
International Journal of Research in Engineering, Science and Management
Volume 7, Issue 4, April 2024
https://www.ijresm.com | ISSN (Online): 2581-5792

*Corresponding author: anandmylabathula1601@gmail.com

42

Abstract: Software quality assessment is a necessary task at

different phases of software development. It can be applied to
project quality assurance practice design and benchmarking.
Software quality was assessed using two methodologies in earlier
research: multiple criteria linear programming and multiple
criteria quadratic programming. The quality of C5.0, SVM, and
neural mesh was also examined. These studies' accuracy is quite
low. We attempted to increase the estimation accuracy in this work
by utilizing pertinent information from a sizable dataset. To
increase accuracy, we employed a correlation matrix and a non-
selective approach. We also evaluated several new techniques that
have worked well for previous forecasting assignments. Machine
learning techniques including MLP Classifier, Random Forest,
Decision Tree, XG Boost, and Logistic Regression and the data is
subjected to Naive Bayes. forecast the quality of software and show
how development parameters relate to quality. Results from the
experiment indicate that machine learning algorithms are capable
of accurately assessing the software quality level.

Keywords: extreme gradient net, boosting, software quality,
machine learning, estimation.

1. Overview

A. Inspiration
Precise assessment techniques become necessary as software

quality development cycles gain relevance. Prior methods like
Extreme Gradient Decent, Multiple Criteria Key Words:
evaluation, machine learning, software quality Improvement of
a Linear Quadratic Machine learning and programming models
yielded less-than-ideal accuracy. Modern modest data sets are
not included in the process of improving accuracy leverage.
Through the use of sophisticated machine learning models,
correlation analysis, and feature selection, this study seeks to
increase estimation accuracy. Redefining software quality
evaluation is the aim.

B. Problem description
The limited accuracy of current software quality evaluation

methods makes it more difficult to plan projects effectively and
analyze prototypes. Earlier methods, such as different machine
learning models and Multiple Criteria LP QP, have not
produced the required degree of accuracy. Creating a reliable,
accurate estimation model that makes good use of significant

dataset properties and raises the predictive accuracy of software
quality indicators is the difficult part.

C. Project objective
This research aims to increase the quality of software by

utilizing significant traits found in large datasets to evaluate
accuracy. The objective is to develop a complicated model by
utilizing correlation matrices, selection techniques, and
sophisticated machine learning algorithms including XG Boost,
Random Forest, Decision Tree, logistic regression, MLP
classifier, and Naive Bayes. This model should be able to
forecast software quality with accuracy and show the intricate
correlations between development features and quality levels.

D. Range
The project's primary goal is to measure the quality of

software development by combining cutting-edge techniques
with thorough data analysis. To predict the software quality, it
uses a combination of machine learning algorithms, correlation
matrices, and feature selection techniques. The investigation of
these approaches' efficacy, accurate software quality level
estimation, and comprehension of the relationship between
development attributes and quality measurements are all
included in the scope.

E. Overview of the Project
Project applications may have faults as a result of software

development processes such as requirements analysis,
definition, and others. Thus, one task that is required in each of
their phases is the examination of software quality. It is
applicable to the planning and development of project-based
quality control procedures. Furthermore, one of the key
indicators of software quality is thought to be the quantity of
flaws per unit.

System performance can be used to define the quality of a
software product. The program is executed based on variables
like startup time, memory capacity, load capacity, error
likelihood, etc. A crucial consideration in assessing the
software's quality is also the developer's level of involvement.
Software quality can be classified as internal or external. It is
possible to assess the software's internal quality. While external

An Experimental Study Using Machine
Learning Techniques for Software Quality

Prediction
Chaitanya Salika1, Purna Santhosh Narra2, Sai Siddartha Reddy Satti3, Anand Mylabathula4*,

Srihari Siva Shankar Barre5, Aravind Yeluri6

Salika et al. International Journal of Research in Engineering, Science and Management, VOL. 7, NO. 4, APRIL 2024 43

quality can be determined throughout implementation and
evaluated based on its functionality level during the four
software development life cycle (SDLC).

Its interior quality influences its external quality as well.
Quality models that act as a function of internal quality
attributes can be developed to evaluate the exterior quality of
software.

Finding the internal characteristics and the connections
between the internal and external traits are the initial steps in
achieving this. Numerous writers have put forth various
software quality prediction models. As the authors state,
however, the machine learning method of creating such a model
appears to be more widely used and successful. Our
understanding of machine learning techniques for software
quality prediction models was spurred by this fact.

2. Survey of Literature
[1] Sanjeev Cowlessur, Sumendra Pattnaik, and Binod

Pattanayak. (2020). A Synopsis of Machine Learning Methods
Canton Questionnaire.

The program itself is the only factor that determines whether
or not an implementation is successful. However, during the
development process, programmers have major hurdles in
forecasting the quality of software before it is deployed in real
applications. Until now, the literature has only reported a small
amount of study in this field. The majority of researchers have
concentrated their efforts on applying different machine
learning approaches to forecast software quality.

[2] In 2020, Ankara, Turkey hosted the International
Congress on Human Computer Interaction, Optimization, and
Robotics Application (HORA). A. A. Ceran and O. X.
Tanriover presented their "Experimental investigation of
software quality\prediction using machine learning methods".

Software quality evaluation is a necessary task at different
phases of software development. Planning and preparing
quality practices for projects can be done with it. Two methods
(Multiple Criteria Quadratic Programming and Multiple
Criteria Programming) were employed in earlier research to
assess the quality of software, together with the SVM network
and 0 no. Quality Assessment.

[3] Saumendra Pattnaik and Binod Pattanayak (2016). an
investigation on machine learning methods for software quality
prediction. International Journal of Reasoning-Based
Intelligent Systems.

Predicting software quality has become crucial in the present
software development environment for a program's successful
adoption in a real application and for enhancing its long-term
usefulness. Additionally, to save effort in this procedure,
careful identification of malfunctioning software modules is
necessary during the software development process. Many
writers have conducted in-depth studies in the area of machine
learning techniques, which are thought to be the most effective
methods for predicting the quality of software. In this work, I
thoroughly investigate a number of machine learning
approaches, including fuzzy logic, neural networks, and
Bayesian models, among others, that are employed to forecast
the quality of software and help analysts defend their suggested

fixes.
[4] Bernstein, Joseph; Huang, Bing; Li, Xiaojun; Li, Ming;

Smidts, Carol (2005). A research on how software reliability is
affected by hardware malfunctions.

Reliable software is desired by all parties involved as it plays
an increasingly significant role in modern life. A software
malfunction in the computer's hardware is one of the reasons of
software failure. Failure reporting has historically been used to
look into the effects of these hardware malfunctions. The lack
of historical data on injected faults and the possibility that, as a
result, identified faults could not be real defects are two issues
with user faulting that have been brought up.

3. Analysis of the System

A. Current Framework
Software quality evaluation has been the subject of prior

research employing techniques like multiple-criteria linear
programming and multiple-quadratic programming.
Furthermore, methods including C5.0, SVM, and neural
networks were attempted; nevertheless, their accuracy was only
about 80%. These many methods attempted to evaluate the
quality of software, but their inability to attain high accuracy
remained restricted in this domain.

B. Drawbacks
1) Scalability and Complexity

Numerous approaches encounter difficulties when
attempting to scale numerous criteria or intricate linkages that
impact their computational usefulness and scalability.
2) Sensitivity and overfitting:

Various methods, inaccuracies, data sensitivity/imbalance,
and noise all have an impact on the models' accuracy and
dependability.
3) Transparency and interpretability:

Certain techniques, such neural networks and intricate
algorithms, are not very clear in their decision-making; as a
result, it can be challenging to interpret the outcomes and
comprehend the model's rationale.
4) Computer specifications:

Huge processing resources are needed for some techniques,
including SVM and neural networks, which restricts their use,
particularly for huge datasets or situations with limited
resources.
5) Processing Complexity Limitations

Accurately evaluating software quality qualities is impacted
by the fact that many of these approaches still struggle to
capture complicated, non-linear connections.
6) The Suggested Framework

The objective of this study is to increase assessment accuracy
by utilizing a big database collection of crucial functions. We
employed the correlation matrix and the selection procedure to
increase accuracy. We also experimented with the most recent
techniques that have worked well for other forecasting jobs.
Software quality is predicted using machine learning methods
such as XgBoost, Random Forest, Decision Tree, Logistic
Regression, MLP Classifier, and Naive Bayes.

Salika et al. International Journal of Research in Engineering, Science and Management, VOL. 7, NO. 4, APRIL 2024 44

C. Benefits
1. Ensemble Methods (XgBoost, Random Forest):

excellent application to big datasets, resistance to
overfitting, and good accuracy.

2. Decision trees are suitable for smaller datasets, require
less data processing, and are simple to comprehend.

3. Logistic regression: quick training, less prone to
intersection, and effective binary classification.

4. MLP classification: adaptable to intricate
relationships, effective to more complicated data
kinds, and hyperparameters that can be adjusted.

5. Naive Bayes: Capability to learn from tiny amounts of
training data, stability with little features, and
resilience.

Fig. 1. System's flow

4. Needs Analyzation

A. Requirements, Both Functional and Non-Functional:
An essential procedure for assessing a system or software

project's success is requirements analysis. There are two main
categories of requirements: functional requirements and non-
functional requirements.

Functional specifications:
Requirements that the end user considers necessary for the

system to perform fundamental tasks. As stipulated in the
contract, the system must have all of these features. They are
expressed or defined as the following: the input provided to the
system, the action taken, and the anticipated result. These are
not functional needs; rather, they are essentially user- specified
criteria that will be apparent in the finished product.

Functional requirements examples include:
1) Authentication of the user each time they access the

system.
2) In the event of a cyberattack, system shutdown.
3) After registering for the first time in the software

system, the user sent a confirmation email.
 Requirements that are not functional:
These are basically quality constraints that the system has to

meet in order for the project contract to be fulfilled. The degree
to which these elements are used or prioritized differs

depending on the project. We also refer to these as non-
behavioral needs.

They mostly deal with the following problems:
• Mobility
• Safety
• Sturdiness
• Dependability
• Flexibility
• Effectiveness
• Adaptability
• Adaptability

Non-functional needs examples include:
1) Within 12 hours after such an incident, emails should

be issued.
2) Every request ought to be answered in ten seconds or

less.
3) The webpage ought should open. 3 seconds later, there

are more than 100,000 concurrent users.

5. Application and Outcomes

A. Framework
1) Save the collection of data

The user-provided data is saved by the system.
2) Training of models:

 The user provides data, which the system enters into the
chosen model.n
3) Model forecasts

The user provides the input, and the system uses that data to
forecast the outcome.

B. Individual
1) A dataset is loaded

The dataset that the user wishes to process can be loaded.
2) Present the dataset

The dataset is visible to the user.
3) Choose a model

To ensure correctness, the user can apply the template to the
dataset.
4) Assessment

The user is able to assess model inefficiencies.

6. Findings and Discussion
We employed supervised\software\training models in this

application. To estimate software quality, we employed five
machine learning algorithms: logistic regression, bagging
classifier, XGBoost classifier, random forest classifier, and tree
classifier. All five methods function efficiently and accurately.

A. Approach and Algorithm
1) Classifier XGBoost:

Recently, XGBoost has been the dominant method in both
Kaggle and practical machine learning contests for structured
or tabular data. XGBoost is a fast and efficient implementation
of gradient-enhanced decision trees.

A gradient-enhanced framework is used by the ensemble
machine learning algorithm XGBoost, which is based on

Salika et al. International Journal of Research in Engineering, Science and Management, VOL. 7, NO. 4, APRIL 2024 45

decision trees. In unstructured data issues (texts, photos, etc.),
ANNs often perform better than any other frameworks or
algorithms. Nonetheless, decision tree algorithms are thought to
work best with small to medium-sized structured/tabular data. -
class at the moment.

Thinking: Assume that there are now several interviewers,
each with a distinct voice, rather than just one. Combining
information from each interviewer to get a final conclusion
through a democratic voting procedure is known as bootstrap or
bootstrap pooling.

 Both Gradient Boosting Machines (GBM) and XGBoost are
compound tree techniques that use gradient descent architecture
to boost weak learners (often CARTs). On the other hand,
XGBoost makes algorithmic and system enhancements to
enhance the GBM core framework.
2) The Random Forest

A machine learning method called Random Forest is used to
address classification and regression issues. It makes use of
ensemble learning, a method that combines several classifiers
to offer answers to challenging issues. Multiple-decision trees
make up a random forest algorithm. Using packaging or
bootstrap aggregation, the random forest method trains its
"forest". An artificial meta-algorithm called sacking increases
the precision of machine learning algorithms.

The Random Forest method uses decision tree predictions to
decide the outcome. It makes predictions by averaging the
results from several trees. The precision of the outcome rises
with the number of trees.

The tree pruning algorithm's limitations are eliminated by
random forest. Accuracy is increased while data
set/inconsistency is decreased. It generates predictions with
minimal package requirements (similar to Scikit-learn).

Features of the random forest algorithm:
• Compared to the decision tree algorithm, it is more

accurate.
• It offers a productive method for handling missing

data.
• A decent predictive hyperparameter setup may be

produced by it.
• Decision tree matching is resolved in this way.
• A random selection of items is made from the node

distribution point for each random forest tree.
Decision trees are the fundamental building blocks of the

random forest algorithm. A tree- like piece of technology used
for piggybacking is called a decision tree. An overview of
decision trees I would want to know how random forest
algorithms work.

A decision tree is composed of three nodes: decision nodes,
leaf nodes, and root nodes. A decision tree method is used to
split the training data level into branches, which are then
subdivided into still more branches. Until a leaf node is
encountered, this procedure continues. A leaf node cannot be
disconnected at this time.

The nodes of a decision tree represent traits that are utilized
to predict an outcome. Decision nodes give paper connectivity.
There are three types of decision tree nodes shown. in the
diagram that follows

Classifier using Decision Trees:
The tree has several real-world equivalents and has been

shown to have an impact on a variety of machine learning
domains, such as regression and classification. A decision tree
is a visually appealing and understandable way to represent
decisions and decision-making in decision analysis. It makes
use of a tree-like model, as the name implies. Despite being a
frequently used technique in data mining to determine a plan of
action to accomplish a particular objective.

The root is at the top of the decision tree, which is depicted
upside down. The condition or internal node that determines
how the tree is divided into branches and edges is shown by
strong black text in the figure on the left. The decision/sheet,
where the passenger died or survived, is at the end of the branch,
which is no longer separated, and is indicated in red and green
lettering, respectively.

You cannot disregard the simplicity of the techniques, even
when the real dataset is merely a branch of a larger tree with
many additional properties. The links are obvious, and the
function's significance is evident. Since the objective is to
categorize the passenger as either a survivor or a dead person,
our tree is referred to as a classification tree. This technique is
more often known as a data learning decision tree. Similar
presentation techniques apply to regression trees, with the
exception that they forecast continuous quantities like home
prices. Classification and Regression Trees, or CARTs, are the
usual name for decision tree methods.

The Logistic Regression Model:
Early in the 20th century, the biological sciences employed

logistic regression. After then, this was applied widely in social
science fields. In cases when the goal, or independent variable,
is categorical, logistic regression is employed.

As an illustration,
To determine whether there is spam (1) or (0)
The presence or absence of malignancy in a tumor (1)
Imagine we have to decide whether or not to mark an email

as spam. There is no predetermined threshold on which to base
categorization if we use linear regression to this problem.
Assume the data is classed as non-malignant if the actual class
is malignant, the projected constant value is 0.4, and the
threshold value is 0.5. This might have dire effects for the data
in real time.

It is clear from this example that the classification issue does
not lend itself to linear regression. Because it is unrestricted,
logistic regression is included in linear regression. They have a
strictly 0–1 value range.
Logistic Regression Types:
1) Logistic regression in binary

The conceivable outcomes for a categorical response are
limited to two. For instance, spam or not.
2) Logistic multinomial regression

Three or more groups that aren't arranged.
Predicting which food (plant, non-plant, or vegan) is favored

more is one example.
3) Regression using Normal Logistic Model three or more
groups in order

For instance, Movie Assessment 1–5.

Salika et al. International Journal of Research in Engineering, Science and Management, VOL. 7, NO. 4, APRIL 2024 46

7. Research and Testing for Systems

A. Study of Feasibility
This stage assesses the project's viability and provides a

business proposal, a project overview, and some cost
projections. The suggested system's viability is investigated as
part of the system analysis. This is to make sure the business
won't be burdened by the suggested method. The most crucial
system requirements must be understood in order to conduct a
feasibility study.

Regarding the feasibility analysis, the three primary queries
are

• Financial viability
• Technical viability

Financial viability:
The purpose of this study is to confirm the system's financial

impact on the company. An organization's financial resources
for system research and development have a cap. Expenses
need to be warranted. The system was created within the
allocated budget as a result, and the majority of the technologies
utilized made this possible. All goods that needed to be ordered
were customized.

Technical Viability:
The purpose of this research is to confirm that the system

meets the technical criteria. The developed systems ought not
to place an excessive burden on the technical resources at hand.
High demands are placed on the available technological
resources as a result. High standards for the client result from
this. Because the system's implementation calls for the least
amount of resources, the designed system must have modest
requirements or remain unchanged.

Social viability:
Verifying user acceptability is a component of the research.

It involves the process of instructing the user on how to make
efficient use of the technology. The system must be accepted as
necessary, and the user must not feel intimidated by it. The
techniques employed to inform and acquaint users with the
system are the sole factors that determine the degree of user
adoption. Because he is the system's final user, he has to have
more confidence in order to offer constructive critique.

Examining the system:
Finding bugs is the aim of testing. The process of testing

involves looking for any potential weak point or defect in a
piece of work. This offers a chance to confirm that parts,
subassemblies, assemblies, and/or the final product all perform
as intended. It is the practice of utilizing software to make sure
the system satisfies both user expectations and its own
requirements. and it doesn't fail due to incorrect input. There
are different tests. Every test type satisfies a set of requirements.

8. Conclusion
Our research revealed that the accuracy of software quality

evaluation is much increased when sophisticated machine
learning algorithms are used in conjunction with correlation
matrices and feature selection approaches. We have effectively
forecasted software quality levels by using a wideset and
experimenting with many contemporary approaches including
XGBoost, Random Forest, Decision Tree, Logistic Regression,
MLP Classifier, and Naive Bayes. This study explains the
intricate link between development qualities and software
quality and emphasizes the use of machine learning to
effectively evaluate software quality.

Upcoming Developments:
Additional estimations for software quality enhancement

might involve employing ensemble approaches, which
integrate many models to get predictions that are more resilient.
Adding deep learning architectures—like recurrent or
convolutional neural networks—can also help reveal more
details about intricate software quality models. Furthermore,
investigating hybrid models that combine cutting-edge machine
learning techniques with conventional statistical methods may
help to increase accuracy. The evaluation method may be
further enhanced by integrating domain-specific functions with
research interpretability model decision understanding
approaches.

References
[1] Kalaivani, N. and Beena, R. (2018) Overview of Software Defect

Prediction Using Machine Learning Algorithms. International Journal of
Pure and Applied Mathematics, 118, 3863-3873.

[2] Li, Peng, et al., "An Empirical Analysis of Simplified metric Set-Based
Program Defect Prediction." in Information and Software Technology, 59
(2015):170–190.

[3] Yu, Xiao, and colleagues. "Exploiting Class Imbalance Learning from
Interfirm Mistakes Predicting." SEKE 2017 is the 29th International
Conference on Software Engineering and Knowledge Engineering.
Knowledge Systems Institute, KSI Research Inc. ja, 2017.

[4] D. Bowes, T. Hall, and J. Petric, "Program-error prediction: Do different
classifiers find the same errors?" in Journal of Software Quality, 26(2),
2018, pp. 525-552.

[5] X. Wang, Y. Zhang, L. Zhang and Y. Shi, "A Knowledge Discovery Case
Study of Software Quality Prediction: ISBSG Database," 2010
IEEE/WIC/ACM International Conference on Web Intelligence and
Intelligent Agent Technology, Toronto, ON, Canada, 2010, pp. 219-222.

[6] Thomas Zimmermann et al., "A Large-Scale Experiment Data vs. Domain
vs. Process for Cross-Project Failure Prediction." The 7th Joint
Conference of the ACMSIGSOFT Symposium on Fundamentals of
Software Design and the European Conference on Software Engineering
is available as proceedings. 2009 ACM.

[7] Amasaki, S., Takagi, Y., Mizuno, O., and Kikuno, Bayesian creating a
belief network neural network to forecast the ultimate quality of
embedded systems, T. Inf. Syst. IEICE Trans. 8(6), 1134-1141, 2005.

[8] Idri, A., and Abra, A., Measures of fuzzy logic based on project similarity:
validation and potential enhancements: Proceedings of the 7th
International Symposium on Software Metrics, pp. 85–96. IEEE, UK,
England, 2001.

[9] Gopi Krishnan, Rajbahadur, "Effect of Regression Models on the
Generation of Error Classifiers" 14 International Conference on Mining
Software Archives Proceedings, 2017, IEEE Press.

	1. Overview
	A. Inspiration
	B. Problem description
	C. Project objective
	D. Range
	E. Overview of the Project

	2. Survey of Literature
	3. Analysis of the System
	A. Current Framework
	B. Drawbacks
	1) Scalability and Complexity
	2) Sensitivity and overfitting:
	3) Transparency and interpretability:
	4) Computer specifications:
	5) Processing Complexity Limitations
	6) The Suggested Framework

	C. Benefits

	4. Needs Analyzation
	A. Requirements, Both Functional and Non-Functional:

	5. Application and Outcomes
	A. Framework
	1) Save the collection of data
	2) Training of models:
	3) Model forecasts

	B. Individual
	1) A dataset is loaded
	2) Present the dataset
	3) Choose a model
	4) Assessment

	6. Findings and Discussion
	A. Approach and Algorithm
	1) Classifier XGBoost:
	2) The Random Forest

	7. Research and Testing for Systems
	A. Study of Feasibility

	8. Conclusion
	References

