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Abstract: An effective transportation system must include 

intelligent traffic light regulation. An intelligent traffic light 
control system should dynamically respond to real-time traffic, 
unlike traditional traffic lights, which are typically operated using 
manual instructions. Q-reinforcement learning is a technology 
that is increasingly being applied to traffic light regulation, and 
recent experiments have yielded promising results. In this study, 
an adaptive traffic signal scheduling strategy is designed utilizing 
Q-learning (QL) to minimize the number of vehicles blocking an 
intersection. 
 

Keywords: Internet of Things, Q-Learning, Signal control, 
Traffic, Vissim. 

1. Introduction 
Every day, Urban crossroads are becoming increasingly 

congested as traffic demand rises, which is a significant 
challenge in the transportation system (Alberto 2005). 
Recently, research has focused on intelligent transportation 
systems (ITS), which aim to enhance the safety, efficiency, and 
eco-friendliness of traffic management systems [1].  

Among various traffic management systems, Traffic Signal 
Control (TSC) is considered a vital component of ITS, serving 
as a fundamental tool for traffic management. It’s can be 
divided into:  Fixed-time signal control and adaptive traffic 
signal control [1]. First at a junction is optimized offline based 
on historical traffic data (not real-time traffic demands) in a 
practice known as fixed-time traffic signal control. But 
occasionally, changes in traffic conditions could render 
outdated predetermined settings for traffic light timing. As a 
result, traffic congestion results from the inability of fixed-time 
traffic signal control to adjust to dynamic and bursty traffic 
needs [1].  

Contrarily, the second has been demonstrated to be a 
successful strategy to lessen traffic congestion. This technique 
modifies traffic signal timing in accordance with real-time 
traffic demand [2], [3]. Artificial intelligence has recently 
offered a fresh approach to resolving this issue. For example, 
(A Deep Reinforcement Learning Approach to Adaptive Traffic 
Lights Management) proposes a micro-agent-based simulator 
and a Reinforcement Learning method for controlling traffic 
lights.  

 

 
Artificial intelligence has recently offered a fresh approach 

to resolving this issue. To create signal control systems, for i, 
several academics suggested using fuzzy theory [1], [4], fuzzy 
neural networks [10], and fuzzy control models [5], [6]. 
Reinforcement learning is another method that can be used to 
learn the best signal control approach [7]. The static temporal 
optimization problems can also be solved using evolutionary 
algorithms (EAs) [8], such as genetic algorithms, particle 
swarm optimization, etc. 

The best approach for determining the appropriate course of 
action in a dynamic environment among the various AI 
strategies is reinforcement learning. The stochastic challenges 
in the traffic environment can be addressed using Q-learning 
(QL), a values-based reinforcement learning algorithm. The Q-
learning (QL) technique is used in this study to improve the 
performance of the proposed optimal TSC system, which aims 
to minimize the number of vehicles blocking an intersection. 

2. Literature Review 
Many research projects have been conducted to enhance the 

intelligence of traffic management systems for intersection 
traffic management. However, conventional methods cannot 
address the complex traffic signal optimization problems. 
Therefore, current traffic lights utilize AI methods for example 
fuzzy logic [9], Q-learning (QL) [10], and deep Q-learning [11]. 
In the fuzzy logic approach [9], the optimal signal extension 
time is determined using a membership function and two 
sensors to assess traffic flow. When compared to fixed-time 
controllers, this technology exhibits greater adaptability. The 
fuzzy system continuously adjusts to the dynamic environment 
by incorporating and employing fuzzy control phrases tailored 
to the changing conditions. Nevertheless, these tasks demand a 
substantial amount of processing power, eventually resulting in 
reduced system performance. Consequently, researchers have 
explored the use of QL for traffic control. 

The reinforcement learning technique Q-learning (QL) can 
be applied to traffic control with dynamic changes. QL does not 
require predefined models, making it suitable for real-time 
traffic management. In a study [10], the stop delay was 
minimized by finding the optimal green light duration using QL 
with the assistance of a fuzzy rule set that classified the traffic 
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environment. However, the performance was not optimal for 
low traffic volumes. Another study [7] aimed to lessen traffic 
congestion by minimizing road waiting times. The traffic signal 
sequence used to activate the green light was pre-defined, and 
the duration of the green light was adjusted based on the length 
of the queue. Although this method was more adaptable than 
fixed-time traffic signals, it couldn't change the sequence of the 
traffic lights. To reduce the waiting time for vehicles, a cluster-
based Q-learning approach was proposed. The parameters used 
to decide the sequence of green lights were the queue length and 
the duration of time the queue had been waiting. However, there 
was a risk associated with exclusively focusing on congested 
areas. 

Deep Q-learning (deep QL) is a method for handling inputs 
with many states and high dimensions compared to QL. It’s 
employed to learn the Q-function, and the value-function-based 
agent subsequently selects the optimal control action. In [6], the 
objective is to minimize queue length differences in all 
directions using a parameter. Similarly, the aim of [12] to 
minimize the variation in overall cumulative delays between the 
previous and current time. [13], applied a reinforcement 
learning technique to control a Manhattan-like traffic network 
with nine intersections. Although frequently include numerous 
layers, the complexity required for our signal management 
challenge is not necessary. Therefore, the primary focus of this 
work will be on investigating light control systems using QL. 

In this paper, QL method is presented that focuses on two 
main parameters: throughput and the standard derivation of 
queue length. By modifying traffic lights with QL, the intention 
to increase the volume of vehicles passing through an 
intersection while maintaining the balance between the 
roadways. The action set, however, is defined in this study 
based on driving instructions, so even if the intersection 
structure changes, the action set remains unchanged. As a 
result, this approach can be readily applied to various n-way 
intersections. 

3. The Suggested Method 

A. Definition of the Problem 
Optimizing intersection traffic light control is a challenging 

problem that requires taking into account many factors to 
achieve the best possible outcome. Minimizing traffic delay is 
a critical objective since delays lead to congestion, longer 
commute times, and increased air pollution. However, 
optimizing traffic signals is not just about reducing delays; It's 
crucial to ensure that signals are distributed fairly to all 
intersecting sides. 

One way to ensure that signals are distributed equally is to 
use the standard deviation of queue lengths as a parameter. This 
parameter represents the variation in the number of vehicles 
parked on each side of the intersection. A low standard 
deviation implies that the queue lengths are the same on all 
sides, which indicates that the distribution is fair. On the other 
hand, a high standard deviation indicates that the traffic is not 
distributed evenly, and some drivers may face longer waiting 
times. 

To minimize traffic delay and ensure a fair signal 
distribution, throughput can also be used as a parameter. The 
throughput of an intersection is the total number of cars that can 
pass through in a predetermined amount of time. By enabling 
more vehicles to pass through the intersection, throughput is 
enhanced, reducing delays and improving traffic flow. 

By optimizing traffic signals based on both the throughput 
and the standard deviation of queue lengths, it is possible to 
achieve a balance between reducing delays and ensuring a fair 
distribution of signals. Traffic simulation models and machine 
learning techniques are used to enhance the timing of traffic 
signals and improve the efficiency of traffic flow. 

 
𝑑𝑑ql  -   standard deviation of the queue lengths 
𝑡𝑡inter  -   time until the signal is back  
𝑙𝑙signal -   signal length  
 
The model is presented in the following way: 
 
max 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ 𝑝𝑝𝑟𝑟𝑡𝑡                                                       (1) 
 
subject to:  
 
𝑑𝑑ql ≤ 𝜑𝜑                                                                       (2) 
𝑙𝑙signal = c                                                                     (3) 
𝑡𝑡inter<𝜑𝜑′′                                                                     (4) 
 
In Eq. (1), the model is being maximized. Throughput 

represents the number of vehicles passing through an 
intersection per hour. Equation (2) imposes the condition that 
the standard deviation of queue lengths must be less than or 
equal to the threshold value (𝜑𝜑) to ensure a fair distribution of 
signals. Equation (3) expresses the constancy of the signal 
duration. Eq. (4) indicates that the time interval between the end 
of the green light in a given direction and the start of the 
subsequent green light in the same direction is less than the 
predetermined threshold value (𝜑𝜑′′). 

B. Q-learning 

 
Fig. 1.  Agent-environment interaction in reinforcement learning 

 
Reinforcement learning is a method that can enhance its 

performance through previous learning experiences [14]. QL, a 
type of reinforcement learning, utilizes a trial-and-error method 
to navigate a complex and unpredictable environment and 
determine the optimal behavior based on past experiences [15]. 
QL involves three key components: state, action, and reward. 
The environment's current situation is the state, the behavior 
taken is the action, and the result of that behavior is the reward. 
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The interaction between agent and environment is illustrated as 
Fig. 1. 

 
Eq. (5) illustrates how an action (𝑎𝑎t) in a state (𝑠𝑠t) leads to a 

transition to the next state (𝑠𝑠t+1). 
 
St         

at      St+1                                                            (5) 
 
The Q-table gets revised based on the previous value of (Q(𝑠𝑠t, 

𝑎𝑎t)) for the current state (𝑠𝑠𝑡𝑡), action (𝑎𝑎𝑡𝑡), reward (𝑟𝑟t+1), and the 
maximum values (max𝑎𝑎 Q (𝑠𝑠t+1, 𝑎𝑎t+1) from the new state (𝑠𝑠t+1) 
using a learning rate (𝜂𝜂), as depicted in Equation (6). 

 
Q(st,at)       Q(st, at)+ 𝜂𝜂⋅(𝑟𝑟t+1+𝛾𝛾⋅maxQ(𝑠𝑠t+1, 𝑎𝑎t+1)−Q (𝑠𝑠t,𝑎𝑎t)   

(6) 
 
The convergence and speed of algorithms can be influenced 

by the learning rate and discount factor (𝛾𝛾). During each 
iteration, the learning rate specifies how much the movement in 
the ideal direction will shift, and the discount factor reflects 
how important the next state will be. Typically, these 
parameters are set within a range of 0 to 1. A reduced learning 
rate results in more refined learning, but the convergence 
process is longer. In contrast, a larger learning rate leads to 
faster convergence, but it can overshoot the optimal solution. 
The discount factor determines the balance between past and 
new information, with values closer to 0 emphasizing past 
knowledge and those closer to 1 emphasizing new data. For 
instance, a discount factor of 0 indicates that no new learning 
takes place, relying solely on previous knowledge for decision-
making. On the other hand, a discount factor of 1 means that 
only the most recent information is used to make a decision. 

The QL algorithm employs two different methods for 
decision-making: exploitation and exploration. Exploitation 
involves selecting an action that maximizes the reward based 
on previously learned information. This method aims to make 
the best possible choice using available knowledge. However, 
exploitation has limitations since it is prone to local 
optimization, making it difficult to achieve global optimization. 
To overcome this, exploration is used as it is related to global 
search and aims to find more diverse options for decision-
making. Exploration randomly selects an action to acquire new 
experiences that can enhance the decision-making process. The 
𝜀𝜀-greedy selection is used for exploration, and the 𝜀𝜀 parameter, 
ranging between 0 and 1, controls the randomness. In this 
method, utilizing exploitation, to determine the direction to 
drive when the next signal is green based on learned 
information, while exploration selects a random action to 
receive a signal, enabling the algorithm to acquire diverse 
experiences to make better decisions. 

C. Traffic Light Controller used Q-learning 
The aim of this research is to optimize the processing of 

vehicles at intersections by increasing throughput and reducing 
the standard deviation of queue lengths. Throughput is defined 
as the total of vehicles that can be handled at the intersections 
within a given time frame, while the standard deviation of 

queue lengths is used to ensure traffic balance across all road 
directions. 

  

 
Fig. 2.  4-Lanes intersection 

 

 
Fig. 3.  Action set 

 
Table 1 

State transition table 

 
 

Table 2 
Simulation parameters 

 
1)  State and action 

The number of lanes on the road determines the number of 
states at a given intersection. We presume that a right turn is 
also possible in the rightmost straight lane, if necessary, when 
there are two options on a road: left turn and straight. Therefore, 
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an intersection with n lanes has 2*n states. The number of states 
is equivalent to the total number of lanes at an intersection. For 
example, a 4-lane intersection has 8 states, while a 5-lane 
intersection has 10 states. In Fig. 2, we can see that a 4-direction 
intersection has a total of 8 lanes, and the way with the highest 
total of number of vehicles determines the current state. From 
the set of actions that includes the direction of the current state, 
we choose the action that can result in the highest number of 
vehicles being able to move through the intersection. 

Fig. 3 defines the three available action sets for a road. Each 
action set corresponds to a direction and selecting one will 
result in a green light only for that particular direction. 
Although the state may change in an n-direction intersection, 
The action set doesn't change. 
2) Reward 

To reduce traffic congestion at an intersection, two 
parameters are utilized in configuring the reward function: the 
standard deviation of queue lengths in each direction and the 
throughput. A small standard deviation implies that all lanes 
have a similar queue length, leading to a balanced signal 
distribution and queue length. Intersections with reliable signals 
can accommodate a larger number of cars, making throughput 
a significant parameter. The value of 𝜏𝜏𝑡𝑡𝑝𝑝, which is an 
exponential function, decreases as the throughput value 
increases. In other words, higher throughput leads to lower 𝜏𝜏𝑡𝑡𝑝𝑝. 
The weighting factor 𝛼𝛼, which is a sigmoid function ranging 
from 0 to 1, adapts to the arrival rate of vehicles per hour. As 
more vehicles arrive, 𝛼𝛼 approaches 1. 

 
𝑓𝑓(𝑡𝑡) = 𝛼𝛼 ⋅ (𝑑𝑑ql) + (1 − 𝛼𝛼) ⋅ (𝜏𝜏tp)                     (7) 
𝑟𝑟t = 𝑙𝑙𝑟𝑟𝑟𝑟𝑙𝑙 (𝑓𝑓(𝑡𝑡))                                             (8) 

 
As demonstrated in Eq. (7), the function is represented by the 

throughput and the standard deviation of queue lengths. 
Maximizing the reward (𝑟𝑟) is achieved by minimizing the value 
of 𝑓𝑓(𝑡𝑡). The variable 𝑙𝑙 represents the base of the logarithmic 
function and its values range from 0 to 1. 

The MDP diagram depicted in Figure 4 illustrates how an 
agent interacts with its environment, specifically at an 
intersection. At each time 𝑡𝑡, the environment transmits 
perceived information, which includes the queue lengths (𝑞𝑞𝑙𝑙) 
and throughput (𝑡𝑡𝑝𝑝) of all lanes within the intersection, to the 
agent. Subsequently, the agent computes the reward (𝑟𝑟𝑡𝑡) 
obtained when transitioning from the previous state (𝑠𝑠𝑡𝑡−1) to 
the current state (𝑠𝑠𝑡𝑡) and updates the Q-table accordingly. 
Following this, The current state (st) is then adjusted depending 
on the information perceived in the lanes with the lengthy 
queue. The action (𝑎𝑎𝑡𝑡) is decided by the agent with the highest 
reward and relayed back to the environment. This action 
signifies the lanes (𝑑𝑑𝑐𝑐) in which the green signal is activated at 
the current state. Ultimately, the green signal is enabled in the 
designated lanes at the street intersection. It is assumed that the 
environment operates in a deterministic manner. For detailed 
information, please refer to Table 1, which presents the state 
transition table. 

 

4. Comparative Experimentation 

A. Model of Simulation 
The proposed method was evaluated at a 4-direction 

intersection, as depicted in Figure 2. The roadway had a length 
of 5 km, and the average speed of the vehicles was 10 km/h. 
Assuming that each vehicle was approximately 4.7 m long with 
a spacing of 1.3 m between them, one vehicle would occupy a 
queue space of up to 6 m. 

To conduct the experiment, traffic data was gathered using a 
VISSIM simulator. Given the stochastic and dynamic nature of 
the traffic environment, the algorithm's learning rate was set to 
0.1, and the exploration parameter (ε) was set to 0.1. Based on 
the initial experiments, the discount factor (δ) was established 
at 0.5. The discount factor of 0.9 was chosen because historical 
traffic data in Traffic Signal Control (TSC) applications holds 
less relevance than real-time data. For further details regarding 
the simulation parameters, please refer to Table 2. 

To assess the effectiveness of the suggested algorithms and 
QL, simulation experiments were carried out. The assessment 
focused on three key metrics: queue length, standard deviation 
of queue lengths, and waiting time. Queue length represents the 
total number of vehicles waiting on the lane, while the standard 
deviation of queue lengths provides an indication of the balance 
between different directions of traffic flow. A lower standard 
deviation implies a better balance. Lastly, waiting time 
measures the duration for which a vehicle remains stationary 
before crossing the intersection. 

  

 
Fig. 4.  MDP diagram 

 

 
Fig. 5.  Performance comparison: (a) queue length, (b) queue length 

deviation, and (c) waiting time µ 
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B. Result and Analysis 
The study compared the proposed model with two other QL 

models. The first model, referred to as "extension traffic signal" 
(E-TS), utilized the order of green lights on the road to make 
decisions on whether to extend or shorten the duration of the 
green light [16]. It can be considered as an upgraded version of 
fixed-time traffic lights. The second model, known as "cluster-
traffic signal" (C-TS), employed a cluster-based QL technique 
to control traffic signals [17] . In the C-TS model, vehicles were 
grouped into clusters, and each cluster was allowed to cross the 
intersection during the green light phase. The reward for the C-
TS model was calculated as the combined value of the queue 
length and waiting time, aiming to minimize congestion and 
delays. 

To ensure precise analysis of the experiment's results, the 
measurement units were adjusted to align with the specific unit 
of direction, enhancing the accuracy and relevance of the 
analysis. 

As depicted in Figure 5(a), the proposed algorithm exhibited 
superior performance compared to E-TS and C-TS models at 
150% traffic load, with an average queue length approximately 
20% shorter than E-TS and 65% shorter than C-TS. The 
flexibility and adaptability of the proposed method, which 
features an undetermined signal system, enabled it to 
outperform the other models as the total of arrivals increased. 
Figure 5(b) illustrates that the proposed algorithm achieved an 
average standard deviation value roughly 45% lower than E-TS 
and 70% lower than C-TS. This improved performance can be 
attributed to the fact that the proposed algorithm incorporates 
the standard deviation of queue lengths in the calculation of 
rewards. Additionally, Figure 5(c) contrasts the typical waiting 
time for each vehicle, revealing that the proposed algorithm 
boasted 13% less waiting time compared to E-TS and 35% less 
than C-TS, on average. Taken together, the results obtained 
from analyzing queue length, standard deviation of the queue 
length, and average waiting time confirm that the proposed 
algorithm effectively mitigates vehicle delays in a more 
balanced manner. 

 

 
 

Fig. 6.  n-lanes intersection: (a) 3-lanes, (b) 4-lanes, (c) 5-lanes, and  
(d) 6-lanes 

 
Fig. 7.  Road initialization experiment per hour: (a) queue length, (b) 

standard deviation of queue lengths, and (c) waiting time 
 

 
Fig. 8.  Results of a 24-hour road initialization experiment, showcasing (a) 

the queue length, (b) the variability of queue lengths measured by the standard 
deviation, and (c) the waiting time 

 
Figure 7 presents the results obtained from the experiment 

involving hourly road initialization. In Figure 7(a), it can be 
observed that the performance of the 3, 4, 5, and 6-lane 
intersections is quite similar. For a traffic load of 110%, the 
values are distributed between 09 and 14, while for a traffic load 
of 150%, the values are distributed between 19 and 20. Moving 
on to Figure 7(b), it is evident that the standard deviation of 
queue length is higher in the 3-way experiment compared to the 
other intersections. This can be attributed to the 3-way 
intersection having fewer roads, which imposes limitations on 
the possible action set. Specifically, the 3-way intersection 
lacks the option to execute a third action that enables both left 
turns from different roads. This restriction in action selection 
hinders the ability to control traffic in various combinations, 
occasionally resulting in the selection of unnecessary action 
combinations. Consequently, the standard deviation is higher in 
the 3-lane intersection. However, the absolute difference in 
values is not significantly notable. In terms of average waiting 
time, consistent results are observed across all intersections, 
indicating a fair distribution of signals for each direction. 

Figure 8 illustrates the results of the road initialization 
experiment conducted every 24 hours. In Figure 8(a), it can be 
observed that the queue length of the 6-lane intersection 
surpasses that of the other intersections. This can be attributed 
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to the 6-way intersection having the highest number of 
directions that require signal control within a limited time. 
Additionally, it is influenced by the accumulated delay resulting 
from the highest traffic load. Turning to Figure 8(b), it is 
evident that the standard deviation is higher for the 5-way and 
6-lance intersections compared to the 3-way and 4-way 
intersections, particularly at 120% and 130% traffic loads. This 
indicates that the 5-way and 6-way intersections involve the 
calculation of more directions. Consequently, the standard 
deviation, which represents the balance of traffic on the roads, 
is less balanced in the 5-way and 6-way intersections compared 
to the 3-way and 4-lance intersections. The same, in Figure 8(c), 
an increase in waiting time is observed for the 5-lance and 6-
lance intersections. Consequently, the proposed method 
demonstrates expandability to different intersection structures. 

5. Conclusion 
The present study introduced a traffic light control system 

utilizing QL, with a focus on incorporating standard deviation 
of queue lengths and throughput as key parameters. In 
comparison to previous QL-based research, the proposed 
method demonstrated favorable efficiency in terms of reducing 
both the standard deviation of queue lengths and the queue 
length itself, leading to shorter waiting times. This suggests that 
the traffic light control system effectively grasped the traffic 
flow dynamics and distributed lights accordingly. Additionally, 
this research explored a traffic light control approach that can 
be adapted to different intersection structures, emphasizing its 
expandability. 
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