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Abstract: In mathematical analysis, topology is built by metric 

spaces. A metric space is a set in which the metric axioms are 
satisfied. Many mathematicians discuss the generalization of 
metric spaces. One of them is the concept of 𝑮𝑮 −metric space, 
denoted by (𝑿𝑿,𝑮𝑮), which was introduced in 2006. Within the 
metric space, there are many special sets that have played an 
important role in developments in the field of mathematical 
analysis, in particular compact sets. A set is said to be compact if 
each open cover of the set has finite subcovers. The properties of 
compact sets have been discussed in metric spaces, Hausdorff 
spaces, topological spaces, and fuzzy metric spaces. However, 
there are no researchers who discuss the properties of compact sets 
in 𝑮𝑮 −metric spaces. Therefore, to expand the discussion of the 
concept of 𝑮𝑮 −metric space and the properties of compact sets that 
apply to it, this article discusses the proof of theorems related to 
the properties of compact sets in 𝑮𝑮 −metric space. Compact sets in 
𝑮𝑮 −metric spaces have the properties of being closed and bounded. 
However, not all closed and bounded sets are compact sets. To 
prove the compactness of a set in 𝑮𝑮 −metric space, in addition to 
using the concept of open covers, it can also be proven by the 
𝑮𝑮 −completeness and 𝑮𝑮 −totally boundedness properties of a set. 
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1. Introduction 
Mathematical analysis is one of the branches of pure 

mathematics, one of which is related to the concept of 
neighborhood and set, where there is a set called compact set. 
A mathematician from France named Henri Lebesgue 
introduced compact sets for the first time in 1902 [1]. The 
concept of compact sets has a very important role in 
mathematics, especially in the fields of set theory, analysis, and 
topology. 

In mathematical analysis, topology is built by metric spaces. 
A mathematician named Maurice Frechet first introduced the 
concept of metric spaces in 1906. Metric is a concept used to 
define the distance between elements in a space. A metric space 
is a set in which a metric axiom is satisfied. The set 𝑋𝑋 in which 
the metric axiom d is satisfied is written as (𝑋𝑋,𝑑𝑑) and is called 
a metric space [2]. 

Many mathematicians have conducted research on the 
concept of metric spaces. In 2006, Mustafa and Sims in their 
journal entitled “A New Approach to Generalized Metric 
Spaces” introduced the concept of 𝐺𝐺 −metric space which is a 
generalization or extension of the concept of metric space. 
From that metric space, a definition for 𝐺𝐺 −metric space can be 
produced and its topology is introduced [3]. Research on 
𝐺𝐺 −metric space continues to grow until now, for example in  

 
[4]-[8], and many more. 

The discussion of compact sets has been in Hausdorff space 
[9], topological space [10], metric space [11], and fuzzy metric 
space [12]. Applications of compact sets have been widely 
used, usually related to topology and mathematical analysis. 
The discussion of the compactness of 𝐺𝐺 −metric space has been 
discussed before, for example in [13] which discusses the finite 
nature of Bourbaki−𝐺𝐺 and compact local uniform−𝐺𝐺 and [14] 
which discusses the fixed point theorem on compact 𝐺𝐺 −metric 
space. Therefore, to expand the discussion on the concept of 
compactness of 𝐺𝐺 −metric spaces, this research paper will 
discuss the proof of theorems related to the properties of 
compact sets in 𝐺𝐺 −metric spaces. 

2. Literature Survey 

A. 𝐺𝐺 −metric Spaces 
Definition 2.1. [3] Given a nonempty set 𝑋𝑋, 𝐺𝐺:𝑋𝑋 × 𝑋𝑋 × 𝑋𝑋 ⟶
ℝ+, and 𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝑎𝑎 ∈ 𝑋𝑋 which if satisfied: 
(G1) 𝐺𝐺(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 0 if and only if 𝑥𝑥 = 𝑦𝑦 = 𝑧𝑧 
(G2) 0 < 𝐺𝐺(𝑥𝑥, 𝑥𝑥,𝑦𝑦) with 𝑥𝑥 ≠ 𝑦𝑦 
(G3) 𝐺𝐺(𝑥𝑥, 𝑥𝑥,𝑦𝑦) ≤ 𝐺𝐺(𝑥𝑥,𝑦𝑦, 𝑧𝑧) with 𝑦𝑦 ≠ 𝑧𝑧 
(G4) 𝐺𝐺(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝐺𝐺(𝑥𝑥, 𝑧𝑧,𝑦𝑦) = 𝐺𝐺(𝑦𝑦, 𝑥𝑥, 𝑧𝑧) = 𝐺𝐺(𝑦𝑦, 𝑧𝑧, 𝑥𝑥) =

𝐺𝐺(𝑧𝑧, 𝑥𝑥,𝑦𝑦) = 𝐺𝐺(𝑧𝑧,𝑦𝑦, 𝑥𝑥) (symmetrical across all three 
variables) 

(G5) 𝐺𝐺(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ≤ 𝐺𝐺(𝑥𝑥,𝑎𝑎,𝑎𝑎) + 𝐺𝐺(𝑎𝑎,𝑦𝑦, 𝑧𝑧) (rectangular 
inequality) 

then the function 𝐺𝐺 is called the 𝐺𝐺-metric on 𝑋𝑋 and (𝑋𝑋,𝐺𝐺) is 
called a G-metric space 
 
Theorem 2.1 [3] Given (𝑋𝑋,𝐺𝐺) is a 𝐺𝐺-metric space. Then for 
any 𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝑎𝑎 ∈ 𝑋𝑋 holds: 
(1) If 𝐺𝐺(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 0 then 𝑥𝑥 = 𝑦𝑦 = 𝑧𝑧 
(2) 𝐺𝐺(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ≤ 𝐺𝐺(𝑥𝑥, 𝑥𝑥,𝑦𝑦) + 𝐺𝐺(𝑥𝑥, 𝑥𝑥, 𝑧𝑧) 
(3) 𝐺𝐺(𝑥𝑥,𝑦𝑦,𝑦𝑦) ≤ 2𝐺𝐺(𝑦𝑦, 𝑥𝑥, 𝑥𝑥) 
(4) 𝐺𝐺(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ≤ 𝐺𝐺(𝑥𝑥,𝑎𝑎, 𝑧𝑧) + 𝐺𝐺(𝑎𝑎,𝑦𝑦, 𝑧𝑧) 
(5) 𝐺𝐺(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ≤ 2
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(𝐺𝐺(𝑥𝑥,𝑦𝑦,𝑎𝑎) + 𝐺𝐺(𝑥𝑥,𝑎𝑎, 𝑧𝑧) + 𝐺𝐺(𝑎𝑎,𝑦𝑦, 𝑧𝑧)) 

(6) 𝐺𝐺(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ≤ 𝐺𝐺(𝑥𝑥,𝑎𝑎,𝑎𝑎) + 𝐺𝐺(𝑦𝑦,𝑎𝑎,𝑎𝑎) + 𝐺𝐺(𝑧𝑧,𝑎𝑎,𝑎𝑎) 
(7) |𝐺𝐺(𝑥𝑥,𝑦𝑦, 𝑧𝑧) − 𝐺𝐺(𝑥𝑥,𝑦𝑦,𝑎𝑎)| ≤

max {𝐺𝐺(𝑎𝑎, 𝑧𝑧, 𝑧𝑧),𝐺𝐺(𝑎𝑎,𝑎𝑎, 𝑧𝑧)} 
(8) |𝐺𝐺(𝑥𝑥,𝑦𝑦, 𝑧𝑧) − 𝐺𝐺(𝑥𝑥,𝑦𝑦,𝑎𝑎)| ≤ 𝐺𝐺(𝑥𝑥,𝑎𝑎, 𝑧𝑧) 
(9) |𝐺𝐺(𝑥𝑥,𝑦𝑦, 𝑧𝑧) − 𝐺𝐺(𝑦𝑦, 𝑧𝑧, 𝑧𝑧)| ≤

max {𝐺𝐺(𝑥𝑥, 𝑧𝑧, 𝑧𝑧),𝐺𝐺(𝑥𝑥, 𝑥𝑥, 𝑧𝑧)} 

Properties of Compact Set in G-metric Space 
Adinda Dewi Kusumaningati1, Manuharawati2*, Muhammad Jakfar3 

1,2,3Department of Mathematics, Universitas Negeri Surabaya, Surabaya, Indonesia 
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(10) |𝐺𝐺(𝑥𝑥,𝑦𝑦,𝑦𝑦) − 𝐺𝐺(𝑥𝑥, 𝑥𝑥,𝑦𝑦)| ≤
max {𝐺𝐺(𝑥𝑥, 𝑥𝑥,𝑦𝑦),𝐺𝐺(𝑥𝑥,𝑦𝑦,𝑦𝑦)}  

 
Theorem 2.2. [3] Given (𝑋𝑋,𝐺𝐺) is a 𝐺𝐺-metric space. Then we 
can define the metric 𝑑𝑑 which is constructed by the 𝐺𝐺-metric. 
For all 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋 holds 𝑑𝑑𝐺𝐺(𝑥𝑥,𝑦𝑦) = 𝐺𝐺(𝑥𝑥,𝑦𝑦,𝑦𝑦) + 𝐺𝐺(𝑥𝑥, 𝑥𝑥,𝑦𝑦). 
 
Definition 2.2. [3] Given (𝑋𝑋,𝐺𝐺) is a 𝐺𝐺-metric space. For every 
𝑝𝑝 ∈ 𝑋𝑋, 𝑟𝑟 ∈ ℝ, and 𝑟𝑟 > 0, the boundary with center 𝑝𝑝 and 
radius 𝑟𝑟 is 𝐵𝐵𝐺𝐺(𝑝𝑝, 𝑟𝑟) = {𝑦𝑦 ∈ 𝑋𝑋:𝐺𝐺(𝑝𝑝,𝑦𝑦,𝑦𝑦) < 𝑟𝑟}. 
 
Theorem 2.3. [3] Given (𝑋𝑋,𝐺𝐺) is a 𝐺𝐺-metric space. For every 
𝑝𝑝 ∈ 𝑋𝑋, 𝑟𝑟 ∈ ℝ, 𝑟𝑟 > 0, it holds: 
(1) If 𝐺𝐺(𝑝𝑝, 𝑥𝑥,𝑦𝑦) < 𝑟𝑟 then 𝑥𝑥,𝑦𝑦 ∈ 𝐵𝐵𝐺𝐺(𝑝𝑝, 𝑟𝑟) 
(2) If 𝑦𝑦 ∈ 𝐵𝐵𝐺𝐺(𝑝𝑝, 𝑟𝑟), then there exists 𝛿𝛿 > 0 such that 

𝐵𝐵𝐺𝐺(𝑦𝑦, 𝛿𝛿) ⊆ 𝐵𝐵𝐺𝐺(𝑝𝑝, 𝑟𝑟) 
 
Theorem 2.4. [3] Given (𝑋𝑋,𝐺𝐺) is a 𝐺𝐺-metric space and 
𝐵𝐵𝑑𝑑𝐺𝐺(𝑝𝑝, 𝑟𝑟) is the neighborhood of the metric constructed by the 
𝐺𝐺-metric. Then for every 𝑝𝑝 ∈ 𝑋𝑋, 𝑟𝑟 ∈ ℝ, and 𝑟𝑟 > 0,we can 
obtain 𝐵𝐵𝐺𝐺 �𝑝𝑝, 1
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𝑟𝑟� ⊆ 𝐵𝐵𝑑𝑑𝐺𝐺(𝑝𝑝, 𝑟𝑟) ⊆ 𝐵𝐵𝐺𝐺(𝑝𝑝, 𝑟𝑟).  

 
Based on the above Theorem, it follows that the 𝐺𝐺 −metric 

topology, 𝜏𝜏(𝐺𝐺), is equivalent to the metric topology constructed 
from 𝑑𝑑𝐺𝐺. Thus, 𝐺𝐺 −metric spaces are topologically equivalent 
to metric spaces. 

 
Definition 2.3. [15] Given (𝑋𝑋,𝐺𝐺) is a G-metric space and 𝐸𝐸 ⊂
𝑋𝑋. The point 𝑝𝑝 ∈ 𝑋𝑋 is called a limit point of 𝐸𝐸 if for every 
neighborhood of the point 𝑝𝑝 with radius 𝑟𝑟, 𝑟𝑟 ∈ ℝ, 𝑟𝑟 > 0, that is 
𝐵𝐵(𝑝𝑝, 𝑟𝑟) holds 

(𝐵𝐵(𝑝𝑝, 𝑟𝑟) − {𝑝𝑝}) ∩ 𝐸𝐸 ≠ ∅ 

B. Open Set 
Definition 2.4. [15] Given (𝑋𝑋,𝐺𝐺) is a G-metric space and 𝐸𝐸 ⊂
𝑋𝑋. The set 𝐸𝐸 is said to be open if for every 𝑝𝑝 ∈ 𝐸𝐸 there is 𝑟𝑟 ∈ ℝ, 
𝑟𝑟 > 0, such that 𝐵𝐵𝐺𝐺(𝑝𝑝, 𝑟𝑟) ⊂ 𝐸𝐸. 

C. G-convergent, G-Cauchy, and G-complete 
Definition 2.5. [16] Given (𝑋𝑋,𝐺𝐺) is a G-metric space. The 
sequence (𝑥𝑥𝑛𝑛) on 𝑋𝑋 is said to be G-convergent to 𝑥𝑥 if 
𝑙𝑙𝑙𝑙𝑙𝑙�𝐺𝐺(𝑥𝑥, 𝑥𝑥𝑛𝑛, 𝑥𝑥𝑚𝑚)� = 0. That is, for every 𝑟𝑟 ∈ ℝ, 𝑟𝑟 > 0, there 
exists 𝑁𝑁 ∈ ℕ such that 𝐺𝐺(𝑥𝑥, 𝑥𝑥𝑛𝑛, 𝑥𝑥𝑚𝑚) < 𝑟𝑟 for all 𝑛𝑛,𝑙𝑙 ∈ ℕ with 
𝑛𝑛,𝑙𝑙 ≥ 𝑁𝑁. 
 
Definition 2.6. [3] Given (𝑋𝑋,𝐺𝐺) is a G-metric space. The 
sequence (𝑥𝑥𝑛𝑛) on 𝑋𝑋 is said to be G-Cauchy if for every 𝑟𝑟 ∈ ℝ, 
𝑟𝑟 > 0, there exists 𝑁𝑁 ∈ ℕ such that 𝐺𝐺(𝑥𝑥𝑛𝑛, 𝑥𝑥𝑚𝑚, 𝑥𝑥𝑙𝑙) < 𝑟𝑟 for all 
𝑛𝑛,𝑙𝑙, 𝑙𝑙 ≥ 𝑁𝑁. 
 
Definition 2.7. [3] Given (𝑋𝑋,𝐺𝐺) is a G-metric space. 𝑋𝑋 is said 
to be G-complete if for every G-Cauchy sequence on 𝑋𝑋 is a G-
convergent sequence on 𝑋𝑋.  
 

Theorem 2.5. [3] Given (𝑋𝑋,𝐺𝐺) is a G-metric space and 
{𝐹𝐹𝑛𝑛:𝑛𝑛 ∈ ℕ} is a collection of nonempty closed subsets on 𝑋𝑋 with 
𝐹𝐹𝑛𝑛+1 ⊂ 𝐹𝐹𝑛𝑛. Then 𝑋𝑋 is G-complete if and only if 
 

�𝐹𝐹𝑛𝑛
𝑛𝑛∈ℕ

= {𝑥𝑥}, 𝑥𝑥 ∈ 𝑋𝑋 

 
Definition 2.8. [3] Given (𝑋𝑋,𝐺𝐺) is a G-metric space, 𝐸𝐸 ⊂ 𝑋𝑋 and 
𝑟𝑟 ∈ ℝ, 𝑟𝑟 > 0. 𝐸𝐸 is called 𝑟𝑟-net of 𝑋𝑋 if for any 𝑥𝑥 ∈ 𝑋𝑋, there exists 
a point 𝑝𝑝 ∈ 𝐸𝐸 such that 𝑥𝑥 ∈ 𝐵𝐵𝐺𝐺(𝑝𝑝, 𝑟𝑟). If 𝐸𝐸 is finite, then 𝐸𝐸 is 
called finite 𝑟𝑟-net. 

D. G-sequentially Compact 

Definition 2.9. [3] Given (𝑋𝑋,𝐺𝐺) is a G-metric space. The set 
𝐸𝐸 ⊂ 𝑋𝑋 is said to be G-sequentially compact if every sequence 
on 𝐸𝐸 has a G-convergent subsequence to a point in 𝐸𝐸. (𝑋𝑋,𝐺𝐺) is 
said to be G-sequentially compact if 𝑋𝑋 is G-sequentially 
compact. 

3. Main Result 
Before we study the properties of compact sets in 𝐺𝐺 −metric 

spaces, we first define compact set. In this section, the 
𝐺𝐺 −metric space is denoted as (𝑋𝑋,𝐺𝐺), unless stated otherwise. 
 
Definition 3.1. [17] Given (𝑋𝑋,𝐺𝐺) is a G-metric space and 𝐾𝐾 ⊂
𝑋𝑋, and 𝐼𝐼 is the indexed set. The collection of open sets 𝒢𝒢 =
{𝐺𝐺𝑎𝑎 ⊂ 𝑋𝑋:𝑎𝑎 ∈ 𝐼𝐼}  is called the open cover of 𝐾𝐾 if 
 

𝐾𝐾 ⊂ � 𝐺𝐺𝑎𝑎
𝐺𝐺𝑎𝑎∈𝒢𝒢

= �𝐺𝐺𝑎𝑎
𝑎𝑎∈𝐼𝐼

 

 
Example 3.1. In a G-metric space, (ℝ,𝐺𝐺) defined as  
𝐺𝐺(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = |𝑥𝑥 − 𝑦𝑦| + |𝑥𝑥 − 𝑧𝑧| + |𝑦𝑦 − 𝑧𝑧| for each 𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ ℝ, 
the collections 𝒢𝒢 =  ��− 𝑝𝑝

2
, 𝑝𝑝
2
 � :𝑝𝑝 ∈ [0,∞)� , and  𝒢𝒢∗ =  {ℝ}  

are an open cover for 𝐴𝐴 = [0,∞), respectively. 
 
Example 3.2. In any 𝐺𝐺 −metric space, (𝑋𝑋,𝐺𝐺) and any 𝐾𝐾 ⊂ 𝑋𝑋 
with 𝐾𝐾 ≠ ∅, then 𝒢𝒢 = {𝐵𝐵𝐺𝐺(𝑝𝑝, 𝑟𝑟):𝑝𝑝 ∈ 𝐾𝐾} is open cover of 𝐾𝐾.  
 
Definition 3.2. [18] Given (𝑋𝑋,𝐺𝐺) is a G-metric space. If 𝒢𝒢 𝒢𝒢 is 
an open cover of 𝐾𝐾 ⊂ 𝑋𝑋 and 𝒢𝒢′ ⊂ 𝒢𝒢 with 𝒢𝒢′ = {𝐺𝐺1,𝐺𝐺2, … ,𝐺𝐺𝑛𝑛} 
such that 

𝐾𝐾 ⊂ � 𝐺𝐺𝑖𝑖
𝐺𝐺𝑖𝑖∈𝒢𝒢′

= �𝐺𝐺𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

 
then 𝒢𝒢′ is called a finite subcover of 𝒢𝒢 for 𝐾𝐾 
 
Definition 3.3. [19] Given (𝑋𝑋,𝐺𝐺) is a G-metric space. A set 
𝐾𝐾 ⊂ 𝑋𝑋 is compact if for every open cover of 𝐾𝐾 has finite 
subcovers.  
 
Example 3.3. In a real 𝐺𝐺 −metric space, with 
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𝐺𝐺(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = �0, for 𝑥𝑥 = 𝑦𝑦 = 𝑧𝑧
5, for others  

 
then set 𝐴𝐴 = [0, 1] is not a compact set because there exists an 
open cover 𝒢𝒢 =  {{𝑝𝑝}:𝑝𝑝 ∈ [0, 1]} for 𝐴𝐴 with the condition that 
every finite subcover of 𝒢𝒢 is not a cover of 𝐴𝐴.  
 
Example 3.4. In any 𝐺𝐺 −metric space (𝑋𝑋,𝐺𝐺), the finite set 𝐾𝐾 =
{𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛} is compact set. For any open cover 𝒢𝒢 = {𝐺𝐺𝑎𝑎} for 
𝐾𝐾 and for any 𝑥𝑥𝑖𝑖 ∈ 𝐾𝐾 can be found 𝐺𝐺𝑥𝑥𝑖𝑖 ∈ 𝒢𝒢 with 𝑥𝑥𝑖𝑖 ∈ 𝐺𝐺𝑥𝑥𝑖𝑖. Let 
𝒢𝒢′ =  �𝐺𝐺𝑥𝑥1 ,𝐺𝐺𝑥𝑥2 , … ,𝐺𝐺𝑥𝑥𝑛𝑛�. Then we get 𝒢𝒢′ ⊂ 𝒢𝒢  with the property 
 

𝐾𝐾 ⊂ � 𝐺𝐺𝑥𝑥𝑖𝑖
𝐺𝐺𝑥𝑥𝑖𝑖∈𝒢𝒢

′

 

 
So, it is proved that K is a compact set. 
 

Some properties of compact sets on G-metric spaces are 
given in the following theorems. Theorem 3.1 says that a closed 
set which is a subset of a compact set is a compact set. 

 
Theorem 3.1. In a G-metric space, if 𝐾𝐾 ⊂ 𝑋𝑋 is a compact set, 
𝐸𝐸 ⊂ 𝐾𝐾, and 𝐸𝐸 is a closed set, then 𝐸𝐸 is a compact set. 
Proof: Let 𝒢𝒢 be an open cover of 𝐸𝐸. Since 𝐸𝐸 is a closed set, then 
𝐸𝐸𝐶𝐶 is an open set. Since 𝐸𝐸 ⊂ 𝐾𝐾 and 𝒢𝒢 are open cover of 𝐸𝐸 then 
𝒢𝒢∗ = 𝒢𝒢 ∪ {𝐸𝐸𝐶𝐶} is open cover for 𝐾𝐾. Since 𝐾𝐾 is a compact set, 
that 𝐺𝐺1,𝐺𝐺2,𝐺𝐺3, . . ,𝐺𝐺𝑛𝑛  ∈ 𝒢𝒢∗ such that 
 

𝐸𝐸 ⊂ 𝐾𝐾 ⊂�𝐺𝐺𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

 
Note that {𝐺𝐺1,𝐺𝐺2,𝐺𝐺3, . . ,𝐺𝐺𝑛𝑛} − {𝐸𝐸𝐶𝐶} ⊂ 𝒢𝒢  and is a cover of 𝐸𝐸. 
So, it is proved that 𝐸𝐸 is compact.  
 
Furthermore, it will be proved that the compact set in the G-
metric space is a closed and bounded set.  
 
Theorem 3.2. In a G-metric space, if 𝐾𝐾 ⊂ 𝑋𝑋 , 𝐾𝐾 is a compact 
set, then 𝐾𝐾 is closed and bounded. 
Proof: (i) Let 𝑞𝑞 ∈ 𝐾𝐾𝐶𝐶 or 𝑞𝑞 ∉ 𝐾𝐾. Consequently, 𝑝𝑝 ≠ 𝑞𝑞 for all 
𝑝𝑝 ∈ 𝐾𝐾. Based on definition, for all 𝑝𝑝 ∈ 𝐾𝐾 holds 𝐺𝐺(𝑝𝑝,𝑝𝑝, 𝑞𝑞) > 0. 
Then, it can be made 𝐵𝐵𝐺𝐺(𝑝𝑝, 𝑟𝑟) and 𝐵𝐵𝐺𝐺(𝑞𝑞, 𝑟𝑟) which are the 
neighborhood with radius 𝑟𝑟𝑝𝑝 with 0 < 𝑟𝑟𝑝𝑝 < 1

2
𝐺𝐺(𝑝𝑝,𝑝𝑝, 𝑞𝑞) and 

center 𝑝𝑝 and 𝑞𝑞. Therefore, it can be obtained that 𝐵𝐵𝐺𝐺�𝑝𝑝, 𝑟𝑟𝑝𝑝� ∩
𝐵𝐵𝐺𝐺�𝑞𝑞, 𝑟𝑟𝑝𝑝� = ∅. Based on definition, {𝐵𝐵𝐺𝐺�𝑝𝑝, 𝑟𝑟𝑝𝑝�:𝑝𝑝 ∈ 𝐾𝐾} is an 
open cover of 𝐾𝐾. Since 𝐾𝐾 is a compact set, then there exists 
𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑛𝑛 ∈ 𝐾𝐾 such that 
 

𝐾𝐾 ⊂�𝐵𝐵𝐺𝐺(𝑝𝑝𝑖𝑖 , 𝑟𝑟𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 

Will be selected 𝑟𝑟 = min{𝑟𝑟𝑖𝑖: 1 ≤ 𝑙𝑙 ≤ 𝑛𝑛} > 0. Then 𝑞𝑞 ∈
𝐵𝐵𝐺𝐺(𝑞𝑞, 𝑟𝑟) ⊂ 𝐵𝐵𝐺𝐺(𝑞𝑞, 𝑟𝑟𝑖𝑖) with 𝑙𝑙 = 1,2, … ,𝑛𝑛. Furthermore, it can be 
obtained 

(𝐵𝐵𝐺𝐺(𝑞𝑞, 𝑟𝑟) ∩ 𝐾𝐾) ⊂ �𝐵𝐵𝐺𝐺(𝑞𝑞, 𝑟𝑟) ∩ ��𝐵𝐵𝐺𝐺(𝑝𝑝𝑖𝑖 , 𝑟𝑟𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

��

= ��𝐵𝐵𝐺𝐺(𝑞𝑞, 𝑟𝑟) ∩ 𝐵𝐵𝐺𝐺(𝑝𝑝𝑖𝑖 , 𝑟𝑟𝑖𝑖)�
𝑛𝑛

𝑖𝑖=1

⊂��𝐵𝐵𝐺𝐺(𝑞𝑞, 𝑟𝑟𝑖𝑖) ∩ 𝐵𝐵𝐺𝐺(𝑝𝑝𝑖𝑖 , 𝑟𝑟𝑖𝑖)�
𝑛𝑛

𝑖𝑖=1

= �∅
𝑛𝑛

𝑖𝑖=1
= ∅ 

 
So 𝐵𝐵𝐺𝐺(𝑞𝑞, 𝑟𝑟) ∩ 𝐾𝐾 = ∅ which results in 𝐵𝐵𝐺𝐺(𝑞𝑞, 𝑟𝑟) ⊂ 𝐾𝐾𝐶𝐶. Hence, if 
𝑞𝑞 ∈ 𝐾𝐾𝐶𝐶, then there exists 𝑟𝑟 ∈ ℝ, 𝑟𝑟 > 0 such that 𝐵𝐵𝐺𝐺(𝑞𝑞, 𝑟𝑟) ⊂
𝐾𝐾𝐶𝐶. In other terms, 𝑞𝑞 is an interior point 𝐾𝐾𝐶𝐶 or 𝐾𝐾𝐶𝐶 is an open 
set. So 𝐾𝐾 is a closed set. (ii) Based on definition, for all 𝑝𝑝 ∈ 𝐾𝐾 
can be built 𝐵𝐵𝐺𝐺(𝑝𝑝, 1) which means the neighborhood with 
center 𝑝𝑝 and radius 1 and {𝐵𝐵𝐺𝐺(𝑝𝑝, 1):𝑝𝑝 ∈ 𝐾𝐾} is a open cover of 
𝐾𝐾. Since 𝐾𝐾 is a compact set, then there exists 𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑛𝑛 ∈ 𝐾𝐾 
such that, 

𝐾𝐾 ⊂�𝐵𝐵𝐺𝐺(𝑝𝑝𝑖𝑖 , 1).
𝑛𝑛

𝑖𝑖=1

 

Let 𝑞𝑞 ∈ 𝑋𝑋, 𝑞𝑞 = 𝑝𝑝1 as a fixed point, and 
𝑀𝑀 − 1 =  maks{𝐺𝐺(𝑞𝑞,𝑝𝑝2,𝑝𝑝2),𝐺𝐺(𝑞𝑞,𝑝𝑝3,𝑝𝑝3), … ,𝐺𝐺(𝑞𝑞,𝑝𝑝𝑛𝑛,𝑝𝑝𝑛𝑛)}. 

For any 𝑠𝑠 ∈ 𝐾𝐾, there exists 𝑝𝑝𝑚𝑚 ∈ 𝐾𝐾 with 1 ≤ 𝑙𝑙 ≤ 𝑛𝑛 such that 
𝑠𝑠 ∈ 𝐵𝐵𝐺𝐺(𝑝𝑝𝑚𝑚, 1). This means, 𝐺𝐺(𝑠𝑠, 𝑠𝑠,𝑝𝑝𝑚𝑚) < 1. Based on 
definition, we can obtain 

𝐺𝐺(𝑞𝑞, 𝑠𝑠, 𝑠𝑠) ≤ 𝐺𝐺(𝑞𝑞,𝑝𝑝𝑚𝑚,𝑝𝑝𝑚𝑚) + 𝐺𝐺(𝑝𝑝𝑚𝑚, 𝑠𝑠, 𝑠𝑠) 
𝐺𝐺(𝑞𝑞, 𝑠𝑠, 𝑠𝑠) ≤ (𝑀𝑀 − 1) + 1 

𝐺𝐺(𝑞𝑞, 𝑠𝑠, 𝑠𝑠) ≤ 𝑀𝑀,  

for each 𝑠𝑠 ∈ 𝐾𝐾. This shows that 𝐾𝐾 bounded. 
 
 By Theorem 3.2, in a G-metric space, every compact set is a 
closed and bounded set, but a closed and bounded set in a G-
metric space is not necessarily a compact set. For example, 
consider the following example. 
 
Example 3.5. In a real 𝐺𝐺 −mtric space with, 

𝐺𝐺(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = �0, for 𝑥𝑥 = 𝑦𝑦 = 𝑧𝑧
5, for others  

then: (i) Set 𝐴𝐴 = [0, 1] is closed, because in this metric space, 
every subset of ℝ is an open set and also a closed set.  
(ii)  The diameter of 𝐴𝐴,  
𝑑𝑑𝑙𝑙𝑎𝑎𝑙𝑙([0, 1]) = 𝑆𝑆𝑆𝑆𝑝𝑝{𝐺𝐺(𝑥𝑥,𝑦𝑦, 𝑧𝑧): 𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ [0,1]} = 5 < ∞. 

So 𝐴𝐴 = [0, 1] is a bounded set.  
By Example 3.3,  𝐴𝐴 = [0, 1] is not compact set. 
 
Theorem 3.3. Given an indexed set 𝐼𝐼. If {𝐾𝐾𝑎𝑎:𝑎𝑎 ∈ 𝐼𝐼} is a 
collection of compact sets on the 𝐺𝐺 −metric space, such that 
each of its infinite subcollections has a non-empty intersection, 
then 
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�𝐾𝐾𝑎𝑎
𝑎𝑎∈𝐼𝐼

≠ ∅ 

Proof: In the theorem above, it means that if 𝐾𝐾𝑎𝑎 is a compact 
set and 

�𝐾𝐾𝑎𝑎𝑖𝑖

𝑛𝑛

𝑖𝑖=1

≠ ∅ 

for every 𝑛𝑛 ∈ ℕ, then 

�𝐾𝐾𝑎𝑎
𝑎𝑎

≠ ∅ 

Take any member of the collection suppose 𝐾𝐾𝑎𝑎0. Since 𝐾𝐾𝑎𝑎 is a 
compact set, by Theorem 5.3, then 𝐾𝐾𝑎𝑎 is closed. Since 𝐾𝐾𝑎𝑎 is 
closed, then 𝐾𝐾𝑎𝑎𝐶𝐶 is open. Suppose 𝐾𝐾𝑎𝑎𝐶𝐶 = 𝐺𝐺𝑎𝑎, then 𝐺𝐺𝑎𝑎 is open. 
We will show that 
 

𝐾𝐾𝑎𝑎0 ∩ �� 𝐾𝐾𝑎𝑎
𝑎𝑎≠𝑎𝑎0

� ≠ ∅ 

 
Will be proven by proof of contradiction. Suppose 
 

𝐾𝐾𝑎𝑎0 ∩ �� 𝐾𝐾𝑎𝑎
𝑎𝑎≠𝑎𝑎0

� = ∅ 

then  

𝐾𝐾𝑎𝑎0 ⊂ �� 𝐾𝐾𝑎𝑎
𝑎𝑎≠𝑎𝑎0

�

𝐶𝐶

= � 𝐾𝐾𝑎𝑎𝐶𝐶

𝑎𝑎≠𝑎𝑎0

= � 𝐺𝐺𝑎𝑎
𝑎𝑎≠𝑎𝑎0

 

𝐾𝐾𝑎𝑎0 ⊂ � 𝐺𝐺𝑎𝑎
𝑎𝑎≠𝑎𝑎0

 

 
So, {𝐺𝐺𝑎𝑎}𝑎𝑎≠𝑎𝑎0 is an open cover for 𝐾𝐾𝑎𝑎0. Since 𝐾𝐾𝑎𝑎0 is compact, 
then there exists 𝑎𝑎1,𝑎𝑎2,𝑎𝑎3, … ,𝑎𝑎𝑛𝑛 such that 
 

𝐾𝐾𝑎𝑎0 ⊂�𝐺𝐺𝑎𝑎𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= �𝐾𝐾𝐶𝐶
𝑎𝑎𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= ��𝐾𝐾𝑎𝑎𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�
𝐶𝐶

 

 
This shows that 

𝐾𝐾𝑎𝑎0 ⊂ ��𝐾𝐾𝑎𝑎𝑖𝑖

𝑛𝑛

𝑖𝑖=1

�
𝐶𝐶

 

 
which resulted in 
 

𝐾𝐾𝑎𝑎0 ∩ ��𝐾𝐾𝑎𝑎𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� = ∅ 

 
or 𝐾𝐾𝑎𝑎0 ∩ 𝐾𝐾𝑎𝑎1 ∩ 𝐾𝐾𝑎𝑎2 ∩ …∩ 𝐾𝐾𝑎𝑎𝑛𝑛 = ∅. However, it contradicts 
the statement that every finite subcollection has a non-empty 
intersection. Thus, the supposition is false and should be 

𝐾𝐾𝑎𝑎0 ∩ �� 𝐾𝐾𝑎𝑎
𝑎𝑎≠𝑎𝑎0

� ≠ ∅ 

Since 𝐾𝐾𝑎𝑎0 is arbitrary, then 

�𝐾𝐾𝑎𝑎
𝑎𝑎

≠ ∅ 

Thus, Theorem 3.3 is proven. 
 
Corollary 3.1. If {𝐾𝐾𝑛𝑛}𝑛𝑛≥1 is a non-empty collection of compact 
sets with 𝐾𝐾𝑛𝑛+1 ⊂ 𝐾𝐾𝑛𝑛 for every 𝑛𝑛 ∈ ℕ, then 
 

�𝐾𝐾𝑛𝑛
𝑛𝑛∈ℕ

≠ ∅ 

 
Theorem 3.4. Given (𝑋𝑋,𝐺𝐺) is a G-metric space, 𝐾𝐾 ⊂ 𝑋𝑋, and 𝐾𝐾 
is compact. If 𝐸𝐸 is an infinite subset of 𝐾𝐾 then 𝐸𝐸 has a limit point 
at 𝐾𝐾. 
Proof: We will be proven by proof of contradiction. Let 𝐸𝐸 has 
no limit point on 𝐾𝐾. This means that if 𝑝𝑝 ∈ 𝐾𝐾 then 𝑝𝑝 is not a 
limit point of 𝐸𝐸. Based on definition, 𝐵𝐵𝐺𝐺(𝑝𝑝, 𝑟𝑟) − {𝑝𝑝} ∩ 𝐸𝐸 = ∅. 
Thus, each 𝐵𝐵𝐺𝐺(𝑝𝑝, 𝑟𝑟) contains only the point p itself which is 
contained in 𝐸𝐸. Thus, by definition, since 𝐸𝐸 ⊂ 𝐾𝐾 then 
{BG(p, r): p ∈ K} is an open cover of K and E. 
 

𝐸𝐸 ⊂ 𝐾𝐾 ⊂�𝐵𝐵𝐺𝐺(𝑝𝑝, 𝑟𝑟)
𝑝𝑝∈𝐾𝐾

 

 
Since K is compact set, then by definition, there exists 
𝑝𝑝1,𝑝𝑝2,𝑝𝑝3, … ,𝑝𝑝𝑛𝑛 ∈ 𝐾𝐾 such that 
 

𝐾𝐾 ⊂�𝐵𝐵𝐺𝐺(𝑝𝑝𝑖𝑖 , 𝑟𝑟𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 

 
Also applies to 𝐸𝐸 because 𝐸𝐸 ⊂ 𝐾𝐾, that is 
 

𝐸𝐸 ⊂�𝐵𝐵𝐺𝐺(𝑝𝑝𝑖𝑖 , 𝑟𝑟𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 

 
Meanwhile, each 𝐵𝐵𝐺𝐺(𝑝𝑝𝑖𝑖 , 𝑟𝑟𝑖𝑖) contains only one point in 𝐸𝐸. This 
means that the members of 𝐸𝐸 are finite. This contradicts the 
known statement that 𝐸𝐸 is an infinite subset, so the supposition 
is false. Therefore, 𝐸𝐸 must have a limit point on 𝐾𝐾. 
 
Theorem 3.5. Given (𝑋𝑋,𝐺𝐺) is a G-metric space, (𝑌𝑌,𝐺𝐺) is a G-
metric subspace, and 𝐾𝐾 ⊂ 𝑌𝑌. 𝐾𝐾 is compact relative to 𝑌𝑌 if and 
only if 𝐾𝐾 is compact relative to 𝑋𝑋. 
Proof: 
(1) Will be proved that if 𝐾𝐾 is compact relative to 𝑌𝑌 then 𝐾𝐾 is 

compact relative to 𝑋𝑋.  
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Suppose {𝐵𝐵𝐺𝐺(𝑝𝑝, 𝑟𝑟):𝑝𝑝 ∈ 𝐾𝐾} is an open cover of 𝐾𝐾 on 𝑋𝑋. 
Based on theorem and definition, {𝐵𝐵𝐺𝐺(𝑞𝑞, 𝑟𝑟):𝑞𝑞 ∈ 𝐾𝐾} with 
𝐵𝐵𝐺𝐺(𝑞𝑞, 𝑟𝑟) = 𝐵𝐵𝐺𝐺(𝑝𝑝, 𝑟𝑟) ∩ 𝑌𝑌 is an open cover of 𝐾𝐾 against 𝑌𝑌. 
Then, based on definition, there exists 𝑞𝑞1,𝑞𝑞2, … , 𝑞𝑞𝑛𝑛 such 
that, 

𝐾𝐾 ⊂�𝐵𝐵𝐺𝐺(𝑞𝑞𝑖𝑖 , 𝑟𝑟𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

⊂�𝐵𝐵𝐺𝐺(𝑞𝑞, 𝑟𝑟)
𝑞𝑞∈𝐾𝐾

 

 
That cover 𝐾𝐾, because 𝐾𝐾 is compact relative to 𝑌𝑌. 
 
Therefore, there exists 𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑛𝑛 such that, 
 

𝐾𝐾 ⊂�𝐵𝐵𝐺𝐺(𝑝𝑝𝑖𝑖 , 𝑟𝑟𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

⊂�𝐵𝐵𝐺𝐺(𝑝𝑝, 𝑟𝑟)
𝑝𝑝∈𝐾𝐾

 

 
that cover 𝐾𝐾. Thus, 𝐾𝐾 is compact relative to 𝑋𝑋. 
 

(2) Will be proved that if 𝐾𝐾 is compact relative to 𝑋𝑋 then 𝐾𝐾 is 
compact relative to 𝑌𝑌. 
Suppose {𝐵𝐵𝐺𝐺(𝑞𝑞, 𝑟𝑟): 𝑞𝑞 ∈ 𝐾𝐾} is an open cover of 𝐾𝐾 against 𝑌𝑌. 
Based on theorem, 𝐵𝐵𝐺𝐺(𝑞𝑞, 𝑟𝑟) = 𝐵𝐵𝐺𝐺(𝑝𝑝, 𝑟𝑟) ∩ 𝑌𝑌 with 𝐵𝐵𝐺𝐺(𝑝𝑝, 𝑟𝑟) 
is an open set relative to 𝑋𝑋, so that {𝐵𝐵𝐺𝐺(𝑝𝑝, 𝑟𝑟):𝑝𝑝 ∈ 𝐾𝐾} is an 
open cover of 𝐾𝐾 relative to 𝑋𝑋. Since 𝐾𝐾 is compact relative 
to 𝑋𝑋, then by definition, {𝐵𝐵𝐺𝐺(𝑝𝑝, 𝑟𝑟):𝑝𝑝 ∈ 𝐾𝐾} contains a finite 
subcovers that cover 𝐾𝐾. 
 

𝐾𝐾 ⊂�𝐵𝐵𝐺𝐺(𝑝𝑝𝑖𝑖 , 𝑟𝑟𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

⊂�𝐵𝐵𝐺𝐺(𝑝𝑝, 𝑟𝑟)
𝑝𝑝∈𝐾𝐾

 

 
Since 𝐵𝐵𝐺𝐺(𝑞𝑞, 𝑟𝑟) = 𝐵𝐵𝐺𝐺(𝑝𝑝, 𝑟𝑟) ∩ 𝑌𝑌, then {𝐵𝐵𝐺𝐺(𝑞𝑞, 𝑟𝑟): 𝑞𝑞 ∈ 𝐾𝐾} 
contains a finite subcovers which is a cover of 𝐾𝐾 as well. 
Thus, 𝐾𝐾 is compact relative to 𝑌𝑌.                   

 
Corollary 3.2. Given (𝑋𝑋,𝐺𝐺) is a G-metric space, (𝑌𝑌,𝐺𝐺) is a G-
metric subspace, and 𝐾𝐾 ⊂ 𝑌𝑌. If 𝑌𝑌 = 𝑋𝑋, then 𝐾𝐾 is not compact 
relative to 𝑌𝑌. 
 
Definition 3.4. [16] Given (𝑋𝑋,𝐺𝐺) is a G-metric space. The 
sequence (𝑥𝑥𝑛𝑛) on 𝑋𝑋 is said to be G-convergent to 𝑥𝑥 if 
𝑙𝑙𝑙𝑙𝑙𝑙�𝐺𝐺(𝑥𝑥, 𝑥𝑥𝑛𝑛, 𝑥𝑥𝑚𝑚)� = 0. That is, for every 𝑟𝑟 ∈ ℝ, 𝑟𝑟 > 0, there 
exists 𝑁𝑁 ∈ ℕ such that 𝐺𝐺(𝑥𝑥, 𝑥𝑥𝑛𝑛, 𝑥𝑥𝑚𝑚) < 𝑟𝑟 for all 𝑛𝑛,𝑙𝑙 ∈ ℕ with 
𝑛𝑛,𝑙𝑙 ≥ 𝑁𝑁.  
 
Example 3.6. Let (ℝ,𝐺𝐺) is a G-metric space, with 

𝐺𝐺(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = |𝑥𝑥 − 𝑦𝑦| + |𝑥𝑥 − 𝑧𝑧| + |𝑦𝑦 − 𝑧𝑧| 
for all 𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ ℝ . Sequence (𝑥𝑥𝑛𝑛) = � 1

𝑛𝑛+1
� is a G-convergent 

to 𝑥𝑥 = 0, since for every 𝑟𝑟 ∈ ℝ, 𝑟𝑟 > 0 there exists 𝑁𝑁 ∈ ℕ, i.e., 
𝑁𝑁 = the smallest natural number greater than 4

𝑟𝑟
 such that 4

𝑁𝑁
< 𝑟𝑟. 

For all 𝑛𝑛,𝑙𝑙 ∈ ℕ with 𝑛𝑛,𝑙𝑙 ≥ 𝑁𝑁, we have 
𝐺𝐺(𝑥𝑥, 𝑥𝑥𝑛𝑛, 𝑥𝑥𝑚𝑚) = |𝑥𝑥 − 𝑥𝑥𝑛𝑛| + |𝑥𝑥 − 𝑥𝑥𝑚𝑚| + |𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑚𝑚| 

= �0 −
1

𝑛𝑛 + 1
� + �0 −

1
𝑙𝑙 + 1

�

+ �
1

𝑛𝑛 + 1
−

1
𝑙𝑙 + 1

� 

≤
1

𝑛𝑛 + 1
+

1
𝑙𝑙 + 1

+
1

𝑛𝑛 + 1
+

1
𝑙𝑙 + 1

 

≤ 2
𝑛𝑛+1

+ 2
𝑚𝑚+1

≤ 2
𝑁𝑁+1

+ 2
𝑁𝑁+1

≤ 2
𝑁𝑁

+ 2
𝑁𝑁
≤ 4

𝑁𝑁
< 𝑟𝑟.  

 
Definition 3.5. [3] Given (𝑋𝑋,𝐺𝐺) is a G-metric space. The 
sequence (𝑥𝑥𝑛𝑛) on 𝑋𝑋 is said to be G-Cauchy sequence if for every 
𝑟𝑟 ∈ ℝ, 𝑟𝑟 > 0, there exists 𝑁𝑁 ∈ ℕ such that 𝐺𝐺(𝑥𝑥𝑛𝑛, 𝑥𝑥𝑚𝑚, 𝑥𝑥𝑙𝑙) < 𝑟𝑟 
for all 𝑛𝑛,𝑙𝑙, 𝑙𝑙 ≥ 𝑁𝑁. 
 
Example 3.7. Let (ℝ,𝐺𝐺) is a G-metric space, with 

𝐺𝐺(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = |𝑥𝑥 − 𝑦𝑦| + |𝑥𝑥 − 𝑧𝑧| + |𝑦𝑦 − 𝑧𝑧| 
for all 𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ ℝ.  
A sequence (𝑥𝑥𝑛𝑛) = �1

𝑛𝑛
� is a G-Cauchy sequence because for 

each 𝑟𝑟 ∈ ℝ, 𝑟𝑟 > 0, there exists 𝑁𝑁 ∈ ℕ which is the smallest 
natural number greater than 6

𝑟𝑟
 such that 6

𝑁𝑁
< 𝑟𝑟. By Definition 

3.5, for all 𝑛𝑛,𝑙𝑙, 𝑙𝑙 ≥ 𝑁𝑁 holds 
𝐺𝐺(𝑥𝑥𝑛𝑛, 𝑥𝑥𝑚𝑚, 𝑥𝑥𝑙𝑙) = |𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑚𝑚| + |𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑙𝑙| + |𝑥𝑥𝑚𝑚 − 𝑥𝑥𝑙𝑙| = �1

𝑛𝑛
−

1
𝑚𝑚
� + �1

𝑛𝑛
− 1

𝑙𝑙
� + � 1

𝑚𝑚
− 1

𝑙𝑙
� ≤ 1

𝑛𝑛
+ 1

𝑚𝑚
+ 1

𝑛𝑛
+ 1

𝑙𝑙
+ 1

𝑚𝑚
+ 1

𝑙𝑙
= 2

𝑛𝑛
+ 2

𝑚𝑚
+

2
𝑙𝑙
≤ 2

𝑁𝑁
+ 2

𝑁𝑁
+ 2

𝑁𝑁
≤ 6

𝑁𝑁
< 𝑟𝑟  

Thus, it is proven that the sequence (𝑥𝑥𝑛𝑛) = �1
𝑛𝑛
� is a G-Cauchy 

sequence. 
 
Definition 3.6. [3] Let (𝑋𝑋,𝐺𝐺) is a G-metric space. 𝑋𝑋 is said to 
be G-complete if for every G-Cauchy sequence on 𝑋𝑋 is a G-
convergent sequence on 𝑋𝑋. 
 
The definition of the net of a set has been given by [3] which 
will be used as a discussion of compact sets from another point 
of view. 
 
Definition 3.7. [3] Let (𝑋𝑋,𝐺𝐺) is a G-metric space, 𝐸𝐸 ⊂ 𝑋𝑋 and 
𝑟𝑟 ∈ ℝ, 𝑟𝑟 > 0. 𝐸𝐸 is called 𝑟𝑟-net of 𝑋𝑋 if for any 𝑥𝑥 ∈ 𝑋𝑋, there exists 
a point 𝑝𝑝 ∈ 𝐸𝐸 such that 𝑥𝑥 ∈ 𝐵𝐵𝐺𝐺(𝑝𝑝, 𝑟𝑟). If 𝐸𝐸 is finite, then 𝐸𝐸 is 
called finite 𝑟𝑟-net of 𝑋𝑋. 
 
Example 3.8. In the real G-metric space, which is defined as:  

𝐺𝐺(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = |𝑥𝑥 − 𝑦𝑦| + |𝑥𝑥 − 𝑧𝑧| + |𝑦𝑦 − 𝑧𝑧|  
for every 𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ ℝ then 

(a) ℚ is 1 − 𝑛𝑛𝑛𝑛𝑛𝑛 to ℝ 
(b) ℤ, the set of all integers, is 3 − 𝑛𝑛𝑛𝑛𝑛𝑛 for ℝ. 

 
Example 3.9. In real 𝐺𝐺 −𝑙𝑙𝑛𝑛𝑛𝑛𝑟𝑟𝑙𝑙𝑚𝑚 which  

𝐺𝐺(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = �0, for 𝑥𝑥 = 𝑦𝑦 = 𝑧𝑧
5, for others  

then  

𝐵𝐵𝐺𝐺(𝑝𝑝, 𝑘𝑘) =  {𝑦𝑦 ∈ ℝ:𝐺𝐺(𝑝𝑝,𝑦𝑦,𝑦𝑦) < 𝑘𝑘} = �{𝑝𝑝}, for 𝑘𝑘 ≤ 5
ℝ, for 𝑘𝑘 > 5   

Therefore:  
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(a) 𝐴𝐴 = {3} is 7 − 𝑛𝑛𝑛𝑛𝑛𝑛 for ℝ 
(b) 𝐴𝐴 = {3} is not a 4 − 𝑛𝑛𝑛𝑛𝑛𝑛 for ℝ 
(c) If 𝑟𝑟 is an arbitrary real number with 0 < 𝑟𝑟 ≤ 5, then every 

finite subset of ℝ which is not empty is not a 𝑟𝑟 − 𝑛𝑛𝑛𝑛𝑛𝑛 for ℝ. 
 
Definition 3.8. [3] Let (𝑋𝑋,𝐺𝐺) is a G-metric space. The set 𝐴𝐴 ⊂
𝑋𝑋 is said to be G-totally bounded if for every 𝑟𝑟 ∈ ℝ, 𝑟𝑟 > 0, 
there exists a finite 𝑟𝑟-net of 𝐴𝐴. 

 
In other words, the set 𝐴𝐴 is said to be G-totally bounded if for 
every 𝑟𝑟 ∈ ℝ, 𝑟𝑟 > 0, there exists 𝑥𝑥1,  𝑥𝑥2,  𝑥𝑥3,  , ..., 𝑥𝑥𝑛𝑛 ∈ 𝐴𝐴 such 
that 𝒢𝒢 = {𝐵𝐵𝐺𝐺(𝑥𝑥𝑖𝑖 , 𝑟𝑟): 𝑙𝑙 = 1, 2, 3, . . . ,𝑛𝑛} is an open cover of 𝐴𝐴 or  
 

𝐴𝐴 ⊂ � 𝐵𝐵𝐺𝐺(𝑥𝑥𝑖𝑖 , 𝑟𝑟)
1≤𝑖𝑖≤𝑛𝑛

 

 
Example 3.10. Let (ℝ,𝐺𝐺) is a G-metric space with 𝐺𝐺(𝑥𝑥,𝑦𝑦, 𝑧𝑧) =
|𝑥𝑥 − 𝑦𝑦| + |𝑥𝑥 − 𝑧𝑧| + |𝑦𝑦 − 𝑧𝑧| for all 𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ ℝ then:   
(i) ℕ is not a G-totally bounded set 
(ii) 𝐴𝐴 = [0,1] is a G-totally bounded set 
Proof. For any 𝑝𝑝 ∈ ℝ, and 𝑟𝑟 ∈ ℝ with 𝑟𝑟 > 0 then 
𝐵𝐵𝐺𝐺(𝑝𝑝, 𝑟𝑟) = {𝑥𝑥 ∈ ℝ:𝐺𝐺(𝑝𝑝, 𝑥𝑥, 𝑥𝑥) < 𝑟𝑟}

= {𝑥𝑥 ∈ 𝑋𝑋: |𝑝𝑝 − 𝑥𝑥| + |𝑝𝑝 − 𝑥𝑥| + |𝑥𝑥 − 𝑥𝑥| < 𝑟𝑟}

= �𝑝𝑝 −
𝑟𝑟
2

,   𝑝𝑝 +
𝑟𝑟
2�

 

(i) Since there is 𝑟𝑟 ∈ ℝ with 𝑟𝑟 > 0, e.g 𝑟𝑟 = 1, so that for 
every finite collection 𝒢𝒢 = {𝐵𝐵𝐺𝐺(𝑝𝑝𝑖𝑖 , 1):𝑝𝑝𝑖𝑖 ∈  ℕ, 𝑙𝑙 =
1, 2, 3, …𝑛𝑛} is not a cover for ℕ, then ℕ is not a G-totally 
bounded set.  

(ii) For any 𝑟𝑟 ∈ ℝ with 𝑟𝑟 > 0, there exists 𝑛𝑛 ∈  ℕ with 1
𝑛𝑛

< 𝑟𝑟
2
. 

Consequently, 𝒢𝒢 = �𝐵𝐵𝐺𝐺 �
𝑖𝑖−1
𝑛𝑛

, 𝑟𝑟� : 𝑙𝑙 = 1, 2, 3, …𝑛𝑛� is an 
open cover for 𝐴𝐴 = [0,1] . So, 𝐴𝐴 = [0,1] is a G-totally 
bounded set. 

 
Example 3.11. Let (ℝ,𝐺𝐺) is a G-metric space with  

𝐺𝐺(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = �0, for 𝑥𝑥 = 𝑦𝑦 = 𝑧𝑧
5, for others  

for all 𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ ℝ. The set 𝐴𝐴 = [0,1] is not a G-totally bounded 
set, because there exists 𝑟𝑟 ∈ ℝ with 𝑟𝑟 > 0, e.g. 𝑟𝑟 = 2 so that 
for every finite collection 𝒢𝒢 = {𝐵𝐵𝐺𝐺(𝑝𝑝𝑖𝑖 , 2):𝑝𝑝𝑖𝑖 ∈ [0, 1], 𝑙𝑙 =
1, 2, 3, …𝑛𝑛} = �{𝑝𝑝𝑖𝑖} ⊂ [0, 1]:  𝑙𝑙 = 1, 2, 3, …𝑛𝑛�  is not a cover 
for [0, 1]. 
 
Definition 3.9. [3] Let (𝑋𝑋,𝐺𝐺) is a G-metric space. The set 𝐸𝐸 ⊂
𝑋𝑋 is said to be G-sequentially compact if every sequence on 𝐸𝐸 
has a G-convergent subsequence to a point in 𝐸𝐸. 
 
Example 3.12. Let (ℝ,𝐺𝐺) is a G-metric space with 𝐺𝐺(𝑥𝑥,𝑦𝑦, 𝑧𝑧) =
|𝑥𝑥 − 𝑦𝑦| + |𝑥𝑥 − 𝑧𝑧| + |𝑦𝑦 − 𝑧𝑧|. The set 𝐸𝐸 = [0,1] is a G-
sequentially compact set. 
Proof. Since in the G-metric space is a closed and bounded set, 
then every sequence on 𝐸𝐸 = [0,1] there is always exist a 
subsequence on 𝐸𝐸 = [0,1] that is G-convergent to a point in 𝐸𝐸.  
 

Example 3.13. Let (ℝ,𝐺𝐺) is a G-metric space with 

𝐺𝐺(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = �0, for 𝑥𝑥 = 𝑦𝑦 = 𝑧𝑧
5, for others  

for all 𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ ℝ. The set 𝐴𝐴 = [0,1] is not a G-sequentially 

compact set, because there is a sequence (𝑥𝑥𝑛𝑛) = �1

𝑛𝑛
� on 𝐸𝐸 such 

that any subsequence of it is not G-convergent to a point in 𝐸𝐸. 
 

In a metric space with usual metric on ℝ, every closed and 
bounded set is a compact set. However, this is different from 
the 𝐺𝐺-metric space. In the 𝐺𝐺-metric space, there is a closed and 
bounded set, but the set is not a compact set on the 𝐺𝐺-metric 
space (Example 3.5). Since there is a set in the 𝐺𝐺 −metric space 
which is closed and bounded but not compact, then we will 
discuss the necessary and sufficient conditions for a set in the 
𝐺𝐺 −metric space to be compact.  
 

The following theorem is a necessary and sufficient 
conditions for a set in a 𝐺𝐺-metric space is a compact set. 
 
Theorem 3.6. Let (𝑋𝑋,𝐺𝐺) is a G-metric space and 𝐾𝐾 ⊂ 𝑋𝑋. Then 
the following three statements are equivalent. 
(1) 𝐾𝐾 is a G-complete and G-totally bounded set 
(2) 𝐾𝐾 is a compact set 
(3) 𝐾𝐾 is a G-sequentially compact set 
Proof: (1)→(2): (If 𝐾𝐾 is a complete set-𝐺𝐺 and totally finite-𝐺𝐺, 
then 𝐾𝐾 is a compact set). 
Contradiction proof is used. Suppose 𝐾𝐾 is not compact, and 
suppose 𝒢𝒢 is an open cover for 𝐾𝐾 which does not contain a finite 
subcover for 𝐾𝐾. Suppose 𝒢𝒢′ = {𝐺𝐺1,𝐺𝐺2,𝐺𝐺3. . . ,𝐺𝐺𝑚𝑚} ⊂ 𝒢𝒢 with 
𝐾𝐾 ⊄ ⋃ 𝐺𝐺𝑖𝑖𝐺𝐺𝑖𝑖∈𝒢𝒢′  . So there exists 𝑃𝑃 ⊂ 𝐾𝐾 with 𝑃𝑃 ⊄ ⋃ 𝐺𝐺𝑖𝑖𝐺𝐺𝑖𝑖∈𝒢𝒢′ . 
Since K G-totally bounded, then for any 𝑟𝑟 ∈ ℝ, 𝑟𝑟 > 0 can be 
chosen 𝑝𝑝1,𝑝𝑝2,𝑝𝑝3, … ,𝑝𝑝𝑛𝑛𝑟𝑟 ∈ 𝐾𝐾 so that  𝐾𝐾 ⊂ ⋃ 𝐵𝐵𝐺𝐺�𝑝𝑝𝑗𝑗 , 𝑟𝑟�𝑛𝑛𝑟𝑟

𝑗𝑗=1 . 
Formed the set  

𝐻𝐻𝑙𝑙,𝑗𝑗 = 𝐺𝐺𝑙𝑙 ∩ 𝐵𝐵𝐺𝐺 �𝑝𝑝𝑗𝑗, 𝑟𝑟�, 
 𝑙𝑙 = 1, 2, 3, … ,𝑙𝑙  and 𝑗𝑗 = 1, 2, 3, … ,𝑛𝑛𝑟𝑟 . 

Then 𝐻𝐻𝑙𝑙,𝑗𝑗 is an open set with the property that  
𝐾𝐾 ⊄ ⋃ 𝐻𝐻𝑖𝑖,𝑗𝑗1≤𝑖𝑖≤𝑚𝑚;1≤𝑗𝑗≤𝑛𝑛𝑟𝑟 . 

If for every natural number 𝑘𝑘 taken 𝑟𝑟 = 1
𝑘𝑘
, and 𝑃𝑃𝑘𝑘 ⊂ 𝐾𝐾 with 𝑃𝑃 ⊄

⋃ 𝐻𝐻𝑖𝑖,𝑗𝑗1≤𝑖𝑖≤𝑚𝑚;1≤𝑗𝑗≤𝑛𝑛𝑟𝑟 , 𝐹𝐹𝑘𝑘 is the closure of 𝑃𝑃𝑘𝑘, then obtained: 
(i) 𝐹𝐹𝑘𝑘 is a closed set  
(ii) 𝐹𝐹𝑘𝑘 ⊂ 𝐾𝐾 
(iii) 𝐹𝐹𝑘𝑘 ⊂ 𝐹𝐹𝑘𝑘+1  
(iv) 𝐹𝐹𝑘𝑘 ≠ ∅  

Since 𝐾𝐾 is a compact set, it follows from (i) and (ii) that  𝐹𝐹𝑘𝑘 is 
a compact set. Consequently, 
 

�𝐹𝐹𝑘𝑘 ≠
𝑘𝑘∈ℕ

∅ 

 
For example, 𝑝𝑝0 ∈ ⋂ 𝐹𝐹𝑘𝑘𝑘𝑘∈ℕ   and since 𝐾𝐾 is a G-complete set, 
then there exists 𝐺𝐺𝑙𝑙 ∈ 𝒢𝒢 so that 𝑝𝑝0 ∈ 𝐺𝐺𝑙𝑙  and 𝑝𝑝0 ∈ 𝑃𝑃. From the 
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other side, 𝑃𝑃 ⊄ ⋃ 𝐺𝐺𝑖𝑖𝐺𝐺𝑖𝑖∈𝒢𝒢′ . So, there is a contradiction. So, the 
correct one is 𝐾𝐾 is a compact set. 
(2)→(3) (If 𝐾𝐾 is compact, then 𝐾𝐾 is 𝐺𝐺-sequentially compact). 
Suppose (𝑝𝑝𝑛𝑛) is a sequence on 𝐾𝐾. Let 𝐹𝐹𝑛𝑛 be a closure of the 
nonempty set {𝑝𝑝𝑘𝑘:𝑘𝑘 > 𝑛𝑛}. Then (𝐹𝐹𝑛𝑛) is a monotonically 
decreasing sequence of the nonempty closed sets. As a result, 
there exists 𝑝𝑝0 ∈ 𝐾𝐾 so that 
 

𝑝𝑝0 ∈�𝐹𝐹𝑛𝑛
𝑛𝑛∈ℕ

 

For every 𝑛𝑛, we have: 
(i) 𝑝𝑝0 is contained in the closure of {𝑝𝑝𝑘𝑘:𝑘𝑘 > 𝑛𝑛},  
(ii) The neighborhood of 𝐵𝐵𝐺𝐺 �𝑝𝑝0, 1

𝑘𝑘
� has a nonempty 

intersection with {𝑝𝑝𝑘𝑘:𝑘𝑘 > 𝑛𝑛}, 
then we can choose (𝑛𝑛𝑘𝑘) such that for each index 𝑘𝑘,  
𝐺𝐺�𝑝𝑝0,𝑝𝑝𝑛𝑛𝑘𝑘 ,𝑝𝑝𝑛𝑛𝑘𝑘� < 1

𝑘𝑘
. So, the subsequence �𝑝𝑝𝑛𝑛𝑘𝑘� is G-

convergent to 𝑝𝑝0. Thus, 𝐾𝐾 is G-sequentially compact set. 

(3)→(1) (If 𝐾𝐾 is G-sequentially compact set, then 𝐾𝐾 is G-
complete and G-totally bounded). 
Suppose 𝐾𝐾 is not 𝐺𝐺-totally bounded. Then, there exists a real 
number  𝑟𝑟 > 0 such that for any finite set 𝐻𝐻 ⊂ 𝐾𝐾 with  𝐾𝐾 ⊄
⋃ 𝐵𝐵𝐺𝐺(𝑝𝑝, 𝑟𝑟)𝑝𝑝∈𝐻𝐻 . Selected 𝑝𝑝1 ∈ 𝐾𝐾 with 𝑝𝑝1 ∉ 𝐵𝐵𝐺𝐺(𝑝𝑝, 𝑟𝑟). Selected 
𝑝𝑝2 ∈ 𝐾𝐾 with 𝐺𝐺(𝑝𝑝1,𝑝𝑝2,𝑝𝑝2) > 𝑟𝑟. Since 𝐾𝐾 ⊄ 𝐵𝐵𝐺𝐺(𝑝𝑝1, 𝑟𝑟) ∪
𝐵𝐵𝐺𝐺(𝑝𝑝2, 𝑟𝑟), then can be selected 𝑝𝑝3 ∈ 𝐾𝐾 with 𝐺𝐺(𝑝𝑝1,𝑝𝑝3,𝑝𝑝3) > 𝑟𝑟 
and 𝐺𝐺(𝑝𝑝2,𝑝𝑝3,𝑝𝑝3) > 𝑟𝑟. Furthermore, with the same process, we 
can obtain the sequence (𝑝𝑝𝑛𝑛) at 𝐾𝐾 with 𝐺𝐺(𝑝𝑝𝑘𝑘,𝑝𝑝𝑛𝑛,𝑝𝑝𝑛𝑛) > 𝑟𝑟 for 
𝑛𝑛 > 𝑘𝑘. So, the sequence (𝑝𝑝𝑛𝑛) cannot have a subsequence that 
𝐺𝐺-convergent. Consequently, 𝐾𝐾 is not a G-sequentially compact 
set.  Contradiction to what is known, i.e.  𝐾𝐾 is sequentially 
compact. So, the correct one is 𝐾𝐾 is a 𝐺𝐺-totally bounded set. 
To show that 𝐾𝐾 is a 𝐺𝐺-complete, suppose (𝑥𝑥𝑛𝑛) is a 𝐺𝐺-Cauchy 
sequence on 𝐾𝐾. Since 𝐾𝐾 is G-sequentially compact, then the 
subsequence of (𝑥𝑥𝑛𝑛) 𝐺𝐺-convergent to 𝑝𝑝 ∈ 𝐾𝐾. So, all sequences 
𝐺𝐺-convergent to 𝑝𝑝. Consequently, (𝑥𝑥𝑛𝑛) 𝐺𝐺-convergent to 𝑝𝑝 ∈ 𝐾𝐾 
or  𝐾𝐾 is a 𝐺𝐺-complete set.  
 
Example 3.15. On a real 𝐺𝐺 −metric, which 𝐺𝐺(𝑥𝑥,𝑦𝑦, 𝑧𝑧) =
|𝑥𝑥 − 𝑦𝑦| + |𝑥𝑥 − 𝑧𝑧| + |𝑦𝑦 − 𝑧𝑧|. 𝐾𝐾 = [0,1] is a compact set  
Proof: First, will be shown that 𝐾𝐾 is a 𝐺𝐺 -complete set. Based 
on Definition 3.6., 𝐾𝐾 is said to be G-complete if for every 𝐺𝐺 -
Cauchy sequence on 𝐾𝐾 is a 𝐺𝐺-convergent sequence to a point in 
𝐾𝐾. Suppose (𝑥𝑥𝑛𝑛) is a 𝐺𝐺-Cauchy sequence on [0,1]. Since [0,1] 
is a closed and bounded interval, then every 𝐺𝐺-Cauchy 
sequence (𝑥𝑥𝑛𝑛) on [0,1] will 𝐺𝐺-convergent to 𝑥𝑥 ∈ [0,1]. Thus, 
𝐾𝐾 is a 𝐺𝐺-complete set. 
Second, will be shown that 𝐾𝐾 is a 𝐺𝐺-totally bounded set. 
Suppose 𝒢𝒢 = {𝐵𝐵𝐺𝐺(𝑝𝑝, 𝑟𝑟)|𝑝𝑝 ∈ 𝐾𝐾} is the open cover of 𝐾𝐾. By 
definition, the neighborhood with center 𝑝𝑝 ∈ 𝐾𝐾 and radius 𝑟𝑟 ∈
ℝ, 𝑟𝑟 > 0, that is 
𝐵𝐵𝐺𝐺(𝑝𝑝, 𝑟𝑟) = {𝑦𝑦 ∈ 𝐾𝐾:𝐺𝐺(𝑝𝑝,𝑦𝑦,𝑦𝑦) < 𝑟𝑟}  
𝐵𝐵𝐺𝐺(𝑝𝑝, 𝑟𝑟) = {𝑦𝑦 ∈ 𝐾𝐾: |𝑝𝑝 − 𝑦𝑦| + |𝑝𝑝 − 𝑦𝑦| + |𝑦𝑦 − 𝑦𝑦| < 𝑟𝑟}  
= {𝑦𝑦 ∈ 𝐾𝐾: 2|𝑝𝑝 − 𝑦𝑦| < 𝑟𝑟}  
= {𝑦𝑦 ∈ 𝐾𝐾: 2𝑝𝑝 − 𝑟𝑟 < 2𝑦𝑦 < 2𝑝𝑝 + 𝑟𝑟}  

= �𝑦𝑦 ∈ 𝐾𝐾:𝑝𝑝 − 𝑟𝑟
2

< 𝑦𝑦 < 𝑝𝑝 + 𝑟𝑟
2
�  

= �𝑝𝑝 − 𝑟𝑟
2

,𝑝𝑝 + 𝑟𝑟
2
�  

Based on Definitions 3.7 and 3.8, the set of K is said to be 𝐺𝐺-
totally bounded if for every 𝑟𝑟 ∈ ℝ, 𝑟𝑟 > 0, there exists 𝒢𝒢′ ⊂ 𝒢𝒢 
with 𝒢𝒢′ = {𝐵𝐵𝐺𝐺(𝑥𝑥1, 𝑟𝑟),𝐵𝐵𝐺𝐺(𝑥𝑥2, 𝑟𝑟), … , 𝐵𝐵𝐺𝐺(𝑥𝑥𝑛𝑛, 𝑟𝑟)} such that 𝒢𝒢 =
{𝐵𝐵𝐺𝐺(𝑥𝑥, 𝑟𝑟)|𝑥𝑥 ∈ 𝑋𝑋} is an open cover for 𝐾𝐾. Let  𝑟𝑟 ∈ ℝ, 𝑟𝑟 > 0. By 
Archimedian property, we can be chosen 𝑛𝑛 ∈ ℕ such that 𝑟𝑟 < 1

𝑛𝑛
 

and 𝐾𝐾 = [0,1] can be divided into as many 𝑛𝑛 equally spaced 
subintervals, i.e., each is spaced 

1

𝑛𝑛
. For each subinterval, one of 

the rational endpoints of each subinterval can be chosen as the 
point at 𝐵𝐵𝐺𝐺(𝑝𝑝, 𝑟𝑟). This ensures that every point in 𝐾𝐾 = [0,1] is 
in the neighborhood whose distance from point 𝑝𝑝, less than 𝑟𝑟. 
Suppose 𝑦𝑦 is an arbitrary point in 𝐾𝐾. Then point 𝑦𝑦 must be 
contained in one of the subintervals. If we take 𝑦𝑦 as the rational 
endpoint of the subinterval, then 𝑦𝑦 ∈ 𝐵𝐵𝐺𝐺(𝑝𝑝, 𝑟𝑟). Since 𝐾𝐾 = [0,1] 
can be divided into finitely many equally spaced subintervals 
such that 
 

𝐾𝐾 ⊂�𝐵𝐵𝐺𝐺(𝑝𝑝, 𝑟𝑟)
𝑝𝑝∈𝐾𝐾

 

 
then 𝐾𝐾 is 𝐺𝐺-totally bounded set. 
 
Example 3.11. Let (ℝ,𝐺𝐺) is a G-metric space with  

𝐺𝐺(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = �0, for 𝑥𝑥 = 𝑦𝑦 = 𝑧𝑧
5, for others  

for all 𝑥𝑥,𝑦𝑦, 𝑧𝑧 ∈ ℝ. By Example 3.11, the set 𝐴𝐴 = [0,1] is not a 
𝐺𝐺-totally bounded. So, by Theorem 3.6., the set 𝐴𝐴 = [0,1] is not 
compact. 

4. Conclusion 
In G-metric spaces, compact sets have closed and bounded 

properties. However, a closed and bounded set is not 
necessarily a compact set. The requirement that must be added 
in order for a set to be said to be compact in the 𝐺𝐺 -metric space 
is that the set must be 𝐺𝐺-complete and 𝐺𝐺 −totally finite. 
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