the pivotal
role of Deep Learning (DL) in the Fourth Industrial Revolution
(4IR or Industry 4.0), highlighting its significance as a core

International Journal of Research in Engineering, Science and Management, VOL. 7, NO. 4, APRIL 2024 171

technology within the domains of machine learning (ML) and
artificial intelligence (Al). DL, stemming from artificial neural
networks (ANN), has garnered immense attention due to its
data-driven learning capabilities, finding extensive applications
across diverse fields such as healthcare, visual recognition, text
analytics, cybersecurity, and more. Nonetheless, constructing
effective DL models poses formidable challenges owing to the
dynamic and variable nature of real-world problems and data.
Additionally, the lack of interpretability often renders DL
methods as black-box solutions, hindering their widespread
adoption. This article offers a structured and comprehensive
overview of DL techniques, featuring a taxonomy
encompassing various real- world tasks including supervised,
unsupervised, and hybrid learning, among others.

3. Existing System

Delivering a reliable and high-quality software system to
clients poses a significant challenge throughout the software
development and evolution process. Defect density serves as a
crucial metric to assess system quality, often required by
practitioners during both development and operational phases
to gauge software reliability. However, predicting defect
density before module testing can be time- consuming,
prompting managers to seek predictive models that can identify
potentially defective modules. This approach aims to reduce
testing costs and optimize resource allocation. A central issue
in software defect datasets is the inherent data sparsity within
defect density, which can introduce bias into predictions. To
address this challenge, we employ deep learning techniques,
which have proven effective in handling sparse data. Our
constructed deep learning model undergoes

4. Proposed System

The suggested system is a sophisticated approach to software
fault prediction that employs PCA and Rank SVM techniques.
It begins with the gathering and preparation of historical
software fault data and pertinent variables. Feature selection
reveals significant predictors of faults. Rank SVM is used to
rank software modules based on their likelihood of harboring
flaws and feature relevance. Simultaneously, PCA generates a
prediction model based on the rankings. The system's
evaluations use defined measures to assure accurate forecasts.
The integrated method directs resource allocation for software
testing, promotes quality, and is intended for ongoing
improvement to meet growing development requirements.

A. Load Data

This module collects and loads Eclipse, Lucene, Mylyn, and
pde datasets from diverse sources to anticipate software defects.
This data usually contains historical information on software
development projects, such as code metrics, defect reports,
developer experience, and other pertinent elements. Loading
data entails extracting, formatting, and arranging information
into a structured dataset ready for analysis. This dataset serves
as the basis for developing prediction algorithms to detect
probable flaws in software code.

Varsini et al.

B. Data Preprocessing

Data preprocessing is a vital component in defect prediction.
It entails preparing raw software development data for analysis.
This process consists of numerous essential activities, including
data cleansing, feature engineering, and normalization. Data
cleaning include removing missing numbers, outliers, and
inconsistencies that may bias the results.

v Data Feat Softwa
prep ure re

Load dataset roce extr defect

ssing actio predic
n tion

model

" ! based

on LR

Perfor

mance

Fig. 1. Block diagram

C. Feature Selection

Feature selection is a vital step in identifying the most
relevant features. This module reduces dimensionality and
improves model performance by identifying important
indications linked to software faults. The selection process can
be guided by a variety of methodologies, including statistical
tests, feature significance ratings from machine learning
models, and domain expertise. Effective feature selection
improves model performance by minimizing noise and
dimensionality.

D. Training and Testing

This lesson covers training a PCA with a software business
analysis model utilizing Rank SVM on pre- processed data.
During the training phase, the model learns about the
correlations between the selected characteristics and the
likelihood of software module errors. The training dataset,
which is usually a subset of the available data, is utilized to train
the model. It offers historical instances of software modules,
together with defect information.

E. Evaluation and Performance

The module measures the model's performance using a
variety of metrics, including Mean Squared Error (MSE), Root
Mean Squared Error (RMSE), R- squared, and others. These
metrics indicate how effectively the model predicts software
faults.

International Journal of Research in Engineering, Science and Management, VOL. 7, NO. 4, APRIL 2024 172

5. Result Analysis

Table 1
Comparison table
Algorithm Accuracy
Existing system 75
Proposed system 81

82

80 —

78 . HEExisting
system

76 O Proposed

74 — system

72 .

accuracy

Fig. 2. Comparison graph

There is a noticeable increase in defect prediction capabilities
when comparing the algorithm accuracy of the proposed system
to the current system. The proposed system exhibits a notable
development with an accuracy rate of 81%, compared to the
previous system's 75% accuracy. The predictive modeling
procedure of the suggested system makes use of advanced
methods PCA with Rank Svm. It includes all the necessary
procedures to proactively detect and handle possible flaws in
software modules, such as data collection, preprocessing,
feature selection, model training, and deployment. The
suggested system's improved accuracy, together with its
ongoing monitoring and improvement processes, highlight how
well it may improve resource allocation, testing methodologies,
and overall software development efficiency to produce
software that is of a higher caliber.

6. Conclusion

To summarize, the suggested software defect prediction
system, which combines PCA with a software business analysis
model utilizing Rank SVM, provides a robust and proactive
approach for improving software quality and resource
allocation efficiency. It accurately forecasts faults using
historical data and complex rating methodologies, allowing
enterprises to invest resources wisely and improve overall
software quality. Continuous monitoring and flexibility keep
the system relevant in the changing world of software
development, providing as a vital tool for effective defect
management and avoidance, resulting in a more dependable and
simplified software development process.

7. Future Work

Future research in this area should focus on improving the
integration of sophisticated machine learning and ranking
algorithms in order to increase fault prediction accuracy.
Exploring real-time data streams for dynamic defect monitoring
and expanding the system to accommodate changing software

Varsini et al.

development processes are also attractive directions. It will be
vital to develop user-friendly interfaces for widespread
adoption, as well as to investigate automation for defect
management and response. Collaboration between researchers
and industry practitioners for benchmarking and standardizing
defect prediction algorithms is critical for advancing the
discipline and facilitating the widespread implementation of
proactive defect management solutions across various software
development ecosystems.

References

Tantithamthavorn, Hassan, and Matsumoto, "Examining the Influence of
Class Rebalancing Techniques on the Performance and Interpretability of
Defect Prediction Models," in IEEE Transactions on Software
Engineering, vol. 46, no. 11, pp. 1200 to 1219, November 2020.
Lopez-Martin, Villuendas-Rey, Azzeh, Bou Nassif, and Banitaan,
"Transformed k-Nearest Neighborhood Output Distance Minimization for
the prediction of defect density in software projects," Journal of Systems
Software, Volume 167, September 2020.

Qiao, Li, Umer, and Guo, "Deep Learning- Based Software Defect
Prediction," in Neurocomputing, April 2020.

International Journal of Research in Engineering, Science and Management, VOL. 7, NO. 4, APRIL 2024

(4]

[10]

173

Rathaur, Kamath, and Ghanekar, “Software defect density prediction
based on multiple linear regression,” in the proceedings of the 2nd
International Conference on Inventive Research in Computer
Applications (ICIRCA), pp. 434 to 439, July 2020.

Sarker, "Deep Learning: A Comprehensive Overview on Techniques,
Taxonomy, Applications, and Research Directions," in journal Social
Networking and Computational Sciences, vol. 2, no. 6, pp. 420,
November 2021.

A. B. Nassif, 1. Shahin, 1. Attili, M. Azzeh and K. Shaalan, "Speech
Recognition Using Deep Neural Networks: A Systematic Review," in
IEEE Access, vol. 7, pp. 19143-19165, 2019.

S. Wang, T. Liu, J. Nam and L. Tan, "Deep Semantic Feature Learning
for Software Defect Prediction," in IEEE Transactions on Software
Engineering, vol. 46, no. 12, pp. 1267-1293, 1 Dec. 2020.

T. Hoang, H. Khanh Dam, Y. Kamei, D. Lo, and N. Ubayashi, "DeepJIT:
An end-to-end deep learning framework for just-in-time defect
prediction," in Proceedings of the 16th International Conference on
Mining Softw. Repositories (MSR), May 2019, pp. 34-45.

D. Chen, X. Chen, H. Li, J. Xie, and Y. Mu, "DeepCPDP: Deep learning
based cross-project defect prediction," IEEE Access, 7 (2019), 184832—
184848.

G. Zhao and J. Huang, "DeepSim: Deep learning code functional
similarity," in the Proceedings of the 26th ACM Joint Meeting Eur. Softw.
Eng. Conf. Symp. Found. Softw. Eng., October 2018, pp. 141-151.

	1. Introduction
	A. Defect Density Prediction
	B. Data Sparsity
	C. Machine Learning

	2. Literature Review
	3. Existing System
	4. Proposed System
	A. Load Data
	B. Data Preprocessing
	C. Feature Selection
	D. Training and Testing
	E. Evaluation and Performance

	5. Result Analysis
	6. Conclusion
	7. Future Work
	References

