
International Journal of Research in Engineering, Science and Management
Volume 7, Issue 2, February 2024
https://www.ijresm.com | ISSN (Online): 2581-5792

*Corresponding author: kusumdhiman212@gmail.com

4

Abstract: In this research paper we explained the various

software development models and their advantages and
disadvantages. This paper includes all information related to the
SDLC models and their methodology and techniques to do project
work. This paper mainly surveys the Waterfall Model, iterative
waterfall Model, V-Shaped Model, RAD Model, Evolutionary
Model, Prototyping Model, Spiral Model, Agile Model,
Incremental Model and Build and Fix Model.

Keywords: SDLC Models, RAD Model, methodology, projects.

1. Waterfall Model
The Waterfall Model was first Process Model to be

introduced. It is very simple to understand and use. In
a Waterfall model, each phase must be completed before the
next phase can begin and there is no overlapping in the
phases. The waterfall model is the earliest SDLC approach that
was used for software development. In “The Waterfall”
approach, the whole process of software development is
divided into separate phases. The outcome of one phase acts as
the input for the next phase sequentially [2]. The waterfall
model is a sequential design process in which progress is seen
as flowing steadily downwards (like a waterfall) through the
phases of Conception, Feasibility Study, Analysis, Design,
Construction, Testing, Production/Implementation and
Maintenance [13].

Fig. 1. Waterfall model

• Communication: Establishes expectations of

stakeholders
• Planning: Develop a well-defined plan
• Modeling: Develop a model
• Construction: Build actual projects
• Deployment: Delivery of project to the customer and

its maintenance

A. Advantages
• Classical model and easy to understand and implement
• Widely used in government projects
• Works well on mature projects and weak team

B. Disadvantages
• It is difficult to estimate time and cost for each phase

of the development process.
• Once an application is in the testing stage, it is very

difficult to go back and change something that was not
well-thought-out in the concept stage.

• Not a good model for complex and object-oriented
projects.

• Not suitable for projects where requirements are at a
moderate to high risk of changing.

2. Iterative Waterfall Model

Fig. 2. Iterative waterfall model

The iterative waterfall model provides feedback paths from

every phase to its preceding phases, which is the main
difference from the classical waterfall model. When errors are

Reassessment of Software Development Life
Cycle Models

Kusum Lata Dhiman*

Assistant Professor, Department of Computer Science and Engineering, Parul University, Vadodara, India

Dhiman et al. International Journal of Research in Engineering, Science and Management, VOL. 7, NO. 2, FEBRUARY 2024 5

detected at some later phase, these feedback paths allow for
correcting errors committed by programmers during some
phase. It is good to detect errors in the same phase in which they
are committed. It reduces the effort and time required to correct
the errors [3].

A. Advantages
• Iterative waterfall model feedback path from one

phase to its preceding phase allows correcting the
errors that are committed and these changes are
reflected in the later phases.[2]

• The iterative waterfall model is very simple to
understand and use.

B. Disadvantages
• there is no scope for any intermediate delivery. So,

customers must wait a long forget the software.[3]
• Projects may suffer from various types of risks. But

Iterative waterfall model has no mechanism for risk
handling.

3. V-Shaped Model
The V-model is a type of SDLC model where the process

executes sequentially in a V-shape. It is also known as the
Verification and Validation model. It is based on the association
of a testing phase for each corresponding development stage.
The next phase starts only after completion of the previous
phase i.e. for each development activity, there is a testing
activity corresponding to it [11].

Verification: It involves a static analysis technique (review)
done without executing code. It is the process of evaluation of
the product development phase to find whether specified
requirements are met [1].

Validation: It involves dynamic analysis techniques
(functional, non-functional), and testing done by executing
code. Validation is the process of evaluating the software after
the completion of the development phase to determine whether
the software meets the customer's expectations and
requirements.

Fig. 3. V- Shaped model

A. Advantages
• This is a highly disciplined model and Phases are

completed one at a time [12].
• V-Model is used for small projects where project

requirements are clear.
• Simple and easy to understand and use.

B. Disadvantages
• High risk and uncertainty.
• It is not good for complex and object-oriented projects.
• It is not suitable for projects where requirements are

not clear and contain a high risk of changing.

4. RAD Model
RAD or Rapid Application Development process is an

adoption of the waterfall model; it targets developing software
in a short period. It focuses on the input-output source and
destination of the information.[10] It emphasizes delivering
projects in small pieces; the larger projects are divided into a
series of smaller projects. The main feature of the RAD model
is that it focuses on the reuse of templates, tools, processes, and
code [12].

Fig. 4. RAD model

A. Advantages
• Flexible and adaptable to changes.
• It is useful when you must reduce the overall project

risk.
• It is adaptable and flexible to changes.
• Due to code generators and code reuse, there is a

reduction of manual coding.
A. Disadvantages:

• It cannot be used for smaller projects.
• Not all applications is compatible with RAD.
• When technical risk is high, it is not suitable.
• Requires highly skilled designers or developers.

5. Evolutionary Model
The evolution model divides the development cycle into

smaller, “Incremental Waterfall Models” in which users can get
access to the product at the end of each cycle. The users provide
feedback on the product for the planning stage of the next cycle
and the development team responds, often by changing the
product, plans, or process [9]. The evolution model is based on
the initial implementation will result in the user comments it
can be repaired through many versions until an adequate system
can be developed. In addition to having separate activities, this
model provides feedback to developers [4].

Dhiman et al. International Journal of Research in Engineering, Science and Management, VOL. 7, NO. 2, FEBRUARY 2024 6

Fig. 5. Evolutionary model

A. Advantages
• Error reduction: The version is tested with the

customer which reduces the error thoroughly.
• User satisfaction: The user gets satisfied and he gets

the full chance of experimenting partially developed
system.

• Business benefit: Successful use of this model can
benefit not only business results but marketing and
internal operations as well.

• High quality: As you should be satisfied with every
version, it produces a high-quality product.

B. Disadvantages
• Uncertain nature of customer needs: A confused user

has uncertainty over his requirements, so giving him
several versions may change his requirements rapidly.

• Time and Cost: As this model reduces “Time and
Cost” but the requirement is not gathered correctly. It
will subsequently time, cost, and effort.

• Confusion by several versions: A user might get
“confused by several versions of the software. It will
affect the final product.

6. Prototyping Model

Fig. 6. Prototyping model

The Prototyping Model is a systems development method

(SDM) in which a prototype (an early approximation of a final
system or product) is built, tested, and then reworked as
necessary until an acceptable prototype is finally achieved from
which the complete system or product can now be developed
[8]. This model works best in scenarios where not all of the
project requirements are known in detail ahead of time [9]. It is

an iterative, trial-and-error process that takes place between the
developers and the users.

A. Advantages
• The customers get to see the partial product early in

the life cycle. This ensures a greater level of customer
satisfaction and comfort [1].

• New requirements can be easily accommodated as
there is scope for refinement.

• Missing functionalities can be easily figured out.
• Errors can be detected much earlier thereby saving a

lot of effort and cost, besides enhancing the quality of
the software.

• The developed prototype can be reused by the
developer for more complicated projects in the future.

• Flexibility in design.

B. Disadvantages
• Costly concerning time as well as money.
• There may be too much variation in requirements each

time the prototype is evaluated by the customer.
• Poor Documentation due to continuously changing

customer requirements.
• It is very difficult for the developers to accommodate

all the changes demanded by the customer.
• Developers in a hurry to build prototypes may end up

with sub-optimal solutions.

7. Spiral Model

Fig. 7. Spiral model

The spiral model is one of the most important Software

Development Life Cycle models, which provides support
for Risk Handling [8]. In its diagrammatic representation, it
looks like a spiral with many loops. The exact number of loops
of the spiral is unknown and can vary from project to
project. Each loop of the spiral is called a Phase of the software
development process. The exact number of phases needed to
develop the product can be varied by the project manager
depending upon the project risks.

A. Advantages
• Measuring progress by the amount of completed work.

Dhiman et al. International Journal of Research in Engineering, Science and Management, VOL. 7, NO. 2, FEBRUARY 2024 7

• Continually seeking excellence
• Harnessing change for competitive advantage
• Simplicity
• Self-organizing team to come out with the best

architectures, requirements, and designs.
• Regular adaptation to changing circumstances more

effectively.

B. Disadvantages
• Can be a costly model to use.
• Risk analysis requires highly specific expertise.
• The project’s success is highly dependent on the risk

analysis phase.
• Does not work well for smaller projects.
• It is not suitable for low-risk projects.

8. Agile Model
Agile development methodology attempts to provide many

opportunities to assess the direction of a project throughout the
development life cycle. Agile methods break tasks into small
increments with minimal planning and do not directly involve
long-term planning [8]. Iterations are short time frames that
typically last from one to four weeks. Each iteration involves a
cross-functional team working in all functions: planning,
requirements analysis, design, coding, unit testing, and
acceptance testing [7]. At the end of the iteration, a working
product is demonstrated to stakeholders. This minimizes overall
risk and allows the project to adapt to changes quickly.

Fig. 8. Agile life cycle model

A. Advantages
• Working software is delivered frequently (weeks

rather than months).
• Face-to-face conversation is the best form of

communication.
• Close daily cooperation between business people and

developers.
• Continuous attention to technical excellence and good

design.
• Regular adaptation to changing circumstances.
• Even late changes in requirements are welcomed.
• Customer satisfaction by rapid, continuous delivery of

useful software.

B. Disadvantages
• There is a lack of emphasis on necessary designing and

documentation.
• The project can easily get taken off track if the

customer representative is not clear about what
outcome they want [1].

• In the case of some software deliverables, especially
the large ones, it is difficult to assess the effort
required at the beginning of the software development
life cycle.

9. Incremental Model

Fig. 9. Incremental model

A. Advantages
• Generates working software quickly and early during

the software life cycle.
• This model is more flexible – less costly to change

scope and requirements.
• It is easier to test and debug during a smaller iteration.
• In this model customers can respond to each build.
• Lowers initial delivery cost.

B. Disadvantages
• Needs good planning and design.
• Needs a clear and complete definition of the whole

system before it can be broken down and built
incrementally.

• Total cost is higher than waterfall.

10. Build and Fix Model

Fig. 10. Build and Fix model

In this most simple model of software development, the

product is constructed with minimal requirements, and
generally no specifications not any attempt at design, and
testing is most often neglected. This is a representation of what

Dhiman et al. International Journal of Research in Engineering, Science and Management, VOL. 7, NO. 2, FEBRUARY 2024 8

is happening in many software development projects [6].
This process goes on until the user feels that the software can

be used productively. However, the lack of design requirements
and repeated modifications result in a loss of acceptability of
software. Thus, software engineers are strongly discouraged
from using this development approach [5].

A. Advantages
• Cost efficient for very small projects of limited

complexity

B. Disadvantages
• Unsatisfying approach for products of reasonable size.
• Cost is higher for larger projects
• Product will not be delivered on time most of the time.
• Often results in a product of overall low quality.
• No documentation is produced.
• Maintenance can be extremely difficult without

specification and design document

11. B Shaped Model
It is used to increase the features of the waterfall model. B

Model is devised by Birrell. It is represented by a vertical line
and leads to the maintenance cycle at the bottom. Each step is
important and there is no interdependency on other stages. In B
shaped model we use a double arrow between all the phases.
The b model starts with inception [4]. It is suitable in category
1 software life cycle. It is used to ensure that constant
improvement of software and systems can become the part of
development stage.

A. Advantages
• B shaped model is flexible in its interaction with

system requirements.
• We can make one change by moving through the

maintenance cycle at the same time.
• We can take the possibility while or by using reverse

to the previous phase if any error occurs.

B. Disadvantages
• Changes are slow in the shaped Model.
• For modification purposes we have another design and

analysis phase we have new requirements associated
with changes which lead to the understanding and
investigation again.

12. Wheel and Spoke Model
Wheel and Spoke models are a bottom-up approach. It is

beneficial in the design and prototyping stage. Wheel And
Spoke Model is a development model which parallelly
sequential in nature [3]. It is essentially a modification of the
spiral model that is designed to work with smaller initial teams,
which then scale upwards and build value faster.

• The wheel and spoke are best used in an environment
where several projects have a common architecture or
feature set that can be abstracted by an API.

A. Advantages
• Less risk at the initial stage: If one is developing a

small-scale prototype as compared to a full-blown
development effort, then several programmers are
needed at the start.

• The core team developing the prototype gains
experience from each successful program that adapts
the prototype and sees an increasing number of bug
fixes and a general rise in code quality.

13. Unified Process Model
The Unified Process is based on the enlargement and

refinement of a system through many iterations, with cyclic
feedback and adaptation [6]. The system is developed
incrementally over time, and no. of iterations and thus this
approach is also known as incremental and iterative software
development. The iterations are spread over four phases where
each phase consists of one or more iterations.

The steps described by Unified Process are as follows:
• Business modeling
• Requirements
• Analysis and design
• Implementation
• Test
• Deployment

A. Phases in Unified Process
Unified process is dividing the development process into five

phases that are mentioned below:
• Inception
• Elaboration
• Conception
• Transition
• Production

14. JAD (Joint Application Development)
This methodology involving the client and end-user in the

development process results in a project that is more aligned
and suitable to their needs [5].

A. Advantages
• Improved Delivery Time: The time needed to develop

a product by using the JAD model is short and more
effective than that of other basic models.

• Cost Reduction: Efficiently finding out the
requirements and facts with business executives and
stakeholders will make a low effort to create the
system.

• Better Understanding: The team members who can
professionally interact with each other better usually
helps to understand product development easier.

• Improved Quality: Since all the key decision-makers
and stakeholders of the project are involved in the
implementation of the project, so there is the less
chance of error, and hence the product quality
becomes effective and more accurate [8].

Dhiman et al. International Journal of Research in Engineering, Science and Management, VOL. 7, NO. 2, FEBRUARY 2024 9

• Resolve difficulties more easily and invent error free
product

• Lower Risk
• Faster Progress

B. Disadvantages
• It requires specific commitment.
• Difficult to achieve a goal because there are lots of

options within a team

15. XP (Xtreme Programming)
Extreme programming (XP) is the most important software

development part of Agile models. It is used to enhance
software quality and responsive to customer requirements. The
extreme programming model recommends taking the best
practices that have worked well in the past in program
development projects to extreme levels [1].

It includes the following things that are mentioned below:
• Code review
• Testing
• Incremental Development
• Simplicity
• Design
• Integration Testing

A. Applications
• The XP model is very helpful in small projects

consisting of small teams as face-to-face meetings are
beneficial to achieve.

• This type of project faces changing requirements
rapidly and technical issues. So, the XP model is used
to complete this type of project.

16. Scrum
In the Scrum framework, agile methodology is used. In the

scrum model, iterative and incremental process is used. The
project is divided into several phases, each of which results in a
ready-to-use product.

In the scrum model, we use some roles that are explained
below:

• The product owner takes care of the user’s
requirements

• The Scrum master coordinates the complete
development methodology.

• The Scrum team create the product. Its main motives
are programming and developing, analysis, testing,
etc.

17. Big Bang Model
This Big Bang model is a software development model that

does not follow any kind of protocol, and hence its planning
needs are minimum This model holds no planning or analysis,
so this model involves many risks than other SDLC models.[2]

Big Bang model can be partitioned into the following terms:
• In this development model, modules get integrated as

all the individual modules are entirely built and are not

integrated separately or individually.
• Each module is tested separately to look for error or

defects.
• In case there is any bug or error in any module, the

module is disintegrated, and the root cause of the
problem is found.

A. Advantages
• This is quite a simple model.
• Implementing this model makes managing tasks

easier.
• It required no planning.
• Developers have large flexibility in developing the

entire product.
• Resources necessary for developing the product is

very less.

B. Disadvantages
• This model is not suitable for big or complex projects.
• Very meagre model for building long and constant

projects.
• Holds very high risk.

18. Lean Development
The Lean model for software development is followed by

"lean" manufacturing work and principles. It is also called LSD
(Lean Software Development). It is based on the agile concept.
The lean approach is also called MVP (Minimum Viable
Product). Seven lean principles are mentioned below:

• eliminate waste
• amplify learning
• decide as late as possible
• deliver as fast as possible
• empower the team
• build in integrity
• see the whole.

A. Advantages
• Streamlined concept is helpful in functionality to be

delivered in short time.
• It deletes unwanted activity, and as a result, we can

reduce the cost.
• It encourages the development team to make

decisions, which can also boost morale.

B. Disadvantages
• It depends on the team involved, making it not as

perfect as other frameworks
• Depends on good quality documentation, and failure

to do so can result in development mistakes

19. Conclusion
In this paper, software development life cycle and SDLC

models are defined. Every model has its own advantages and
disadvantages and every model came into existence to cope
with the problems of existing model of that time. In now a day’s

Dhiman et al. International Journal of Research in Engineering, Science and Management, VOL. 7, NO. 2, FEBRUARY 2024 10

waterfall and spiral are the most used in the software
development process and the other models are used according
to the requirements of the software products. The software
developers use the models according to the size of the software
that is to be developed. SDLC is helpful for users to get a high-
quality product within time and budget. So that the user can
select the best-suited model as per his requirements.

References
[1] Barry Boehm, "Spiral Development: Experience, Principles, and

Refinements", edited by Wilfred J. Hansen, 2000.
[2] Roger Pressman, Software Engineering: A Practitioner’s Approach, Sixth

Edition, McGraw-Hill Publication.
[3] K. K. Aggarwal, Yogesh Singh Software Engineering 3rd Edition.
[4] Karlm, "Software Lifecycle Models', KTH, 2006.
[5] Vanshika Rastogi, “Software Development Life Cycle Models-

Comparison, Consequences,” International Journal of Computer Science
and Information Technologies, vol. 6(1), 2015, 168-172.

[6] Sanjana Taya, “Comparative Analysis of Software Development Life,”
2011.

[7] C. Senthil Murugan and S. Prakasam, “A Literal Review of Software
Quality Assurance”, International Journal of Computer Applications, vol.
78, no. 8, September 2013.

[8] Anu Gupta, “Quality Assurance and Its Standards: Importance in Various
SDLC Models”, International Journal of Advanced research in Computer
Science and Management studies, vol. 2, no. 12, December 2014.

[9] Chaitali Roy and Mousumi Saha, “The Realm of Software Quality
Assurance”, International Journal of innovations and Engineering and
Technology.

[10] Shubham Dwivedi, “Software Development Life Cycle Models - A
Comparative analysis”, International Journal of Advanced Research in
Computer applications.

[11] Nayan B. Ruparelia, “Software Development Life Cycle Models,” vol.
35, no. 3, May 2010.

[12] Jacobson I., Booch G. & Rumbaugh J. (1999): The unified software
development process; Addison-Wesley, Reading, Massachusetts.
Raymond, Eric (2001): Cathedral and the Bazaar, 1st Edition.

[13] Mooz, H and Forsberg, K., A visual explanation of the development
methods and strategies including the waterfall, spiral, vee, vee+, and
vee++ models, pp. 4-6, 2001.

	1. Waterfall Model
	A. Advantages
	B. Disadvantages

	2. Iterative Waterfall Model
	A. Advantages
	B. Disadvantages

	3. V-Shaped Model
	A. Advantages
	B. Disadvantages

	4. RAD Model
	A. Advantages

	5. Evolutionary Model
	A. Advantages
	B. Disadvantages

	6. Prototyping Model
	A. Advantages
	B. Disadvantages

	7. Spiral Model
	A. Advantages
	B. Disadvantages

	8. Agile Model
	A. Advantages
	B. Disadvantages

	9. Incremental Model
	A. Advantages
	B. Disadvantages

	10. Build and Fix Model
	A. Advantages
	B. Disadvantages

	11. B Shaped Model
	A. Advantages
	B. Disadvantages

	12. Wheel and Spoke Model
	A. Advantages

	13. Unified Process Model
	A. Phases in Unified Process

	14. JAD (Joint Application Development)
	A. Advantages
	B. Disadvantages

	15. XP (Xtreme Programming)
	A. Applications

	16. Scrum
	17. Big Bang Model
	A. Advantages
	B. Disadvantages

	18. Lean Development
	A. Advantages
	B. Disadvantages

	19. Conclusion
	References

