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Abstract: Facies classification in geosciences has witnessed a 

remarkable transformation with the integration of diverse 
machine learning (ML) methods. An overview of the dominant 
approaches, benefits and potential pitfalls encountered in the 
application of different ML techniques for facies classification is 
presented in this review paper. ML technologies like convolutional 
Neural Networks (CNNs), Support Vector Machines (SVMs), 
Random Forests (RFs), and Deep Learning architectures have 
revolutionized the way geoscientists interpret subsurface 
reservoirs using well logs, seismic data, and core samples. The 
benefits of deploying Machine Learning techniques in facies 
classification range from enhanced speed and accuracy of 
interpretation, through facilitating the extraction of valuable 
geological insights from complex datasets, to flexible handling of 
multi-modal data, thus allowing for the combining many data 
sources to improve classification accuracy and enhance informed 
decision-making in exploration and development projects. 
However, the use of ML methods in facies classification are 
inherent to potential pitfalls and significant challenges, some of 
which include sparse data availability and poor data quality. 
Robust model training necessitates large, labeled datasets that are 
often costly and time-consuming to curate. In addition, model 
interpretability remains a major concern, since the 'black-box' 
nature of some ML algorithms can hinder geoscientists' ability to 
understand and trust the results. Overfitting, model generalization 
issues, and the risk of biases in training data are additional 
problems that must be addressed. 
 

Keywords: Artificial Neural Network, Core data, Facies 
classification, Geosciences, Machine Learning, Reinforcement 
learning, Seismic data, Supervised learning, Well log data, 
Unsupervised learning. 

1. Introduction 
The term “Facies” can be defined as a volume of rock with 

certain properties, that might be any visible feature of rocks 
(including their general makeup, look, or formation state) and 
any variations in those features across a given region (Reading, 
1996). Additionally, it comprises most of a rock's properties, 
such as its physical, chemical, and biological makeup that sets 
it apart from nearby rocks. (Parker, 1984). Facies (or  

 
lithofacies) classification is the procedure of designating a kind 
or category of rock to a given sample inspired by the observed 
characteristics. It has become crucial to classify diverse 
lithofacies in well logs and seismic interpretation since different 
rock types have varying permeabilities and fluid saturation 
levels for a given porosity. 

Recent advancements in machine learning (ML) 
technologies have grown in favor within the petroleum sector 
where it is used as an invaluable tool for informed business 
decision-making (Xu et al., 2022). The recent growing interests 
to adopt ML approaches in geoscience interpretations has been 
spurred by the expansion of so-called big data and the increase 
in computing capacity. Within the vanguard of artificial 
intelligence (AI) technological practice is machine learning, a 
term that describes essentially a set of data analysis techniques 
including classification, regression, and clustering. (Hall, 
2016). Some of the ML applications that has been presented to 
the community of geoscientists include support vector 
machines (SVMs), random forests (RFs), and artificial neural 
networks (ANNs) (Kuwatani et al., 2014; Bolandi et al., 2017; 
Wrona et al., 2018; Ai et al., 2019; Bolton et al., 2020; Lee et 
al., 2022). The difficulties associated with traditional manual 
interpretation appear to be amenable to automation of 
lithofacies categorization using the ML technologies, which 
have proven to its capabilities in enhancing and supplementing 
human analysis. Recent applications of the ML techniques in 
reservoir characterization include lithofacies classification 
(Leila et al., 2013; Paolo et al., 2017), depositional facies 
forecasting (Randell et al., 2019; Jing et al., 2022), well log 
correlation (Hiren et al., 2018; Tran et al., 2020), seismic facies 
classification (Satinder et al., 2018; Seth et al., 2019), and 
seismic facies analysis (Thilo et al., 2018; Vladimir et al., 
2022), among other tasks. 

The present paper presents a critical review of the dominant 
approaches, benefits and potential pitfalls in utilizing diverse 
machine learning methods for facies classification. 
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A. Rational of the Review 
This review was done to comprehensively explore and 

analyze various machine learning methods employed in the 
field of facies classification by thorough examination of 
dominant approaches, highlighting their benefits and 
drawbacks. The goal is to provide a nuanced understanding of 
the diverse techniques used for facies classification, enabling 
researchers, practitioners, and stakeholders to make informed 
decisions when selecting and implementing machine learning 
methods in geological and petrophysical applications. 

B. Objective of the Review 
The objective is to comprehensively investigate, analyze, and 

give a holistic comprehension of the utilization of diverse 
approaches for machine learning for facies classification in 
geoscience and reservoir engineering by: Identifying Dominant 
Approaches, evaluating benefits, assessing potential pitfalls, 
showcasing real-world applications and providing future 
directions. 

C. The Role of Machine Learning in Enhancing Facies 
Classification Accuracy 

Mathematical models have been utilized for lithology 
identification from the era of well logs (Definer et al., 1987). 
Following then, utilizing a computer program to carry out the 
identical task has been essential for good log analyzers, 
especially when it comes to cutting processing time while 
enhancing accuracy. But up until recently, the main foundation 
of these prediction models was fixed empirical connections, 
which were frequently restricted to a small number of 
depositional settings and geographic regions. However, models 
which represent non-linear relationships can be produced by 
new automated procedures based on machine learning 
techniques. for larger observational density and a wider variety 
of contexts. These models, which were initially put out using 
neural networks (Baldwin et al., 1990; Rogers et al., 1992), can 
yield findings with improved precision, that can then be utilized 
to increase the clarity of reservoir models employed for 
geophysical interpretation. Facies classification can be used, for 
example, in seismic interpretation to restrict important 
properties like permeability, fluid saturation, and porosity. In 
order to define the facies consistency and dispersion among 
data points for stratigraphy, classifications might be applied 
(Ngui et al., 2018). A lot of study has recently been done on the 
use of ML techniques for classifying facies, encompassing 
execution evaluation of various learning algorithms used for 
this job (Xie et al., 2018).  

Nevertheless, an array of untapped research avenues is now 
more accessible than ever thanks to the numerous machine-
available techniques and the capacity to combine these into 
arbitrary intricate patterns. This is because the cost of 
geophysical interpretation software and data processing 
services keeps coming down, making testing more accessible. 
In order to measure and enhance prediction accuracy, a large 
portion of the current research on the subject has concentrated 
on using one algorithm, assessing many methods individually, 
or integrating homogenous algorithms into ensembles (Gifford 

& Agah, 2010). An alternative strategy uses a mix of learners 
(or agents) to enhance additional variables with optimizing 
prediction accuracy. 

2. Overview and Basics of Machine Learning Approaches 

A. Overview of Machine Learning Methods 
In accordance with the types of data it uses, machine learning 

techniques may be categorized into four main groups: (1) 
supervised learners, who use input and output data to build a 
model for prediction (2) unsupervised learners who solely use 
inputs to organize and understand data (3) semi-supervised and 
(4) reinforcement learning. These can also be separated into 
groups according on if the outcome of the model produces 
distinct outputs or continuous signals.  
1) Supervised Learning 

Supervised machine learning techniques employ a training 
dataset, or known output, to create predictions. These 
algorithms may be split into two broad categories: regression 
algorithms and classification algorithms. Although there are 
differences in implementation, all classifiers fundamentally 
execute two tasks. Firstly, they iteratively forecast using the 
training dataset as input, and secondly, they correct using the 
genuine worth that is there in the training set. Decision Trees, 
Random Forests (RF), Support Vector Machines (SVM), Linear 
and Logistic Regression, Naive Bayes, Linear Discriminant 
Analysis, k-Nearest Neighbor (KNN) methods, and Neural 
Networks are types of commonly used supervised machine 
learning techniques. Other examples of supervised ML include; 
epileptic seizure detection can provide specific to patients’ 
detectors that are very accurate in preventing bodily harm and 
death while promptly identifying seizure onsets (Kharbouch et 
al., 2011). 
2) Unsupervised Learning 

The organization of a dataset is automatically determined 
through strategies for unsupervised learning, namely 
additionally referred to as methods for data-driven exploration 
in data figures. This reduces relying on preconceived 
classification or another external limitations and presumptions. 
Due to the fact that unsupervised approaches determine which 
manifold is most fit with a collection of data that is just on the 
available input data, they are thought to be more robust, or 
resilient to the dataset's severe findings or anomalies. In 
unsupervised machine learning, without human intervention, 
unsupervised learning examines unlabeled datasets. By giving 
matching labels, the algorithm splits the samples inside many 
partitions based only on the training data's features. 
Autoencoders and principal component analysis constitute two 
popular instances of unsupervised approaches. Unsupervised 
learning is typically employed for automatically identifying a 
user's friends on social networking sites like Facebook or 
Google, or for determining the greatest quantity of mails sent to 
a specific person and categorized collectively. 
3) Semi-supervised Learning 

One way to think of semi-supervised learning is as a 
combination of supervised and unsupervised techniques as 
described previously since it incorporates data that is both 
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labeled and unlabeled (Zhou & Belkin, 2014). The primary 
objective of a semi-supervised learning framework is to provide 
predictions that outperform those produced with simply the 
labeled data from the model. A lot of applications for this 
technique include text categorization, fraud detection, data 
labeling, and machine translation. Reinforcement learning, a 
situation-driven approach, is predicated on several algorithms 
that are often executed in a sequential fashion to automatically 
determine the optimal course of action in a specific setting in 
order to maximize efficacy (Buşoniu et al., 2010). It is therefore 
a useful tool for creating AI models that might improve the 
efficiency of intricate systems like supply networks, 
manufacturing, robotics, and autonomous vehicles. 
4) Reinforcement Learning 

The foundation of reinforcement learning is a series of 
algorithms that, in most cases, work in succession to 
automatically assess the best conduct in a given setting and 
increase its effectiveness; this is known as an ambient-driven 
approach (Busoniu et al., 2010) in every step, a reinforcement 
algorithm—also called a "agent"—acts and makes predictions 
about the characteristics in a subsequent step depending on the 
forecast and bases the upcoming step on the characteristics at 
the current and prior phases.. Based on the prediction, incentive 
or penalties is applied. 

 

 
Fig. 1.  Different kinds of machine learning methods after (Sarker, 2021) 

 

B. Basic Machine Learning Approaches Commonly Used for 
Facies Classification 
1) Decision Trees (DT) 

A Decision Trees can execute both classification and 
regression tasks. Boolean tests of one or more properties are the 
foundation of the DT algorithm. The model is made up of child 
nodes, actions connected to each node, and a node called the 
root, frequently referred to as the node that serves as the parent. 
A graphical diagram or chart is provided which enables users to 
visually determine the potential outcome of any decision made. 
The entropy, classification error, or Gini index are used to 
determine which characteristic is the best, and can be expressed 
using the equations below in equ (1) and (2) (Sarker, 2021). 

 

 
(1) 

 
   (2) 

Imagine a Yes-No DT created to help people decide choosing 
between A and B, that is, either to act on A or B (Fig. 1) below, 
the primary objective of DT is to constantly divide the data until 
it enters its particular group or reaches a predetermined depth 

in the tree.  
The output of the method is unstable if the training data 

changes, and the quantity of observations from each class may 
have an impact. The Random Forest (RF) approach, which is a 
collection of several trees from the same dataset developing 
concurrently, can be used to get around this restriction. After a 
majority vote among its trees, the RF algorithm chooses the 
group receiving the most votes as the model's forecast. The 
effectiveness of DT and RF models has been examined by 
(Maucec & Garni, 2019). 

 

 
Fig. 2.  A DT for deciding between options A and B, yes-no  

(Sachin & Karmakar, 2020) 
 

2) Random Forest (RF) 
Using a collection of graphs known as decision trees, 

Random Forests are ensemble supervised machine learning 
algorithms that model a dataset and subsequently utilize that 
model to generate predictions. Tree Baggers and Random 
Decision Forests are other names for this procedure (Breiman, 
2001). Bagging (i.e., short for Bootstrap Aggregating) refers to 
the process of model averaging, which links the outcomes of 
randomly chosen training data sets in order to enhance 
categorization. The subtlety of the A single decision tree may 
have a tendency to overfit a given training dataset, showing low 
bias but a significant variance. However, the Random Forest 
algorithm can drastically decrease variance while taking 
advantage of a relatively small possible boost in bias by 
averaging several randomly selected decision trees (or models) 
from a large set, each of which was trained using a random 
subset of the training data. Additionally, the Random Forest 
method offers the chance to look at the model that was created 
during training, which is useful when trying to figure out why a 
certain sample was classified in a certain way. 
3) Support Vector Machines (SVM) 

SVM mostly performs classification problems, but it may 
additionally carry out regression tasks using the title Support 
Vector Regression (Chamkalani et al., 2013). We must train the 
algorithm with (2) two clearly distinct class names in order to 
do classification The method chooses a linear or non-linear 
hyperplane which is most accurate in classifying fresh 

Parent NodeDecision 
Node (1/0)

No

B

Yes

Decision 
Node (1/0)

Decision 
Node (1/0)

A B

B

No

No

Yes

Yes

Child Nodes



Juliana et al.                                                         International Journal of Research in Engineering, Science and Management, VOL. 7, NO. 3, MARCH 2024 65 

information by determining which side of the hyperplane 
dividing the two predetermined groups it will belong to. The 
weight value of the hyperplane determines its direction, but the 
biasedness measure determines how far it deviates from the 
origin. Key elements or pillars of support vectors are the data 
points in an SVM with linear bounds that have the greatest 
influence on classification. For simplicity, we create a 
mathematical function called kernels to restructure the data 
points in the case of a non-linear hyperplane such that a linear 
hyperplane may be used to classify them linearly. 

In several real-world applications, (Li et al., 2000; Lu et al., 
2001; Choisy & Belaid, 2001; Gao et al., 2001; Kim et al., 2001; 
Ma et al., 2001; Van Gestel et al., 2001; Al-Anazi & Gates, 
2009a, 2009b, 2009c), support vector machines (SVM) have 
recently demonstrated high generalization (prediction) 
efficiency. 
4) Artificial Neural Networks  

In the early 1980s, Artificial Neural Networks (ANNs) 
gained a lot of interest as a model of biologically motivated 
intelligence. as the neuroscience sector made significant strides 
in its application, sparking a keen interest in comprehending the 
significance of neural network models (Mohaghegh et al., 
1994).  Large collections of algorithms that represent artificial 
neural networks are able to establish relationships among 
extremely unusual nonlinear variables and produce advanced, 
precise, and dependable solutions to challenging problems by 
learning from experience (Ali, 1994).  

 

 
Fig. 3.  An illustration of a basic neural network (after Anirbid, 2021) 

 
Computer systems called neural networks make an effort to 

mimic the activities of the brain. Nonlinear data modeling 
methods like ANNs are made to handle complicated tasks with 
a lot of inputs. It comprises of an entry level, an outcome level, 
and a few concealed layers. The input layer gives each input its 
due weight. Both the input layer and the hidden layer have 
corresponding bias values. The hidden layer's job is to execute 
the weighted inputs' summing to determine the value for the 
layer that follows. In order to determine the value of the 
output(s) in the output layer, it uses an activation function. A 
significantly more sophisticated neural network technique that 
is frequently utilized in research is the probabilistic neural 
network (PNN). It may also be integrated with a variety of 
different algorithms, such as the Neural-Decision Tree (NDT) 
created by (Li et al., 2013). ANN is a powerful machine 
learning technique for handling challenging issues. ANN is 
most frequently utilized in the oil and gas industry to tackle 
complicated, nonlinear issues that cannot be resolved by linear 
relationships. Information, including hidden neurons, is sent 

forward using feed forward-ANN (FF-ANN) (Ashena & 
Thonhauser, 2015). Neural networks may be used in the 
petroleum sector for seismic pattern recognition, drill bit 
diagnostic, gas well yield enhancement, sandstone lithofacies 
detection, well performance prediction, and optimization (Ali, 
1994). 
5) k-Nearest Neighbors (KNN) 

The k-nearest neighbors (KNN) method is an easy and 
straightforward technique that has grown in popularity. Given 
that the goal variable is present in the dataset, it falls under the 
category of supervised machine learning. Both classification 
and regression issues are addressed with it. The number of 
neighbors to evaluate in order to forecast a class or an output 
value estimation is represented by the letter k in the KNN 
method. KNN allocates the majority of its neighbors' categories 
while solving a classification problem, but it uses the mean of 
their neighbors' target variables when solving a regression 
problem. 
6) Logistic Regression 

The most-basic machine-learning model for categorization 
issues is logistic regression, which is similar to linear 
regression. Logistic regression and other supervised machine 
learning methods can be used if the labels are given while 
training. Instead of producing the actual result, the logistic 
regression model first generates the Airbed input attributes' 
weighted sum (as well as a bias term) (Géron, 2017). 
7) Principal component analysis (PCA) 

The method of principal component analysis is employed in 
performance forecasting that leverages common patterns and 
trends from vast amounts of information.  The principal 
components technique is typically employed to predict output 
from shale reservoirs rich in liquid. Using Singular Value 
Decomposition (SVD), the primary component was computed. 
These computed primary components were utilized by 
(Makinde & Lee, 2019) to anticipate oil output. The model 
proved helpful in predicting output with a respectable level of 
accuracy. Channelized reservoirs were mapped using PCA 
based on the Cumulative Distribution Function (also known as 
CDF-PCA). According to (Chen et al., 2014), their findings 
demonstrated the improved and consistency of the geological 
facies, reservoir characteristics, and production projection 
model using CDF-PCA. China's natural gas business was 
evaluated for sustainability using principal component analysis. 
Employing PCA, the natural gas sustainability index was found 
and assessed. According to the findings, sustainability 
increased between 2008 and 2013 as a result of rising supply 
and demand (Dong et al., 2015). 

3. Benefits of Machine Learning in Facies Classification 

A. Machine Learning Solution  
ML has swiftly gained popularity in petrophysics and has 

shown to be an effective solution to a variety of issues. 
Notwithstanding the enormous amount of enthusiasm that has 
been sparked by it in several distinct fields, ML is not a magic 
solution to every issue. Because of how serious the problem is 
or how much high-quality data is available, ML solutions may 
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not be the best options. We may wish to assess if ML is crucial 
or cost-effective before applying it to any petrophysical 
problem. Finding a solution to help with corporate decision 
making is the goal of employing machine learning, regardless 
of the model or technique employed. 

However, from a physics standpoint, problems cannot be 
addressed if a physical model is lacking or too complicated. As 
a technology driven tool, ML can often offer a solution in this 
situation with quantifiable unreliability (Khan et al., 2018; Basu 
et al., 2020; Chen et al., 2022). All models are incorrect, as 
stated, yet some are really helpful. It is helpful if the ML 
solution is shown to be effective in assisting in corporate 
decision-making. 

B. Automated Machine Learning for Consistency and 
Productivity 

The higher productivity that robots provide over humans in 
jobs such data rectification and quality assurance, data labeling, 
grouping as well as well log correlation is another significant 
benefit of employing ML (Brazell et al., 2019; Bakdi et al., 
2020; Liu et al., 2021). Unlike human interpretation, which is 
dependent on information, experience, and abilities, machine 
work relies on mathematically based models. Since ML 
produces more reliable outcomes, human-produced goods may 
be subjective and prejudiced. As a result, machines can 
complete some monotonous tasks far more quickly and 
consistently than humans. 

C. High-dimensional Data Analysis 
High-dimensional data poses a challenge to human 

recognition capabilities, including lists, pictures, patterns of 
waves, and 3D volumes. Accurately labeling and interpreting 
highly dimensional data is still challenging for humans, even 
with the aid of contemporary 3D visualization. Pinpointing 
various minerals on a narrow slice with great magnification 
picture or tracking each pore on a rock's 3D volume CT scan is 
almost difficult. To solve these problems, we must turn to 
technology such as ML to seek solutions. 

4. Limitations of Machine Learning in Facies 
Classification 

A. Paucity of Accurate and Representative Data 
Despite data being correct, they may not be representative 

(Ma & Amabeoku, 2015). Numerous factors, including as tool 
image quality, testing, and sample capture, and physical sample 
modification prior to testing, might lead to data that is not 
representative. If the data used is not indicative of the desired 
issue, the results from both ML and human effort would be 
unreliable. With the help of subject matter experts, ML 
approaches may be used to find outlier data (Akkurt et al., 2018; 
Misra et al., 2019) and rectify it. However, it is not anticipated 
that a machine would be able to notice this data quality issue, 
which will have an impact on the predicted outcomes, if ML 
modeling uses erroneous unrepresentative data. 

B. Inconsistency in Data 
Another problem that combining ML and real-world 

modeling approaches encounter is data consistency. Between 
fields and between wells, there may be major differences in the 
data gathering parameters. The instruments utilized for data 
collecting may differ from one service provider to another, 
since technology continues to advance quickly over time. With 
improvements in drilling technology and drilling fluids, 
borehole conditions might alter. Vertical and lateral variations 
in geology are constant. Modifications and fluid 
transformations (gas, oil, and water) are occurring in reservoirs 
in geomechanics with field development due to pore pressure 
variations. Although complex, these adjustments must be made 
in order to assure the consistency and quality of data from many 
wells or sites.  

C. Size, Quality and Relevancy of the Data 
Most machine learning (ML) techniques require "Big data" 

to educate the model. The adage "the bigger the better" could 
be accurate when data is accurate and representative. However, 
in the field of petrophysics, the data collected are frequently 
sparse; evaluations on a hundred of core plugs for a specific 
rock parameter are usual. Data quality drastically declines as 
data sets get larger due to the possibility that the measurements 
made for each set may not follow the same process, as was 
previously addressed in the section on data consistency 
machine learning, model relevance, generalization, and data 
labeling efficiency are still dependent on statistics. to mention 
but a few are some of the few limitations of ML. 

5. Case Studies and Applications 
Real-world applications of machine learning in facies 

classification with successful examples on petrophysical issues, 
including rock type and facies categorization which were 
inherently solved by machine learning techniques (Hall, 2016; 
Zhang & Zhan, 2017, Tahiru et al., 2021; Anirbid et al., 2021) 
and incomplete log prediction (Akinnikawe et al., 2018; Singh 
et al., 2020; Tokpanov et al., 2020). The majority of 
publications provide effective examples of applying one or 
more machine learning methods to tackle difficult petrophysical 
issues utilizing a variety of data sources. Few publications, 
nevertheless, address the restrictions associated with employing 
ML and the prerequisites needed to guarantee successful 
applications.  

Below is a literature review of some authors, study aim, 
approach and findings in Table 1. 

6. Future Trends and Directions 
The past few decades have witnessed a notable advancement 

in artificial intelligence (AI), and machine learning (ML) in 
specific, as vital tools for intelligently analyzing such data and 
creating the matching real-world applications (Koteluk et al., 
2021; Sarker, 2021b). ML is influencing developments in 
technology and how they are used in the real world on a global 
scale. Google Trends indicates that interest in "AI" and "ML" 
has grown significantly during the previous five years. 
Significant information about worldwide access to AI and ML 
across countries (i.e., Italy, China, the USA, Israel, the UK, and 
the Middle East) may be found by a Google search even if we 
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are aware that such statistics do not fully depict the situation. 
Fields addressing data-intensive issues have also been greatly 
impacted by machine learning including supply chain 
management, consumer services, and identifying errors in 
complicated systems. Similar wide-ranging impacts have been 
observed across disciplines, as ML techniques helped 
researchers classify cancer using DNA microarray analyses 
(Tan & Gilbert, 2003; Wang et al., 2005).  

Generally speaking, the kind and efficiency of a machine 
learning solution is determined by both the data and the learning 
algorithms' performance. In actuality, researchers are currently 
now starting to investigate the potential of ML algorithms for 
studying systems that improve with usage, despite the surge in 
fascination with these fields over the previous ten years. 

A. Emerging Trends in Machine Learning and their 
Applications 

To make our jobs easier, machine learning models may be 
applied in many different sectors. The following are discussion 
of machine learning uses and future trends. 

B. Analytical Prediction and Thoughtful Decision-Making 
Data-driven predictive analytics for intelligent decision-

making is a key machine learning application field (Cao, 2017; 
Mahdavinejad et al., 2018). In order to anticipate an unknown 
result, predictive analytics relies on identifying and taking 
application of correlations amongst anticipated parameters 
from historical data and explanatory factors (Han & Kamber 
2011). For example, pinpointing offenders or culprits after a 
crime is done, or spotting credit card fraud while it occurs. 
Another use case is the improvement of inventory management, 
prevention of out-of-stock scenarios, and e-commerce logistics 
and warehousing through the use of machine learning 
algorithms by merchants. Numerous techniques for machine 
learning, include artificial neural networks, decision trees, and 
support vector machines (Witten et al., 2005; Saker et al., 2019) 
are commonly used in the area. An almost infinite several 
enterprises, organizations, and sectors, such as social 
networking, government agencies, e-commerce, 
telecommunications, banking and financial services, 
healthcare, sales and marketing, and numerous others, can 
benefit from accurate predictions because they offer insight into 

Table 1 
Literature review 

Reference Study aim Approach Findings 
Alexander et al. 
(2019) 

The study aimed at improving facies classification 
for geological modeling by utilizing Machine 
learning algorithms that were selected based on 
dataset 

Supervised machine learning 
algorithm. Ensemble of Decision 
Trees algorithm associated with 
gradient boosting 

Proposed a supervised machine learning 
algorithm for facies classification and 
developed a workflow to enhance the 
dataset for classification. 

Julian Thorne et 
al. (2019) 

Machine Learning was applied in identifying 
reservoir facies using petrophysical and geophysical 
data points 

Obtaining seismic data points of 
petrophysical and geophysical 
parameters. Identifying correlated 
clusters of petrophysical parameters 

The study Identified correlated clusters of 
petrophysical parameters. Generation of 
multi-dimensional clusters of seismic 
data points 

Vijesh Chandra 
et al. (2022) 

The authors applied feature augmentation machine 
learning models for facies identification using well 
log and multi-scale image data from whole cores, 
which can be extended to multiple wells. 

Feature augmentation machine 
learning models - Integration of well 
log and multi-scale image data 

Accuracy of the model improved by up to 
80% compared to using conventional well 
data alone. Incorporation of digitally 
derived data from whole core CT and thin 
section petrographs improved the 
accuracy of the model. 

Asedegbega et 
al. (2021) 

The purpose of the study was to use Machine 
Learning for reservoir facies classification. 

Support vector machine, random 
forest, decision tree, extra tree, neural 
network (multilayer preceptor), k-
nearest neighbor and logistic 
regression model were used. Jaccard 
index and F-1 score were for 
evaluation 

Support vector machine: Jaccard index - 
0.73, F1-score - 0.82 - K-nearest 
neighbor: Jaccard index - 0.91, F1-score - 
0.95 

Camila Martins 
Saporetti et al. 
(2021) 

The research applied the unsupervised extreme 
learning machine (US-ELM) to cluster petrographic 
data collected from the Parana Basin, Brazil, and 
used principal component analysis (PCA) to remove 
redundant attributes. 

unsupervised Extreme Learning 
Machine (US-ELM) and Principal 
Component Analysis (PCA) were 
used for evaluation. 

Hybrid US-ELM outperformed methods 
commonly used in the literature.   
Higher average results for accuracy, 
silhouette metrics, and adjusted rand 
score. 

Marco Ippolito 
et al. (2021)  

The research aimed at using multi-agent approach to 
reduce bias introduced during training and provide a 
basis for producing a probability distribution for 
every sample as opposed to a categorization that is 
discrete and represents lithological regime 
continuity. 

Unsupervised and supervised 
machine learning approach was used. 

Facies classification from well logs is 
important in reservoir characterization. - 
Machine learning methods can improve 
classification accuracy. 

Mehran 
Rahimi and 
Mohammad Ali 
Riahi (2022). 

The article focused on reservoir facies classification 
using random forest and geostatistics 

Reservoir facies classification was 
done using random forest and 
geostatistics  

Reservoir facies model estimated with 
high accuracy (95%) - APE value of 
sequential indicator simulation model is 
less than indicator kriging model. 

Jing-Jing Liu 
and Jianchao 
Liu, (2022) 

The research aimed at a novel hybrid deep learning 
model based on the efficient data feature-extraction 
ability of convolutional neural networks (CNN) and 
the superior capacity of long short-term memory 
networks (LSTM) to characterize time-dependent 
characteristics in order to carry out lithological 
facies-classification tests. 

Hybrid CNN-LSTM model for 
lithofacies classification - Borderline 
synthetic minority oversampling 
technique (BSMOTE) for data 
balance 

Hybrid CNN-LSTM model achieved 
87.3% accuracy - Processed data balance 
improved lithofacies classification 
accuracy 
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the unknown. 

C. Analysis of Medical Videos and Images 
MVIA stands for Medical Video and Image Analysis. In the 

healthcare sector, recognizing images remains a challenging 
task, that in turn lowers the frequency of detection of illnesses 
and the quality of life (Soguero-Ruiz et al., 2018; Shickel, et al., 
2018 & Yin et al., 2017). Artificial intelligence (AI) and 
machine learning methods can be applied in the healthcare 
sector to recognize photos and videos produced by machines 
(Bruzzone & Marconcini, 2010; Fadlullah et al., 2017; 
Hurlburt, 2017). Machines have become equipped to make 
judgments and evaluate them similarly to humans. Analysis of 
medical video and images is completed utilizing the Multiple 
Instance Learning, or MIL. Multiple Occurrence Learning, or 
MIL, is used in the evaluation of medical video and image data. 
Prior to the usage of learning with multiple instances (MIL), 
supervised learning was employed, whereby every study was 
assigned a single class label. Currently, in learning with 
multiple instances (MIL), the observations are gathered, the 
situations are categorized, groups are created, and class labels 
are given to these groupings. Utilizing the MIL in the MVIA 
involves three key tasks. (a) Each bag represents a video or a 
picture (b) Each instance represents a specific point inside the 
picture or video, aiding in the extraction of a feature vector (c) 
The category labels serve as a general diagnostic for the pictures 
and videos. As a result, MIL on its own recognizes the focus 
similarities in the images and videos and provides a diagnostic 
for each one. The feature vectors that are individually retrieved 
train the classifier that just uses universal identifiers for the 
control, preventing the patterns in pictures and videos from 
being mixed. The feature vectors that are individually retrieved 
only use the global tags to train the classifier as a control 
preventing the patterns in pictures and videos from being 
mixed. 

D. Telecommunication Systems Using Machine Learning 
Models 

The next part will address the models employed, the methods 
for gathering training data, and the uses of machine learning in 
networks of communication. It is possible for artificial 
intelligence to spot trends in unstructured data and learn new 
information, a process known as machine learning (86). The 
domains of image identification and natural language 
processing have benefited greatly from this technique (86). The 
projections get more precise as the data set grows. Although the 
field of machine learning is still very young in the area of 
communication networks, there is little question that 
subsequently will be important in the years to come. In 
networks that are IP, mobile, optical, or IOT, there are tens of 
thousands of network components, and machine learning can 
handle this enormous volume of data. Communication 
networks acquire a vast amount of data since there are several 
distinct device kinds with numerous manufacturers, all of which 
provide data of various forms and formats. As a result, the data 
gathered is vast and quite diversified. Time is commonly 
employed to connect data from many sources, such it is crucial 

to record the timestamp each time you compute data. 

7. Conclusion 
In conclusion, the exploration of diverse machine learning 

methods for facies classification represents a pivotal juncture in 
the evolution of geosciences and the broader field of data-
driven decision-making. This journey into the landscape of 
machine learning in facies classification has illuminated several 
key takeaways. 

Firstly, it is evident that the integration of machine learning 
techniques possesses the capacity to revolutionize the way 
geoscientists analyze and interpret subsurface reservoirs. The 
speed, accuracy, and capability to handle complex multi-modal 
data are undeniable advantages that can significantly enhance 
our understanding of geological formations 

However, the path forward is not without its challenges. The 
need for high-quality, labeled datasets remains a primary 
hurdle, demanding substantial investments in data acquisition 
and curation. Furthermore, ensuring the interpretability and 
trustworthiness of machine learning models is paramount. 
Developing methods to explain model decisions and mitigate 
biases in training data are areas of active research that require 
sustained attention. 

As we journey further into this landscape, it is essential for 
stakeholders in the geosciences to collaborate, share 
knowledge, and establish best practices. Collaboration between 
domain experts, data scientists, and industry professionals can 
accelerate progress and foster innovation. 

In essence, exploring the landscape of diverse machine 
learning methods for facies classification is not a one-time 
expedition but an ongoing endeavor. As we move forward, 
addressing the identified challenges and embracing emerging 
technologies will enable us to unlock new insights into 
subsurface reservoirs and better equip ourselves to make 
informed decisions in the ever-evolving field of geosciences. 
The journey continues, and the potential for discovery remains 
boundless. 

In addition to providing a thorough understanding of how 
cutting-edge AI techniques are revolutionizing the 
characterization of subsurface reservoirs, this investigation into 
"Unveiling Dominant Approaches, Benefits, and Potential 
Pitfalls in Utilizing Diverse Machine Learning Methods for 
Facies Classification" highlights the synergy between 
contemporary machine learning techniques and geoscience. 
Important points to note are: 

Cutting-Edge Approaches: Identifying the newest and best 
machine learning techniques for classifying facies and offering 
engineers and geoscientists a road map for utilizing AI in the 
interpretation of geological data. 

Tangible Benefits: Outlining the concrete benefits of using 
machine learning in this situation, such as improving efficiency 
and accuracy and optimizing resource allocation, which has an 
immediate influence on resource management and decision-
making. 

Navigating Challenges: A detailed analysis of the possible 
obstacles and traps that will provide practitioners with the 
knowledge they need to reduce risks and maximize model 
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performance when working with complicated geological data. 
Benchmarking and Selection: A comparative study of several 

machine learning algorithms to help experts and researchers 
choose the best models for certain geological and reservoir 
circumstances. 

Real-World Success Stories: These showcase real-world case 
studies and practical applications where machine learning has 
revolutionized the categorization of facial features, offering 
guidance and motivation to those who are thinking about using 
it. 

Direction and Guidance: Providing useful suggestions and 
directions for the successful application of machine learning so 
that engineers and geoscientists may make decisions tailored to 
their particular project needs. 

Pioneering the Future: Investigating the boundaries of 
machine learning in reservoir engineering and geoscience, 
offering creative directions for further study, and incorporating 
cutting-edge technology to promote the area. 

The highlight of this topic summarizes how important it is to 
use a variety of machine learning techniques to manage 
resources more effectively, decipher complicated geological 
processes, and spur innovation in the energy and natural 
resources industries. 
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