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Abstract: In mathematical analysis, topology is built by metric
spaces. A metric space is a set in which the metric axioms are
satisfied. Many mathematicians discuss the generalization of
metric spaces. One of them is the concept of G —metric space,
denoted by (X,G), which was introduced in 2006. Within the
metric space, there are many special sets that have played an
important role in developments in the field of mathematical
analysis, in particular compact sets. A set is said to be compact if
each open cover of the set has finite subcovers. The properties of
compact sets have been discussed in metric spaces, Hausdorff
spaces, topological spaces, and fuzzy metric spaces. However,
there are no researchers who discuss the properties of compact sets
in G —metric spaces. Therefore, to expand the discussion of the
concept of G —metric space and the properties of compact sets that
apply to it, this article discusses the proof of theorems related to
the properties of compact sets in G —metric space. Compact sets in
G —metric spaces have the properties of being closed and bounded.
However, not all closed and bounded sets are compact sets. To
prove the compactness of a set in G —metric space, in addition to
using the concept of open covers, it can also be proven by the
G —completeness and G —totally boundedness properties of a set.
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1. Introduction

Mathematical analysis is one of the branches of pure
mathematics, one of which is related to the concept of
neighborhood and set, where there is a set called compact set.
A mathematician from France named Henri Lebesgue
introduced compact sets for the first time in 1902 [1]. The
concept of compact sets has a very important role in
mathematics, especially in the fields of set theory, analysis, and
topology.

In mathematical analysis, topology is built by metric spaces.
A mathematician named Maurice Frechet first introduced the
concept of metric spaces in 1906. Metric is a concept used to
define the distance between elements in a space. A metric space
is a set in which a metric axiom is satisfied. The set X in which
the metric axiom d is satisfied is written as (X, d) and is called
a metric space [2].

Many mathematicians have conducted research on the
concept of metric spaces. In 2006, Mustafa and Sims in their
journal entitled “A New Approach to Generalized Metric
Spaces” introduced the concept of G —metric space which is a
generalization or extension of the concept of metric space.
From that metric space, a definition for G —metric space can be
produced and its topology is introduced [3]. Research on
G —metric space continues to grow until now, for example in

*Corresponding author: manuharawati@unesa.ac.id

[4]1-[8], and many more.

The discussion of compact sets has been in Hausdorff space
[9], topological space [10], metric space [11], and fuzzy metric
space [12]. Applications of compact sets have been widely
used, usually related to topology and mathematical analysis.
The discussion of the compactness of G —metric space has been
discussed before, for example in [13] which discusses the finite
nature of Bourbaki—G and compact local uniform—G and [14]
which discusses the fixed point theorem on compact G —metric
space. Therefore, to expand the discussion on the concept of
compactness of G —metric spaces, this research paper will
discuss the proof of theorems related to the properties of
compact sets in G —metric spaces.

2. Literature Survey

A. G —metric Spaces

Definition 2.1. [3] Given a nonempty set X, G: X X X X X —

R*, and x,y,z,a € X which if satisfied:

(G)G(x,y,z) =0ifandonlyifx =y =z

(G2)0 < G(x,x,y) withx + y

(G3)G(x,x,y) < G(x,y,z) withy + z

(G4) G(x,y,2) =G(x,2,y) =G(y,x,2) = G(y,z,x) =
G(z,x,y) = G(z,y,x) (symmetrical across all three
variables)

(G5 G(x,y,z) <G(x,a,a) + G(a,y, z) (rectangular
inequality)

then the function G is called the G-metric on X and (X,G) is

called a G-metric space

Theorem 2.1 [3] Given (X, G) is a G-metric space. Then for
any x,y,z,a € X holds:
(1) IfG(x,y,z)=0thenx =y =2z
2) Gx,y,z2)<Gxxy)+G6(xx,2)
(3) GOy, y) <26(y,x,x)
@ Gxy2z)<Gxaz)+G(a,y,2)
5) Glx,y,2z)< %(G(x, y,a)+G(x,a,z)+G(a,y, 2))
6) G(x,y,z)<Gkx,aa)+Gly,aa)+G(z,aa)
(N 16(x,y,2) —G(x,y,a)| <
max {G(a, z,2),G(a,a,z)}
®) 16(x,y,2) —G(x,y,a)| <G(x,a,z2)
O 16(x,y,2)—G(y,z2)| <
max {G(x,z,2),G(x,x,2)}
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|G(x:y,J’) - G(x:xJ’N <
max {G(x,x,y),G(x,y,¥)}

(10)

Theorem 2.2. [3] Given (X,G) is a G-metric space. Then we
can define the metric d which is constructed by the G-metric.
Forallx,y € X holds d;(x,y) = G(x,y,y) + G(x,x,y).

Definition 2.2. [3] Given (X, G) is a G-metric space. For every
pEX re€R and r >0, the boundary with center p and
radius v is Bo(p,r) = {y € X:G(p,y,y) <r}.

Theorem 2.3. [3] Given (X, G) is a G-metric space. For every

pEX, re€R r>0,itholds:

(1) IfG(p,x,y) <rthenx,y € Bs;(p,1)

(2) If y€Bg(p,r), then there exists 6§ >0 such that
Bs(y,6) < Bs(p,7)

Theorem 2.4. [3] Given (X,G) is a G-metric space and
By, (p,T) is the neighborhood of the metric constructed by the
G-metric. Then for every p € X, r €R, and r > 0,we can

obtain Bg (p.57) € Bag(p,) € Be (@ 7).

Based on the above Theorem, it follows that the G —metric
topology, 7(G), is equivalent to the metric topology constructed
from d. Thus, G —metric spaces are topologically equivalent
to metric spaces.

Definition 2.3. [15] Given (X, G) is a G-metric space and E C
X. The point p € X is called a limit point of E if for every
neighborhood of the point p with radiusr, v € R, r > 0, that is
B(p,r) holds

B@r)—{pPHNE+0

B. Open Set

Definition 2.4. [15] Given (X, G) is a G-metric space and E C
X. The set E is said to be open if for everyp € E thereist € R,
r > 0, such that B;(p,r) C E.

C. G-convergent, G-Cauchy, and G-complete

Definition 2.5. [16] Given (X,G) is a G-metric space. The
sequence (x,) on X is said to be G-convergent to x if
lim(G(x, xn,xm)) = 0. That is, for every r € R, v > 0, there
exists N € N such that G(x, x,, X)) <1 for alln,m € N with
n,m=N.

Definition 2.6. [3] Given (X,G) is a G-metric space. The
sequence (xy) on X is said to be G-Cauchy if for every r € R,
r > 0, there exists N € N such that G(xy, Xy, x;) <71 for all
n,m,l > N.

Definition 2.7. [3] Given (X, G) is a G-metric space. X is said
to be G-complete if for every G-Cauchy sequence on X is a G-
convergent sequence on X.
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Theorem 2.5. [3] Given (X,G) is a G-metric space and
{E,:n € N} is a collection of nonempty closed subsets on X with
Foi1 C© E,. Then X is G-complete if and only if

ﬂFn ={x}Lx€eX

Definition 2.8. [3] Given (X, G) is a G-metric space, E € X and
r € R, r > 0. Eis called r-net of X if for any x € X, there exists
a point p € E such that x € B;(p,r). If E is finite, then E is
called finite r-net.

D. G-sequentially Compact

Definition 2.9. [3] Given (X,G) is a G-metric space. The set
E c X is said to be G-sequentially compact if every sequence
on E has a G-convergent subsequence to a pointin E. (X, G) is
said to be G-sequentially compact if X is G-sequentially
compact.

3. Main Result

Before we study the properties of compact sets in G —metric
spaces, we first define compact set. In this section, the
G —metric space is denoted as (X, G), unless stated otherwise.

Definition 3.1. [17] Given (X, G) is a G-metric space and K C
X, and I is the indexed set. The collection of open sets G =
{G, c X:a €I} is called the open cover of K if

KCUGa=UGa

Ga€G a€l

Example 3.1. In a G-metric space, (R, G) defined as
G(x,y,z) =|x—y|+|x—2z|+|y—z| foreach x,y,z € R,

the collections G = {<_§'§) :p €10, 00)} ,and G* = {R}

are an open cover for A = [0, ), respectively.

Example 3.2. In any G —metric space, (X,G) and any K € X
with K # @, then G = {B;(p,r):p € K} is open cover of K.

Definition 3.2. [18] Given (X, G) is a G-metric space. If G G is
an open cover of K € X and G' < G with G' = {G4, G, ..., G,,}

such that
n
K c U Gi = U Gi
Gieg' i=1
then G' is called a finite subcover of G for K
Definition 3.3. [19] Given (X,G) is a G-metric space. A set
K c X is compact if for every open cover of K has finite

subcovers.

Example 3.3. In a real G —metric space, with
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_ (0, forx=y=12z
G(x,y,2) = { 5, for others
then set A = [0, 1] is not a compact set because there exists an
open cover G = {{p}:p € [0, 1]} for A with the condition that
every finite subcover of G is not a cover of A.

Example 3.4. In any G —metric space (X, G), the finite set K =
{x1, x5, ..., X} is compact set. For any open cover G = {G,} for
K and for any x; € K can be found G, € G with x; € Gy,. Let

G' = {le, Gy, ...,Gxn}. Then we get G' < G with the property

K c UGxi

Gx;€G'
So, it is proved that K is a compact set.

Some properties of compact sets on G-metric spaces are
given in the following theorems. Theorem 3.1 says that a closed
set which is a subset of a compact set is a compact set.

Theorem 3.1. In a G-metric space, if K C X is a compact set,
E c K, and E is a closed set, then E is a compact set.

Proof: Let G be an open cover of E. Since E is a closed set, then
E€ is an open set. Since E € K and G are open cover of E then
G* = G U{E®} is open cover for K. Since K is a compact set,
that G,, G, G3,..,G, € G such that

n
ECKCUGi
i=1

Note that {G,, G5, G3,..,G,} — {E€} € G and is a cover of E.
So, it is proved that E is compact.

Furthermore, it will be proved that the compact set in the G-
metric space is a closed and bounded set.

Theorem 3.2. In a G-metric space, if K € X , K is a compact
set, then K is closed and bounded.

Proof: (i) Let g € K€ or ¢ € K. Consequently, p # q for all
p € K. Based on definition, for all p € K holds G(p,p,q) > 0.
Then, it can be made B;(p,r) and B;(q,r) which are the

neighborhood with radius r, with 0 <r, < %G (p,p,q) and
center p and q. Therefore, it can be obtained that B, (p,rp) N
Bc(q,rp) = (. Based on definition, {BG(p, rp):p € K} is an
open cover of K. Since K is a compact set, then there exists
P1,P2 -, Pn € K such that

n
Kc UBG(pit £))
i=1
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Will be selected r =min{r;:1 <i<n}>0. Then q€
B;(q,7) € B;(q,r;) with i = 1,2, ..., n. Furthermore, it can be
obtained

(BG(q:r) n K) c BG(q'r) n (U BG(pi'Ti)>

=1

_ U(BG(q,r) N Be(pi 1)

c U(BG(q'ri) NBs(p,1)) = U )
i=1 =1
(0]

So B;(gq,7) N K = @ which results in B;(q,7) © K. Hence, if
q € K€, then there exists 7 € R, 7 > 0 such that B;(q,7) C
KC. In other terms, q is an interior point K¢ or K¢ is an open
set. So K is a closed set. (ii) Based on definition, for all p € K
can be built B;(p,1) which means the neighborhood with
center p and radius 1 and {B;(p,1): p € K} is a open cover of
K. Since K is a compact set, then there exists py, p,, ..., Pn € K
such that,

n
K c| JBawu .
i=1

Let g € X, q = p; as a fixed point, and
M-1= maks{G(q, b2, Pz): G(q, D3, p3); Ry G(q, Dn, pn)}

For any s € K, there exists p,,, € K with 1 < m < n such that
S € B;(pm,1). This means, G(s,s,p,) <1. Based on
definition, we can obtain
G(q,s,5) < G(q,Pm, Pm) + G(Pm, S, )
G(@ss)sM-1)+1
G(q,s,5) <M,

for each s € K. This shows that K bounded.

By Theorem 3.2, in a G-metric space, every compact set is a
closed and bounded set, but a closed and bounded set in a G-
metric space is not necessarily a compact set. For example,
consider the following example.

Example 3.5. In a real G —mtric space with,
_ (O, forx=y=12z

G(x,y,2) = { 5, for others
then: (i) Set A = [0, 1] is closed, because in this metric space,
every subset of R is an open set and also a closed set.
(i1) The diameter of 4,

diam([0,1]) = Sup{G(x,y,2):x,y,z € [0,1]} =5 < oo.

So A = [0, 1] is a bounded set.
By Example 3.3, A = [0, 1] is not compact set.

Theorem 3.3. Given an indexed set 1. If {K,;a €1} is a
collection of compact sets on the G —metric space, such that
each of its infinite subcollections has a non-empty intersection,
then
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ﬂ&¢®

Proof: In the theorem above, it means that if K, is a compact

set and
n
ﬂ Ky, #0
i=1

ﬂ&¢®

Take any member of the collection suppose K, . Since K, is a
compact set, by Theorem 5.3, then K, is closed. Since K, is

closed, then K, is open. Suppose K,¢ = G,, then G, is open.
We will show that

for every n € N, then

Kgy N ﬂKa *0

a*ag

Will be proven by proof of contradiction. Suppose

Kqy 0 ﬂQ:ﬂ

a#ag
then

c
we(s) = Une-Ue
ag a - a — a

a+ag a+ag a+ag
K, © U G,
a*ag

So, {Ga}axa, is an open cover for K, . Since K, is compact,
then there exists a4, a,, as, ..., a, such that

which resulted in

or Koy NKy NKy, N..N K, = @. However, it contradicts

the statement that every finite subcollection has a non-empty
intersection. Thus, the supposition is false and should be
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Kgq N ﬂm=m

atag

Since K, is arbitrary, then

ﬂ&¢®

Thus, Theorem 3.3 is proven.

Corollary 3.1. If {K,, },,51 is a non-empty collection of compact
sets with K, ., € K, for everyn € N, then

ﬂm¢®

Theorem 3.4. Given (X, G) is a G-metric space, K € X, and K
is compact. If E is an infinite subset of K then E has a limit point
atK.

Proof: We will be proven by proof of contradiction. Let E has
no limit point on K. This means that if p € K then p is not a
limit point of E. Based on definition, B;(p,7) — {p} N E = @.
Thus, each B;(p,r) contains only the point p itself which is
contained in E. Thus, by definition, since E < K then
{Bs(p,r): p € K} is an open cover of K and E.

EcKc UBG(p,r)

PEK

Since K is compact set, then by definition, there exists
P1,DP2,P3s --» Pn € K such that

n
Kc UBG(pi; 1)
i=1
Also applies to E because E C K, that is
n
Ec UBG(pi'ri)
i=1

Meanwhile, each Bg;(p;,1;) contains only one point in E. This
means that the members of E are finite. This contradicts the
known statement that E is an infinite subset, so the supposition
is false. Therefore, E must have a limit point on K.

Theorem 3.5. Given (X, G) is a G-metric space, (Y, G) is a G-

metric subspace, and K C Y. K is compact relative to Y if and

only if K is compact relative to X.

Proof:

(1) Will be proved that if K is compact relative to Y then K is
compact relative to X.
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Suppose {B;(p,r):p € K} is an open cover of K on X.
Based on theorem and definition, {B;(q,7):q € K} with
B;(q,7) = B;(p,7) NY is an open cover of K against Y.

Then, based on definition, there exists q4, gy, ..., g, such

that,
n
k| JBs@m < | JB@n
i=1

qEK
That cover K, because K is compact relative to Y.

Therefore, there exists py, pa, ..., P such that,

n
k| JBswomy < | B
i=1

PEK
that cover K. Thus, K is compact relative to X.

(2) Will be proved that if K is compact relative to X then K is
compact relative to Y.
Suppose {B;(q,7): q € K} is an open cover of K against Y.
Based on theorem, B;(q,7) = Bg;(p, ) NY with B;(p,7)
is an open set relative to X, so that {B;(p,r):p € K} is an
open cover of K relative to X. Since K is compact relative
to X, then by definition, {B;(p,7):p € K} contains a finite
subcovers that cover K.

n
k| B | JBewn)
i=1

PEK

Since B;(q,r) = Bs(p,r)NY, then {B;(q,7):q € K}
contains a finite subcovers which is a cover of K as well.
Thus, K is compact relative to Y.

Corollary 3.2. Given (X, G) is a G-metric space, (Y,G) is a G-
metric subspace, and K C Y. If Y = X, then K is not compact
relative to Y.

Definition 3.4. [16] Given (X,G) is a G-metric space. The
sequence (x,) on X is said to be G-convergent to x if
lim(G(x, xn,xm)) = 0. That is, for every r € R, v > 0, there
exists N € N such that G(x, x,, X)) <1 for alln,m € N with
n,m=N.

Example 3.6. Let (R, G) is a G-metric space, with
Gx,y,z)=lx—yl+Ix—z[+|y -zl

for all x,y,z € R . Sequence (x,,) = (n—il) is a G-convergent

to x = 0, since for every r € R, r > 0 there exists N € N, i.e.,

N = the smallest natural number greater than % such that% <r.

For all n,m € N with n,m = N, we have
G(x, X, X)) = |x — 2| + | — 2| + |2, — x|
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—|0 ! +|o !
N n+1 m+1
+| 1 1
n+1 m+1
< 1 4 1 4 1 N 1
“n+1 m+1 n+1 m+1
< Z 42 22 220
n+1 m+1 N+1 N+1 N N N

Definition 3.5. [3] Given (X,G) is a G-metric space. The
sequence (x,) on X is said to be G-Cauchy sequence if for every
r € R, v >0, there exists N € N such that G(xp, X, %) <71
foralln,m,l > N.

Example 3.7. Let (R, G) is a G-metric space, with
Gy z) =lx—yl+|x—zl+|y -z

forallx,y,z € R.

A sequence (x,) = (%) is a G-Cauchy sequence because for

each r € R r > 0, there exists N € N which is the smallest
natural number greater than g such that % < r. By Definition
3.5, for alln,m,l = N holds

G Oty Xy 31) = 12 = Xn + 1 = 2] + I — 1] = |1 =
e X

2 2 2 2 6
St
l N N N N

Thus, it is proven that the sequence (x,,) = (%) is a G-Cauchy

sequence.

Definition 3.6. [3] Let (X, G) is a G-metric space. X is said to
be G-complete if for every G-Cauchy sequence on X is a G-
convergent sequence on X.

The definition of the net of a set has been given by [3] which
will be used as a discussion of compact sets from another point
of view.

Definition 3.7. [3] Let (X, G) is a G-metric space, E € X and
r € R, r > 0. E is called r-net of X if for any x € X, there exists
a point p € E such that x € B;(p, ). If E is finite, then E is
called finite r-net of X.

Example 3.8. In the real G-metric space, which is defined as:
G,y,z) =Ix—yl+|x—z|+|y—z|
for every x,y,z € R then
(@) Qis1—nettoR
(b) Z, the set of all integers, is 3 — net for R.

Example 3.9. In real G — metric which

_ (O, forx=y=12z
G(x,y,2) = { 5, for others

then
Bs(p,k)={yeR:G(p,y,y) <k} = {

Therefore:

{p},fork <5
R, fork > 5
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(a) A={3}is7 —net for R

(b) A={3}isnota4 —net forR

(¢) Ifr isan arbitrary real number with 0 < r < 5, then every
finite subset of R which is not empty is not a r — net for R.

Definition 3.8. [3] Let (X, G) is a G-metric space. The set A C
X is said to be G-totally bounded if for every r € R, v > 0,
there exists a finite r-net of A.

In other words, the set A is said to be G-totally bounded if for
every r € R, r > 0, there exists x;, x,, X3, , ..., X, € A such
that G = {B;(x;,r):i = 1,2,3,...,n} is an open cover of A or

Ac U B; (x;,71)

1<isn

Example 3.10. Let (R, G) is a G-metric space with G(x,y,z) =
[x —y|+|x —z| + |y — z| forall x, y, z € R then:
(1) N isnot a G-totally bounded set
(i) A =1[0,1] is a G-totally bounded set
Proof. For any p € R, and r € R with r > 0 then
Bs(p,r) ={x e R:G(p,x,x) <1}
={xeX:ilp—x|+lp—x|+|x—x| <71}
—(p-" p+D)
2 2
(1)  Since there is r € R with r > 0, e.g r = 1, so that for
every finite collection G = {B;(p;,1):p; € N,i =
1,2,3,...n}is not a cover for N, then N is not a G-totally
bounded set.
(i) Foranyr € Rwithr > 0, there existsn € N with% < g

Consequently, G = {BG (i_Tl,r) 11=1,2,3, n} is an

open cover for A =[0,1] . So, A =[0,1] is a G-totally
bounded set.

Example 3.11. Let (R, G) is a G-metric space with
_ (O, forx=y=12z
G(x,y,2) = { 5, for others

forall x,y,z € R. The set A = [0,1] is not a G-totally bounded
set, because there exists r € R with r > 0, e.g. r = 2 so that
for every finite collection G = {B;(p;,2):p; €[0,1],i =
1,2,3,..n} = {{pi} c[0,1]:i=1,2,3, n} is not a cover
for [0, 1].

Definition 3.9. [3] Let (X, G) is a G-metric space. The set E C
X is said to be G-sequentially compact if every sequence on E
has a G-convergent subsequence to a point in E.

Example 3.12. Let (R, G) is a G-metric space with G (x,y, z) =
[x —y|+|x—2z|+|y—2z|. The set E=[01] is a G-
sequentially compact set.

Proof. Since in the G-metric space is a closed and bounded set,
then every sequence on E = [0,1] there is always exist a
subsequence on E = [0,1] that is G-convergent to a point in E.
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Example 3.13. Let (R, G) is a G-metric space with
_ (0, forx=y=12z
G(x,y,2) = { 5, for others
for all x,y,z € R. The set A =[0,1] is not a G-sequentially

. 1
compact set, because there is a sequence (x,,) = (-) on E such
n
that any subsequence of it is not G-convergent to a point in E.
In a metric space with usual metric on R, every closed and
bounded set is a compact set. However, this is different from
the G-metric space. In the G-metric space, there is a closed and
bounded set, but the set is not a compact set on the G-metric
space (Example 3.5). Since there is a set in the G —metric space
which is closed and bounded but not compact, then we will

discuss the necessary and sufficient conditions for a set in the
G —metric space to be compact.

The following theorem is a necessary and sufficient
conditions for a set in a G-metric space is a compact set.

Theorem 3.6. Let (X, G) is a G-metric space and K € X. Then
the following three statements are equivalent.
(1) K is a G-complete and G-totally bounded set
(2) K is a compact set
(3) K is a G-sequentially compact set
Proof: (1)-(2): (If K is a complete set-G and totally finite-G,
then K is a compact set).
Contradiction proof is used. Suppose K is not compact, and
suppose G is an open cover for K which does not contain a finite
subcover for K. Suppose G' = {G;, G, Gs...,Gy,} © G with
K & Ug,eq G; - So there exists P € K with P & Ugeg G-
Since K G-totally bounded, then for any r € R, > 0 can be
chosen py, P2, D3, -+, Pn, € K so that K C U}Zl BG(pj,r).
Formed the set
Hij=G,NB; (p}., r),
i=123,..,mandj=1,273,..,n,.
Then H;; is an open set with the property that
K ¢ Uicismirsjsn, Hij-

If for every natural number k takenr = %, and P, € KwithP ¢
Uis<ism;i<jsn, Hij» Fy is the closure of Py, then obtained:

(i) Fjisaclosed set

(ii) FpcK

(iii) Fy © Fyyq

(iv) F, 0
Since K is a compact set, it follows from (i) and (ii) that Fj is
a compact set. Consequently,

ﬂFk¢®

kEN

For example, p, € My F) and since K is a G-complete set,

then there exists G; € G so thatp, € G; and p, € P. From the
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other side, P & Ug,eg G;- So, there is a contradiction. So, the
correct one is K is a compact set.

(2)-(3) (If K is compact, then K is G-sequentially compact).
Suppose (p,) is a sequence on K. Let F, be a closure of the
nonempty set {py:k >n}. Then (F,) is a monotonically
decreasing sequence of the nonempty closed sets. As a result,

there exists py € K so that
p, € ﬂ Fy,

neN

For every n, we have:
(1)  py is contained in the closure of {py: k > n},

(ii)) The neighborhood of Bg (po,%) has a nonempty

intersection with {p,: k > n},
then we can choose (n;) such that for each index k,

G(po,pnk,pnk)<%. So, the subsequence (pnk) is G-

convergent to py. Thus, K is G-sequentially compact set.

(3)—() (If K is G-sequentially compact set, then K is G-
complete and G-totally bounded).

Suppose K is not G-totally bounded. Then, there exists a real
number 7 > 0 such that for any finite set H € K with K &
Upen Be(p, 7). Selected p; € K with p; & Bg(p,7). Selected
p, EK with G(py,pape) >1r. Since K & Bg(py, 1)U
B;(py, 1), then can be selected p; € K with G(p,,p3,p3) > 1
and G (p,, p3, p3) > r. Furthermore, with the same process, we
can obtain the sequence (p,) at K with G(py, pn, pn) > 1 for
n > k. So, the sequence (p,,) cannot have a subsequence that
G-convergent. Consequently, K is not a G-sequentially compact
set. Contradiction to what is known, i.e. K is sequentially
compact. So, the correct one is K is a G-totally bounded set.
To show that K is a G-complete, suppose (x,,) is a G-Cauchy
sequence on K. Since K is G-sequentially compact, then the
subsequence of (x,) G-convergent to p € K. So, all sequences
G-convergent to p. Consequently, (x,) G-convergent to p € K
or K is a G-complete set.

Example 3.15. On a real G —metric, which G(x,y,z) =
[x —y|+|x —z| + |y — z|. K = [0,1] is a compact set
Proof: First, will be shown that K is a G -complete set. Based
on Definition 3.6., K is said to be G-complete if for every G -
Cauchy sequence on K is a G-convergent sequence to a point in
K. Suppose (x,,) is a G-Cauchy sequence on [0,1]. Since [0,1]
is a closed and bounded interval, then every G-Cauchy
sequence (x,) on [0,1] will G-convergent to x € [0,1]. Thus,
K is a G-complete set.

Second, will be shown that K is a G-totally bounded set.
Suppose G = {B;(p,r)|p € K} is the open cover of K. By
definition, the neighborhood with center p € K and radius r €
R, r > 0, that is

Bs(p,r) ={y EK:G(p,y,y) <7}
Bspr)={yeK:lp—yl+Ip—-yl+ly -yl <7}
={yeK:2lp-yl<r}

={yeK:2p—r<2y<2p+r}
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={yeK:p—£<y<p+£}

- (p-5+)

Based on Definitions 3.7 and 3.8, the set of K is said to be G-
totally bounded if for every r € R, r > 0, there exists G' € G
with g' = {B;(xy,7),B;(xy,7), ..., B;(x,,7)} such that G =
{B;(x,7)|x € X} is an open cover for K. Let r € R, r > 0. By
Archimedian property, we can be chosen n € N such that r < %
and K = [0,1] can be divided into as many n equally spaced
subintervals, i.e., each is spaced i For each subinterval, one of

the rational endpoints of each subinterval can be chosen as the

point at B;(p, ). This ensures that every point in K = [0,1] is
in the neighborhood whose distance from point p, less than r.
Suppose y is an arbitrary point in K. Then point y must be
contained in one of the subintervals. If we take y as the rational
endpoint of the subinterval, then y € B;(p, 7). Since K = [0,1]
can be divided into finitely many equally spaced subintervals
such that

k| B

PEK
then K is G-totally bounded set.

Example 3.11. Let (R, G) is a G-metric space with
_ (0, forx=y =12z
G(x,y,2) = { 5, for others
for all x,y,z € R. By Example 3.11, the set A = [0,1] is not a
G-totally bounded. So, by Theorem 3.6., the set A = [0,1] is not
compact.

4. Conclusion

In G-metric spaces, compact sets have closed and bounded
properties. However, a closed and bounded set is not
necessarily a compact set. The requirement that must be added
in order for a set to be said to be compact in the G -metric space
is that the set must be G-complete and G —totally finite.
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