International Journal of Research in Engineering, Science and Management 136

Volume 7, Issue 4, April 2024

IURESM https://www.ijresm.com | ISSN (Online): 2581-5792

Step Simple — Guiding the Visually Challenged

Karthik Ganesh'", Advaith Prasad’, Mohammed®, Ashwitha A. Shetty4

123Student, Department of Computer Science and Engineering, A. J. Institute of Engineering and Technology, Mangalore, India

“Assistant Professor, Department of Computer Science and Engineering, A. J. Institute of Engineering and Technology, Mangalore, India

Abstract: This project presents the design and implementation
of a smart blind stick prototype aimed at enhancing the mobility
and safety of visually impaired individuals. The blind stick
integrates an ultrasonic sensor, USB web camera, speakers, to
provide object detection. The prototype leverages a Raspberry pi
controller to efficiently manage the sensor data and interactions.

Keywords: embedded system, raspberry pi, ultrasonic sensor,
YOLO.

1. Introduction

The project introduces a groundbreaking initiative focusing
on the design and implementation of a smart belt prototype
named the Blind Stick. This innovative device is tailored to
augment the mobility and safety of visually impaired
individuals by integrating cutting-edge technologies. At its
core, the Blind Stick utilizes a Raspberry pi microcontroller to
efficiently manage various components, including an ultrasonic
sensor, USB web camera, speakers. The combination of these
elements enables the prototype to offer essential functionalities
such as object detection, alert generation, and location sharing.

The ultrasonic sensor plays a pivotal role in enhancing user
safety by detecting obstacles in the path of the visually impaired
individual.

The Blind Stick prototype takes a significant leap forward by
incorporating computer vision techniques, leveraging the
YOLO (You Only Look Once) framework. Through the use of
a USB web camera connected to a PC, the Blind Stick captures
images, and YOLO identifies detected objects. The user is then
provided with audio alerts through earphones, offering a more
comprehensive understanding of their surroundings.

2. Embedded System Implementation

A. Introduction

An embedded system is one kind of a computer system
mainly designed to perform several tasks like to access, process,
store and also control the data in various electronics-based
systems. Embedded systems are a combination of hardware
and software where software is usually known as firmware that
is embedded into the hardware. One of its most important
characteristics of these systems is, it gives the o/p within the
time limits. Embedded systems support to make the work more
perfect and convenient. So, we frequently use embedded
systems in simple and complex devices too. The applications of

*Corresponding author: karthikganesh0104@gmail.com

embedded systems mainly involve in our real life for several
devices like microwave, calculators, etc.

User interface

s

~
Embedded system

Software Hardware

Inputs Output

Link to other systems

Fig. 1. Overview of embedded system

B. Embedded System Hardware
As with any electronic system, an embedded system requires
a hardware platform on which it performs the operation.
Embedded system hardware is built with a microprocessor or
microcontroller. The embedded system hardware has elements
like input output (I/O) interfaces, user interface, memory and
the display. Usually, an embedded system consists of:
e Power Supply
e Processor
e Memory
e Timers
e Serial communication ports
Embedded systems use different processors for its desired
operation. Some of the processors used are
e Microprocessor
e Microcontroller
e Digital signal processor

C. Embedded System Software

The embedded system software is written to perform a
specific function. It is typically written in a high-level format
and then compiled down to provide code that can be lodged
within a non-volatile memory within the hardware. An
embedded system software is designed to keep in view of the

Ganesh et al.

three limits:
e Availability of system memory
e Availability of processor’s speed
e When the system runs continuously, there is a need to
limit power dissipation for events like stop, run and
wake up.

3. Methodology
A. Flow Diagram

Source code

l

Assembler

l

Linker

l

Locator

l

Processor

l

Executable file

l

Processor

Fig. 2. Flow diagram

The flowchart in Figure above outlines the Flow of burning
source code to processor:

1. Source Code: This is where the process begins. Source
code is the human-readable form of a program written
in a programming language like C, C++, Java, etc.

2. Assembler: The source code is first passed through an
assembler. The assembler converts the source code
into machine code, which is a low-level representation
of the program that can be understood by the
computer's processor. This machine code is often
referred to as object code.

3. Linker: The object code produced by the assembler
may have references to functions or variables that are
defined in other parts of the program or in external

International Journal of Research in Engineering, Science and Management, VOL. 7, NO. 4, APRIL 2024 137

libraries. The linker is responsible for resolving these
references by linking together various object files and
libraries to create a single executable file.

4. Locator: In some systems, after linking, there might
still be unresolved memory addresses or relocation
information in the executable. The locator is a
hypothetical step representing the process of resolving
these addresses and preparing the executable for
loading into memory.

5. Executable File: The output of the linker is an
executable file. This file contains the machine code for
the program, along with any necessary data and
metadata, in a format that the operating system can
understand.

6. Processor: Finally, the executable file is loaded into
memory and executed by the processor. The processor
interprets the instructions in the executable file and
performs the necessary computations to run the
program.

Each step in this process is crucial for converting the human-
readable source code into instructions that the processor can
execute. This diagram illustrates the flow of data and
transformations as the program moves through each stage of
compilation and execution.

4. Conclusion

In conclusion, the development and implementation of the
Blind Stick smart belt prototype represent a significant leap
forward in addressing the challenges faced by visually impaired
individuals in terms of mobility and safety. By integrating
advanced technologies such as ultrasonic sensors, a USB web
camera, speakers, and a switch, the Blind Stick offers a
multifaceted solution to enhance the independence and security
of its users. The ultrasonic sensor plays a crucial role in
detecting obstacles, providing real-time alerts through a buzzer
to warn users of potential collisions. The incorporation of
computer vision techniques, specifically the YOLO framework,
adds an extra layer of functionality to the Blind Stick. By
capturing and analyzing images from a USB web camera, the
prototype can identify objects in the user's surroundings and
convey this information through audio alerts, delivered via
earphones. This not only improves object recognition but also
contributes to a more comprehensive understanding of the
environment. The collective integration of sensors and modules
in the Blind Stick prototype underscores its potential to make a
substantial impact on the lives of visually impaired individuals.
The obstacle detection, emergency alert system, challenges
faced by the visually impaired community. As with any
innovative project, there is room for future enhancements.
Potential areas of improvement include refining the prototype
for increased usability, optimizing the object detection
algorithm for greater accuracy.

References

[1] J. Borenstein and Y. Koren, "Error eliminating rapid ultrasonic firing for
mobile robot obstacle avoidance," IEEE Transactions on Robotics and
Automation, 1985.

Ganesh et al.

(2]

S. Durgadevi, K. Thirupurasundari, C. Komathi, and S. Mithun Balaji,
"Smart machine learning system for blind assistance," in International
Conference on Power, Energy, Control and Transmission Systems, 2020.
Xilin Chen, Jie Yang, Jing Zhang, and Alex Waibel, "Automatic detection
and recognition of signs from natural scenes," IEEE Transactions on
Image Processing, vol. 13, no. 1, January 2004.

Sunit Vaidya, Niti Shah, Naisha Shah, and Prof. Radha Shankarmani,
"Real-time object detection for visually challenged people," in
International Conference on Intelligent Computing and Control Systems
(ICICCS 2020), 2020.

Amit Ghosh, Shamsul Arefeen Al Mahmud, Thajid Ibna Rouf Uday, and
Dewan Md. Farid, "Assistive technology for visually impaired using
TensorFlow object detection in Raspberry Pi," in 2020 IEEE Region 10
Symposium (TENSYMP), 5-7 June 2020.

Megha P. Arakeri, Keerthana N. S., Madhura M., Anusha Sankar, and
Tazeen Munnavar, "Assistive technology for the visually impaired using

International Journal of Research in Engineering, Science and Management, VOL. 7, NO. 4, APRIL 2024

[10]

138

computer vision," in International Conference on Advances in
Computing, Communications and Informatics (ICACCI), 2018.

Sunil Kumar, Dibya Nandan Mishra, Shahid Mohammad Ganie, R.
Bharathikannan, and K. Vijayakanthan, " Artificial Intelligence Solutions
for the Visually Impaired: A Review," 2023.

Jiaji Wang, Shuihua Wang, Yudong Zhang, "Artificial intelligence for
visually impaired," in Displays, Volume 77, April 2023.

Risheng Liu, Zhu Liu, Jinyuan Liu, Xin Fan, and Zhongxuan Luo, "A
task-guided, implicitly-searched and meta initialized deep model for
image fusion," in Computer Vision and Pattern Recognition, vol. 14, no.
8, August 2015.

Yuanfeng Ji, Zhe Chen, Enze Xie, Lanqing Hong, Xihui Liu, Zhaoqiang
Liu, Tong Lu, Zhenguo Li, Ping Luo, "DDP: Diffusion Model for Dense
Visual Prediction," 2023 IEEE/CVF International Conference on
Computer Vision (ICCV), Paris, France, 2023, pp. 21684-21695.

	1. Introduction
	2. Embedded System Implementation
	A. Introduction
	B. Embedded System Hardware
	C. Embedded System Software

	3. Methodology
	A. Flow Diagram

	4. Conclusion
	References

