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Abstract: Reinforcement Learning (RL) has developed as a 

powerful machine learning paradigm that has achieved great 
success in a variety of applications such as gaming, robotics, and 
natural language processing. As academics become more 
interested in using RL in real-world contexts, they face new 
problems and complications. This work investigates the key issues 
of RL in real-world contexts, such as dealing with high-
dimensional and continuous state-action spaces, as well as coping 
with partial observability via state estimation. It investigates the 
trade-offs between real-world experience and simulations, 
considering the expense and feasibility of getting real-world 
physical data for training. The importance of reward shaping in 
leading RL agents in real-world contexts is being researched. This 
paper discusses the limitations of RL in real-world applications, as 
well as potential future possibilities for developing the subject. 
Understanding these obstacles and opportunities will allow 
academics and practitioners to fully realize the potential of RL in 
tackling real-world problems and opening new paths for 
revolutionary applications. 
 

Keywords: Algorithms, autonomous, challenges, DQN, game-
playing, MDP, recommendation systems, reinforcement learning, 
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1. Introduction 
Reinforcement Learning (RL) has evolved as a fascinating 

paradigm within the larger subject of machine learning, offering 
a distinct approach to problem resolution. Reinforcement 
Learning, in contrast to traditional supervised and unsupervised 
learning approaches, employs agents who learn to make 
decisions by interacting with an environment and receiving 
feedback in the form of rewards or penalties based on their 
actions. Because of this dynamic learning process, RL excels at 
addressing complicated issues where traditional techniques fall 
short. 

In recent years, Reinforcement Learning has received a lot of 
attention because of its extraordinary success in applications 
including gaming, robotic control, autonomous driving, natural 
language processing, and so on. These accomplishments have 
prompted interest in applying RL algorithms in real-world 
scenarios in order to address difficult challenges and improve 
numerous domains. 

 
Implementing Reinforcement Learning in real-world 

contexts, on the other hand, poses its own set of distinct 
obstacles. They frequently feature high-dimensional, 
continuous states and behaviors, complicating the learning 
process. Furthermore, the assumption of perfect observability 
of the true state becomes untenable, resulting in partial 
observability and the requirement for state estimate via filters. 

The cost and difficulty of gaining real-world physical 
experience for training agents also influence the viability of 
Reinforcement Learning in real-world scenarios. Real-world 
trials can be costly, time-consuming, and often impossible to 
replicate. As a result, researchers must identify reasonable 
approximations for state, policy, and value functions in order to 
accelerate learning while maintaining performance. We see 
how various RL algorithms accommodate continuous and high-
dimensional state-action spaces, as well as state estimation 
techniques improving decision-making in partially observable 
situations. 

We give insight into the current state of Reinforcement 
Learning in real-world circumstances, its limitations, and 
probable future routes for the field's advancement. 
Understanding the complexities of Reinforcement Learning's 
applicability allows academics and practitioners to harness its 
capacity to address critical difficulties and open new 
opportunities across a wide range of businesses and domains. 

 
Fig. 1.  Use Cases of Reinforcement Learning (Li Y. 2022) 
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2. Reinforcement Learning Algorithms and Techniques  
Reinforcement Learning (RL) methods and techniques, 

different from supervised and unsupervised learning, are an 
important branch of machine learning. RL is powered by agents 
that function as domain experts, acting and learning from their 
interactions with the environment. In contrast to supervised 
learning, RL does not use labeled data and instead earns 
rewards or penalties based on the results of its actions. This 
approach enables the agent to analyze its activities in different 
states and fine-tune its decision-making over time. 

The Markov Decision Process (MDP) is at the heart of 
Reinforcement Learning, in which an environment is 
represented as a set of states, and the agent navigates between 
these states by selecting actions [1]. 

 

 
Fig. 2.  Relationship of Reinforcement Learning (Li Y. 2022) 

A. Q-Learning 
A basic RL technique based on the bellman question in which 

the agent learns an action-value function (Q-function) to 
estimate the expected cumulative reward from performing a 
specific action in each state. Q-Learning is model free and off-
policy, that is it can learn from data generated by any policy. 

B. Deep Q-Networks (DQN) 
It is an extension of the Q-Learning technique which uses 

deep neural networks to approximate the Q-function, allowing 
it to handle high-dimensional state spaces. This method also 
introduced experience replay and targets networks to improve 
stability and convergence. 

C. Policy Gradient Methods 
In this method, the algorithms directly optimize the policy 

which is to map from states to actions, to find the best optimal 
policy. [2] They use gradient ascent to update the policy 
parameters based on the expected cumulative reward. 

D. Proximal Policy Optimization (PPO) 
A common policy gradient method that uses a trust region 

approach to update policy in a more secure and efficient 
manner. PPO guarantees that policy updates do not depart too 
far from earlier policies, hence preventing policy collapse. 

E. Actor Critic Methods 
Actor-critic algorithms combine policy-based and value-

based techniques, with an actor (policy) taking actions and a 
critic (value function) estimating the expected cumulative 
reward. The policy of the actor is revised based on the critic's 

judgment of acts. 

F. Deep Deterministic Policy Gradients (DDPG) 
An actor-critic algorithm specifically designed for 

continuous action spaces. DDPG uses deep neural networks to 
represent the policy and Q-function. 

G. Advantage Actor Critic (A2C) 
An efficient, parallelizable version of the actor-critic 

algorithm that updates the policy and value function 
simultaneously. A2C reduces the variance of policy gradient 
updates by using multiple parallel environments. 

H. Trust Region Policy Optimization (TRPO) 
An alternative to PPO, TRPO uses a trust region constraint 

to ensure that policy updates are within a safe region of the 
policy space. This helps maintain policy stability during 
training. 

I. Temporal Difference Learning 
A family of RL algorithms that update the value function 

based on the temporal difference between successive states. TD 
learning is widely used for value function estimation and forms 
the basis for many other RL algorithms. 

J. Soft Actor Critic (SAC) 
To improve exploration and stability, this off-policy 

approach combines entropy regularization and soft Q-learning. 
SAC encourages exploration through a stochastic policy and 
can handle continuous action spaces. 

These algorithms are more flexible in dealing with 
continuous action spaces and partial observability and can 
handle a broader range of tasks [4]. 

Finally, reinforcement learning algorithms and approaches 
combine to offer a formidable arsenal for handling a wide range 
of issues. RL agents may adapt and optimize their decision-
making through interactions with the environment and learning 
from experiences to produce extraordinary achievements across 
multiple domains. Understanding the benefits and limits of 
various RL algorithms enables researchers and practitioners to 
apply RL to real-world problems and advance this dynamic 
subject. 

3. Reinforcement Learning in Robotics 
Reinforcement learning (RL) allows a robot to develop 

optimal behavior on its own via trial-and-error interactions with 
its surroundings. Instead of explicitly explaining the solution to 
a problem, the designer of a control task in reinforcement 
learning offers feedback in the form of a scalar objective 
function that gauges the robot's one-step performance. 

Consider an example [3], Trying to teach a robot to return a 
table tennis ball over the net. In this, the robot could see 
dynamic variables indicating ball position and velocity and the 
internal dynamics of joint position and velocity. This might 
record the system's states well, providing a comprehensive 
statistic for forecasting future observations. The robot may send 
torque to motors or desired accelerations to an inverse dynamics 
control system. The policy is a function that creates motor 
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commands depending on the approaching ball and current 
internal arm observations. 

The goal of a reinforcement learning issue is to discover a 
policy that optimizes the long-term sum of rewards R(s, a); a 
reinforcement learning method is one that is meant to find such 
a (near)-optimal policy [3]. In this case, the reward function 
might be dependent on the success of the hits as well as other 
variables such as energy usage. 

When opposed to standard benchmark issues, robotics 
provides distinct obstacles for reinforcement learning. 
Complications emerge when dealing with high-dimensional, 
continuous states and actions, which are common in robotic 
systems. Furthermore, in robotics, full observability of the 
genuine state and noise-free data are frequently impractical 
assumptions. The learning system must deal with partial 
observability by applying filters to estimate the true state and 
incorporate uncertainty into its estimations. 

One of the most challenging issues in robotics reinforcement 
learning is gaining real-world experience. Data collecting from 
physical systems is time-consuming, costly, and difficult to 
repeat, therefore each trial run is costly. Due to these limits, the 
emphasis shifts to tasks that are less prevalent in traditional 
reinforcement learning standards. 

To achieve learning on a realistic timescale, approximations 
of state, policy, value function, or system dynamics are 
necessary. However, relying just on simulated learning is 
insufficient since slight modelling errors can result in extremely 
divergent behavior, particularly in highly dynamic 
environments. As a result, the algorithms must be robust to 
model uncertainty and under-modeling. Another key problem 
is developing suitable incentive functions. The function of 
rewards in steering the learning system toward success while 
regulating the expense of real-world experience is critical. 
Reward shaping is an important part of this process, requiring 
direct involvement to create incentives that properly influence 
the learning system. Creating appropriate reward functions in 
robots requires domain expertise and might be difficult in 
practice. 

Robotics reinforcement learning introduces complexity 
linked to continuous states and actions, partial observability, 
and uncertainty, differing greatly from traditional benchmarks 
[3]. Real-world experience is valuable yet expensive, hence it 
is necessary to design strong algorithms that can deal with 
model uncertainty and mistakes. Additionally, designing 
appropriate reward functions calls for knowledge and careful 
thought.  

4. Reinforcement Learning in Autonomous Vehicles  
A well-known application of reinforcement learning is the 

usage of autonomous vehicles. In contrast to conventional rule-
based or pre-programmed techniques, RL enables autonomous 
vehicles to learn from experience and optimize their behavior 
based on the feedback received from the environment which 
makes it more suitable than the supervised approach. However, 
training an autonomous vehicle using reinforcement learning in 
a real environment can cost expensive trial and error. Despite 
the visual differences between virtual and actual driving 

scenarios, both share a similar scene parsing structure. For 
instance, buildings, roads, and trees may all be featured in both 
virtual and actual driving scenes, but their textures may differ 
greatly. This suggests that we can create a simulation 
environment that closely resembles the real world in terms of 
both scene parsing structure and object appearance by 
translating virtual images to their realistic equivalents. Hence, 
it is preferable to train in a virtual setting before transferring to 
the real one. 

In RL-based autonomous vehicles, the state representation 
takes various factors into consideration to analyze the current 
driving situation such as data from sensors, cameras, lighting, 
weather conditions, the speed and GPS coordinates of the 
vehicle, data about other vehicles, traffic signals, and road 
markings [12]. And the action space encompasses a range of 
possible actions that the RL agent can take based on the current 
state. It typically consists of a combination of continuous and 
discrete actions to enable smooth and precise driving 
maneuvers. Common actions in this space include acceleration 
and deceleration (braking) to control the vehicle's speed, 
steering to change direction and follow the desired path, lane 
changes for safe switching between lanes, and the use of turn 
signals to indicate intentions [13]. Additionally, maintaining a 
safe following distance from the vehicle ahead and executing 
emergency maneuvers to avoid collisions or unexpected 
obstacles are also critical parts of the action space for 
autonomous vehicles. 

 Through continuous learning, these vehicles can learn to 
handle diverse road conditions, traffic patterns, and obstacles 
which is crucial for ensuring the safety and efficiency of 
autonomous vehicles in real-world scenarios. 

Additionally, there are ethical considerations that need to be 
addressed when using RL in autonomous vehicles. Ensuring the 
safety of passengers and pedestrians should be a priority, and 
the decision-making algorithms should be designed to prioritize 
human well-being in critical situations. 

5. Reinforcement Learning in Recommendation Systems 
We are living in a digital age where we are inundated with an 

overwhelming amount of data and options which makes it quite 
difficult for us to make decisions. A Recommendation system 
is an efficient data filtering algorithm that helps users to get a 
customized list of items/content based on their interests and 
preferences. Whether we are browsing through online stores, 
streaming music or movies or using social media, 
recommendation systems make our lives a little easier by 
helping us pick the right options by saving our valuable time 
and effort. The usage of recommendation systems also plays a 
crucial part in improving customer experience by providing the 
most suitable content to the users and hence are widely used.  

Initially, the recommendation systems were considered 
classification or prediction problems. Content-based filtering 
and collaborative filtering systems are the two popular 
traditional recommendation systems. Although each has its 
strengths, they come with limitations such as scalability, 
sparsity, limited content exposure, cold start problem for new 
items and users and popularity bias. The hybrid system which 



Srinath et al.                                                             International Journal of Research in Engineering, Science and Management, VOL. 6, NO. 7, JULY 2023 43 

is a combination of both can also only eliminate a part of these 
problems. 

The recommendation system can be treated as a Markov 
decision process (MDP) and can be solved using a 
reinforcement learning algorithm. RL addresses all the 
shortcomings of traditional systems by adopting a more 
dynamic approach designed to handle evolving user 
preferences, complex environments, changing market trends, 
etc. which ensure long-term user satisfaction. 

The RL model is designed as a sequential decision-making 
problem, where the recommendation system (agent) interacts 
with the environment (users and items). Over time, the agent 
observes the user's behavior and acts (to recommend an item) 
based on the user's feedback and interaction. The main 
components of an RLRS are discussed below, 

A. State Representation  
State is the information available to the agent that includes 

relevant features or embeddings that capture user preferences 
and context which should obey the Markov property 

B. Policy Optimization 
 The policy determines which action must be taken in each 

state. Various RL algorithms, such as Deep Q-Networks 
(DQN), Deep Deterministic Policy Gradients (DDPG), 
Proximal Policy Optimization (PPO), or Multi-Armed Bandits 
(MAB), can be used to train the recommendation system. Policy 
optimization algorithms used by DRL-based RSs could be 
generally divided into value-based, policy gradient, and actor-
critic methods [14]. 
• Value-function approaches: The value-function approach 

in recommendation systems leverages reinforcement 
learning (RL) to estimate the expected cumulative reward 
associated with different item recommendations for users. 
It provides a quantitative measure of the potential rewards 
or benefits the recommendation system can achieve by 
suggesting specific items in various user contexts. It 
depends heavily on the samples to learn the optimal policy. 
Thus, these approaches are suitable for small discrete 
action spaces and are often applied in small-scale 
recommender systems, such as traditional interactive 
recommendation and conversational recommendation.  

• Policy search methods: Policy search methods in 
recommendation systems are aimed at directly optimizing 
the recommendation policy without explicitly estimating 
value functions.  Policy search approaches directly look for 
the optimum policy based on user interactions and 
feedback, in contrast to typical RL methods that first 
estimate value functions and then derive the policy. These 
techniques iteratively update the policy parameters using 
optimization algorithms like evolutionary algorithms, 
genetic algorithms, or stochastic gradient descent. Due to 
the policy gradient's enormous variances, they are only 
appropriate for continuous action spaces. Policy search 
approaches offer more effective adaptation, 
personalization, and exploration of item recommendations 
which increases overall user engagement with 

recommendation systems. 
• Actor-Critic algorithms: Combines the benefits of both 

value-function approaches and policy search methods. The 
actor is responsible for learning the policy which uses 
policy gradients or other policy-based methods to optimize 
the policy directly based on the observed rewards and the 
critic is responsible for estimating the value function which 
provides feedback to the actor by assessing the quality of 
the policy and guiding its updates. 

C. Reward Formulation 
The RL agent receives a reward signal from the environment 

after each recommendation, indicating how well the 
recommended item aligns with the user's preferences. The 
reward formulation is critical for the training of the agent which 
is based on user feedback such as clicks, purchases, ratings, or 
any other relevant user interactions with the recommended 
item. 

D. Environment Construction 
Creating an appropriate environment is crucial for the 

success of the RL task. To better distinguish between different 
environment-building methods, they can be categorized into 
three groups: Simulated, Real-World, and Interactive 
Environments. Simulated environments are artificially created 
environments specifically designed for RL tasks, real-world 
environments are actual physical or virtual environments where 
the RL agent interacts with the real world and interactive 
environments involve interactions between the RL agent and 
human users.  

 

 
Fig. 3.  Reinforcement Learning for recommendation system 

6. Reinforcement Learning in Game Playing 
Reinforcement learning (RL) has shown remarkable success 

in various applications, and one area that has gained significant 
attention is its application to playing video games. Typically, 
the reward system in a video game can be imagined as a Markov 
Decision Process (MDP) graph where the goal of the user is to 
take an action at any state such that the reward accumulated at 
the end of the traversal is maximized [10]. Similarly, a RL 
model would have its internal MDP graph akin to that of the 
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MDP of the video game in order to gain insights into the 
environment of the game. 

The state space of Atari 2600 games [9] typically 
encompasses a vast range of 10⁹ to 10¹¹ states. In comparison, 
games like chess consist of approximately 10⁴⁶ valid states, 
while more complex games like Go contain an astonishing 
number of 3³⁶¹ valid states. Presently, despite the substantial 
advancements in computational speed, computers still 
encounter significant challenges when dealing with the 
exploration of the immense state space, aiming to traverse as 
many states as possible to develop a comprehensive and 
realistic model of the game environment. 

Accurately attributing the impact of actions taken at different 
stages of a game on the final score presents a challenging 
problem known as "credit assignment" in technical terms [10]. 
Reinforcement learning (RL) has demonstrated remarkable 
success in disentangling actions worth in specific game-states. 
RL models tackle the credit assignment problem by associating 
a credit value with each state. This process involves two 
interwoven phases: learning and planning. 

During the learning phase, the agent explores the model to 
gather information about the states. Subsequently, in the 
planning phase, the agent assigns credits to each state and 
determines the relative merits of different actions. Planning and 
learning represent iterative procedures. In each iteration, the 
agent first engages in learning, where it acquires knowledge 
about the states by exploring the environment. It then proceeds 
to planning, constructing transitions from one state to another 
by selecting those that maximize future rewards. In the 
subsequent learning iteration, when confronted with choosing 
an action for a specific state, the agent selects the transitions 
that lead to terminal states with the highest final scores. 

However, given that numerous real-world problems feature 
exceedingly vast state spaces, RL agents cannot explore all 
states exhaustively. Instead, they operate with only the 
discovered portion of the environment and approximate the 
credit values for unvisited states based on their "knowledge" 
acquired from visited states. In order to approximate the values 
for the undiscovered state, Neural Networks can be used. 

In the context of gameplay, researchers employ flexible 
neural networks (NNs) [9] capable of comprehending the 
diverse patterns present within the state space. Simultaneously, 
these NNs possess substantial depth, represented by multiple 
layers, enabling them to capture intricate distinctions among 
transitions within the state space. 

7. Current Challenges 
When applied to real-world circumstances, Reinforcement 

Learning (RL) confronts many problems. Handling high-
dimensional and continuous state and action spaces is a 
significant challenge. Many real-world jobs necessitate fine-
grained actions, which makes efficient exploration and learning 
complex policies difficult. The agent's capacity to make 
educated decisions based on incomplete and noisy observations 
is hampered by partial observability and uncertainty in the 
environment. Acquiring real-world experience is expensive and 
restricted, making sample-efficient RL algorithms critical. 

Furthermore, model uncertainty and robustness are critical 
considerations since real-world systems have complicated 
dynamics and learning models might introduce errors. Finally, 
for successful RL deployment in real-world applications, 
appropriate reward functions must be designed and function 
approximation trade-offs must be managed. Taking on these 
difficulties increases the use of RL in various and complicated 
situations. Some of the significant challenges or shortcomings 
related to real-world reinforcement learning are depicted below, 

A. High-Dimensional and Continuous State-Action Spaces 
Real-world activities frequently necessitate fine-grained 

actions, which results in high-dimensional and continuous state 
and action spaces. In such situations, efficient exploration and 
learning of complicated policies becomes difficult. 

B. Partial Observability and Uncertainty 
Due to sensor constraints or noisy observations, agents in 

many real-world contexts may not have complete information 
about their surroundings. This partial observability creates 
uncertainty, making correct decision-making difficult for 
agents. 

C. Costly Real-World Experience 
Gathering data through genuine interactions with the 

environment can be time-consuming and expensive in real-
world applications. To develop effective rules, RL algorithms 
must be sample-efficient, making the most of the given 
experiences. 

The data efficiency can be evaluated by looking at the 
amount of data required to reach the necessary performance 
threshold as depicted by the following equation, 

 

 
 

where Rmin is the desired performance threshold and Di is the 
data selected. 

D. Model Uncertainty and Robustness 
Real-world systems are uncertain, and trained models may 

not accurately reflect all features of the environment. To 
provide robust performance, RL algorithms should be able to 
tolerate model faults and adapt to new settings. 

E. Reward Design and Function Approximation 
Designing effective reward functions for agents to learn 

desired behaviors is challenging, requiring careful balance 
between complexity and performance. 

Addressing these challenges is crucial for the successful 
deployment of RL in real-world applications, where safety, 
efficiency, and generalization are paramount. Researchers and 
practitioners continue to develop novel algorithms and 
techniques to tackle these obstacles and advance the use of RL 
in complex and dynamic environments. 

8. Conclusion 
In conclusion, this work investigated the various applications 
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of Reinforcement Learning (RL) in real-world scenarios, 
spanning from robots and autonomous cars to game playing and 
recommendation systems. We investigated the potential of RL 
to meet these difficulties, proving its adaptability to complex 
and changing contexts, user preferences, and market trends. 
Despite its bright future, we highlighted the existing obstacles 
that RL faces in modern-day real-world applications, such as 
scalability, sparsity, cold start issues, and popularity bias in 
recommendation systems, among others. 

Recognizing these limitations allows researchers and 
practitioners to concentrate on developing novel solutions and 
advances in RL algorithms to improve their efficacy in real-
world scenarios. As RL evolves, it has the potential to 
revolutionize a wide range of sectors and make substantial 
contributions to the development of intelligent systems and 
technology. 

Moving forward, it is critical to stimulate interdisciplinary 
cooperation and research in RL approaches, as well as their 
integration into practical applications. We can unlock the full 
potential of RL by exploring new areas and exploiting emerging 
technology, moving us towards a future in which intelligent 
agents and systems augment human capabilities and 
revolutionize the way we interact with the environment. 
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