
International Journal of Research in Engineering, Science and Management
Volume 6, Issue 6, June 2023
https://www.ijresm.com | ISSN (Online): 2581-5792

*Corresponding author: vishnu.koyya@gmail.com

69

Abstract: This paper focuses on exploring the ability of artificial

intelligence models (AI) in video game development for path
finding. Path finding is a major component of video games that
allows non-playable characters (NPCs) to navigate their complex
3D or 2D environment, to interact with the player realistically. The
most frequent context is found in real-time strategy games. In
recent years, AI algorithms have been extensively used for path
finding and other design-specific works, offering more advanced
and effective methods compared to conventional algorithms. This
paper will examine the challenges and limitations of using AI for
path finding in video games and the need for domain-specific
knowledge.

Keywords: Artificial Intelligence, Machine Learning,

Reinforcement Learning, Video games, Unity, Unity ML agents.

1. Introduction
Video games are an incredibly important part of the

entertainment industry, with a global video game market of
238.4 billion USD and are expected to reach 372 billion USD
in revenue by 2023. Video games have also been shown to have
an impact on various aspects such as better education, defense,
and simulation programs apart from entertainment. The
development and advancement of hardware contributed to their
growth and success, enabling more advanced game mechanics,
graphics and immersive experiences. In the world of video
games, artificial intelligence (AI) is about creating more
responsive, adaptive, immersive, and challenging games. From
NPCs to procedural character behavior, from path finding to
adaptive game play mechanics, AI is revolutionizing the
gaming experience. In other words, understanding the role of
AI in video games is crucial for anyone looking to explore
future technology.

Path finding AI model: Path finding AI is referred to
computing an optimal route in a given region between the
specified start and goal nodes. Recent developments in path
finding lead to more improved, accurate and faster methods and
still captivates the researcher’s attention for further
improvement and developing new methods as more complex
problems arise or are being created in AI.

Path finding strategies have the responsibility of finding a
path from any coordinate in the game world to another. They
include a starting point and a destination; they then find a series
of points together which is the path to the destination. These

points are the list of positions within the game world that the AI
agent is allowed to move. To date, there are many algorithms
regarding path finding. The well-known path finding
algorithms are A-Star, Dijkstra, Breadth First Search (BFS) and
Depth First Search (DFS).

This implementation focuses on hybridized algorithms with
path finding algorithms technique and machine learning and
other methods, such as multi-agent systems, meta-heuristics,
imitation learning and other decision-making methods.
Hybridization of these algorithms is needed to maintain their
effectiveness while tackling its weakness. This algorithm can
be implemented in many games, especially in constructing the
non-playable character (NPC) or Game Enemy AI.

2. Literature Review
Research on Artificial Intelligence Algorithm and Its

Application in Games (2020) Cundong Tang, Zhiping Wang,
Xiuxiu Sima, Lingxiao Zhang. With the in-depth development
of intelligent technology, game artificial intelligence (AI) has
become the technical core of improving the playability of a
game and the main selling point of game promotion, deepening
the game experience realm. Modern computer games achieve
the realism of games by integrating graphics, physics and
artificial intelligence. It is difficult to define the meaning of
realistic game experience, but generally speaking, it usually
refers to the immersion of the game and the intelligence of non-
player characters in the game. As the technical core of
improving game playability and the selling point of many
commercial games, game artificial intelligence gives players a
way to interact with non-player characters in the game, and
promotes the realm of game experience to a higher level. Based
on this, this paper analyzes the history and present situation of
artificial intelligence in game development, and puts forward
the possible changes and impacts of artificial intelligence
technology based on machine learning on game development in
the future.

Research on path-finding and navigation technology in
environment (2021) Pie Yi Yin, Chang Yuan Li. The research
of path-finding and navigation technology is very important in
many fields such as artificial intelligence, military, and video
analyzing. It could also be applied in practical applications.

Intelligent Path-Finding Agent in Video Games
Using Artificial Intelligence

Koyya Vishnu Teja1*, Mallikarjun M. Kodabagi2

1Student, School of Computing and Information Technology, REVA University, Bengaluru, India
2Deputy Director, School of Computing and Information Technology, REVA University, Bengaluru, India

Teja et al. International Journal of Research in Engineering, Science and Management, VOL. 6, NO. 6, JUNE 2023 70

This paper studies the navigation grid method and A* path-
finding algorithm for VR application scenarios. For complex
VR scenarios, this paper proposes an improved solution to the
path-finding algorithm, which improves the efficiency and
accuracy of the path-finding technology. The improved
algorithm is applied to the virtual reality environment to realize
the path planning function of the virtual character.

Real-time Virtual Simulation Platform for Multi-UVA
hunting target using Deep Reinforcement Learning (2021)
Kangrui Zhu, Qun Zong, Ruilong Zhang. As one of the most
useful flying objects, quadrotor UAVs are gradually being
applied to the military field in the form of "swarms". However,
an urgent problem is how to improve the intelligence of UAVs
at a low cost. In this paper, we propose a hunting scenario for
multi-UAV in an urban environment. Firstly, we build the game
model of a multi-UAV hunting target and design the reward
function. Secondly, we introduce an improved multi-agent deep
deterministic policy gradient (MADDPG) against a game AI
target. Then, we build a virtual platform to simulate the urban
combat environment based on the Unity3D game engine. The
ML-Agents Toolkit is used to develop a real-time simulation
data interface to achieve low-cost model training. Finally,
simulation results from Python and the virtual environment can
demonstrate the effectiveness of the proposed hunting scenario.

ABMU: An Agent-Based Modelling Framework for
Unity3D (2020) Kostas Cheliotis. The field of Agent-Based
Modelling (ABM) has expanded significantly since its
emergence, with a plethora of ABM development frameworks
available to researchers today. However, relatively few
frameworks are found to support 3D models and furthermore,
the majority of them are often limited to 3D visualizations of
the underlying 2D models. At the same time, many systems of
interest are identified that can significantly benefit from being
simulated in three dimensions. In response to this, a potential
candidate platform for the development of 3D ABMs is
identified in Game Engines (GEs), as they often support 3D
graphics and provide a programming back-end for coding
model logic, however, no significant frameworks exist for
ABM development in GEs. This paper presents the Agent-
Based Modelling Framework for Unity3D (ABMU), an ABM
framework developed for use within the widely used GE
Unity3D.

Comparison Between A and Obstacle Tracing Pathfinding in
Gridless Isometric Game Lailatul Husniah; Rizky Mahendra;
Ali Sofyan Kholimi; Eko Cahyono. Pathfinding algorithms
have commonly used in video games. City 2.5 is an isometric
grid-less game which already implements pathfinding
algorithms. However, current pathfinding algorithm unable to
produce optimal route when it comes to custom shape or
concave collider. This research uses A* and a method to choose
the start and end node to produce an optimal route. The virtual
grid node is generated to make A* works on the grid-less
environment. The test results show that A* be able to produce
the shortest route in concave or custom obstacles scenarios, but
not on the obstacle-less scenarios and tight gap obstacles
scenarios.

3. Components

A. Unity’s ML Agent Tool Kit
The Unity Machine Learning Agents Toolkit (ML-Agents) is

an open-source project that enables games and simulations to
serve as environments for training intelligent AI agents.
Implementing ML agents in Unity 3D, including the set up the
environment, collecting data, training the agent, and testing its
performance will be explained.

B. Project’s Game Environment
The game environment is a 3D maze structure with a plane

game object as the ground and multiple cube game objects as
the walls of the maze. The maze is designed in such a way that
the players can navigate in multiple ways to any point from any
point. All the wall game objects are then given a parent game
object to have similar behavior, varying in size and arranged in
a way that presents a challenging game environment. Attach the
necessary components Box Collider for the wall game object,
and Plane Collider for the plane game object. Checking the
trigger check box allows the wall game object to be detected
when there is a collision between game objects. Adding a tag to
the game object will help identify the particular game object
which is a standardized method to verify the collision. The size
of the game environment matters when taking the agent’s
training time and process. The larger the game environment, the
longer training iterations it takes. The maze environment has a
scale of (1, 1, 1) and contains nine walls/obstacles. Each wall in
the maze has a length ranging from 1 to 3 unity world units,
while its width ranges between 0.5 to 1 unity world unit.

C. Player
In this paper, the player is referred to as a game object which

is per-programmed. The player game object is to be controlled
by the human player in real-life game scenarios. For evaluation
purposes, the player's movement is made automatic. Rigidbody
and Collider components are attached to the player game object
such that physics shows an effect on the player game object.
The automated player is programmed to move to a destination
point before the AI agent collides with it.

D. Agent
In this paper, the agent is referred to as a game object which

is developed and trained using AI. They are trained to perform
specific tasks and improve their performance over time, making
them adaptive to dynamic and complex game environments.
With agents, game developers can create NPCs, enemies, and
other game elements that can learn and evolve based on player
behavior and other environmental factors. The agent is a
capsule game object with a collider component attached, for
collision sensing. This agent is to perform a specific task, its
behavior is to be defined. The agent used is a machine-learning
agent powered by a path-finding technique with a calibrated
rewards system. Machine learning agents using Unity’s ML-
Agents require a Behavior Parameters component to be
attached to it in order to define their task. Once the agent is
defined, observations can be collected to train the agent. This
involves running the game and recording the agent's actions and

Teja et al. International Journal of Research in Engineering, Science and Management, VOL. 6, NO. 6, JUNE 2023 71

observations. In this paper, the agent is trained to find the
shortest path against the automated player in an entirely
unknown dynamic game environment. The trained artificial
neural network brain model is then given the agent to perform
the learned task in real time.

E. Gameplay
The trained agent is expected to learn to navigate through the

complex maze environment by avoiding the obstacle which is
the “wall” game objects and reaching the target using the
computed vector3 unity world points. The agent should be able
to identify the distance between itself and the target and take
appropriate actions accordingly. The agent should be able to
collide with the target when it is close enough and wait at the
given vector 3 points if the target is not close enough. The
agent's reward system should be designed in such a way that it
encourages behaviors that lead to the successful completion of
the task. The training of the agent may take some time,
depending on the complexity of the task and the size of the
dataset used for training. The agent should gradually improve
its performance as it gains more experience through training.
Once the agent is trained, it should be able to navigate through
the maze environment efficiently and reach the target while
avoiding the walls.

F. Unity 3D Game Engine
Unity 3D is a game engine used to create 2D and 3D video

games. It is a cross-platform game engine where one can create
video games for mobile devices, consoles, and desktop
computers. It provides a wide range of features and tools for
game developers, including a powerful game engine, scripting
tools, graphic APIs, a physics engine, an asset management
system, a state management system, and a user interface
system. Developers create complex game environments using
C#, C++, and JavaScript. It also offers support for virtual reality
(VR) and augmented reality (AR) development.

G. Materials
In Unity, a Material is an asset that determines how a 3D

object is rendered. It defines the texture, colour, and shading of
the object, and can be used to create a wide variety of visual
effects. In this project, we are taking colour to visually classify
the training of the AI agent. Each material created is attached to
each and every game object which is in the game environment
to distinguish visually.

H. Prefabs
In Unity, a prefab is a per-fabricated game object that one can

reuse multiple times in the game. It's a template of a game
object that includes all the components, properties, and settings
that have been made to it. Every game object which is intended
to be in the Unity game environment is made as a prefab for
better reuse.

I. Python
Use of Python 3.9.13 is appropriate regardless of the latest

Python packages. The latest Python packages are not
compatible with dependencies that machine learning might use.

The use of Python 10.x or Python 11.x would not show the
expected results.

J. PyTorch
PyTorch is an open-source machine learning library used for

developing and training machine learning models. It provides
tools to build various types of neural networks, including
convolution neural networks (CNNs) and recurrent neural
networks (RNNs). A very specific version of PyTorch is used
which is compatible with Python 3.9.13 version. PyTorch
wouldn’t work with the latest Python versions such as Python
10.x or Python 11.x.

K. TensorBoard
TensorBoard is a web-based visualization tool used in

machine learning frameworks such as TensorFlow, PyTorch,
and Keras. It provides real-time monitoring and debugging of
machine learning models during training and evaluation,
helping researchers and developers to better understand and
optimize their models.

4. Implementation

A. Base Methodology
The most common artificial intelligence is way-point

navigation by carefully placing points (nodes) in the game
environment to move the game-controlled characters between
each point. The major drawback of this method is that these
way-points need to be manually set up, and it is time-consuming
work. Meanwhile, these way-points will depend upon the
environment; different environments require different
configuration way-points. In addition, the number of way-
points and the location of way-points are also different due to
the platform. The A-Star algorithm technique uses path scoring
to determine the best path from the starting node to the
destination node. To actually score each node, A-Star basically
adds together two components g(n) and h(n) giving us f(n).
First, it looks at the cost to move from the initial node to any
next consecutive node g(n). Next, it looks at the cost to move
from the consecutive node to the final node h(n). The equation
shows the equation used for scoring any given node.

f(n) = g(h) + h(n)

B. Hybridization
The A-Star Path finding technique acts as a decision-making

rule for designing the reinforcement learning reward system for
the agent. The Agent is rewarded with the total cost f(n) which
is the sum of g(n) and h(n) where g(n) is the cost of the path
from the starting node to node n, and h(n) is the estimated cost
from node n to the goal node. The function f(n) estimates the
total cost of the cheapest solution through node n. The agent is
penalized if the agent is trying for an expensive path instead of
the cheapest path. Based on the rewards the agent gains, the
agent tries to lessen the value of the total cost f(n) hence finding
the best path to the destination up on training. The agent
computes 60 times per second (for every frame). The agent is
provided with other heuristics and rewards apart from the A-

Teja et al. International Journal of Research in Engineering, Science and Management, VOL. 6, NO. 6, JUNE 2023 72

Star technique to deal with the complex environment.

Fig. 1. Environment turned “red” when the agent collided with the wall

(penalized)

Fig. 2. Environment turned “orange”. Agent getting rewarded consistently

and probably reached the predicted node

Fig. 3. Environment’s transition from “red” to “green”. Agent successfully
collided with the moving target game object finding the path to the target

5. Graphical Results
After the agent is trained, its performance is tested in the

game environment. This involves running the game and
evaluating the agent's behavior and decision-making skills. The
agent's performance can be improved by refining its behavior
and fine-tuning its parameters. The learning results are
evaluated in TensorFlow.

Fig 4. The cumulative reward graph tends to increase as the agent gets

trained

Fig 5. The value loss graph is expected to decrease as the agent gets better

with its environment

Fig. 6. The episode length graph is expected to increase as the agent gets

skilled with its performance

6. Conclusion
This work has demonstrated the hybridization of the path

finding technique which is supervised learning with
reinforcement learning that can be used as a powerful AI agent
in video games. This study also concludes that this algorithm is
still used widely in many shortcoming studies related to path
finding, especially in game development. The most common
artificial intelligence in a game is way point navigation by
carefully placing checkpoints with cost in the game
environment to move the game-controlled characters between
each point. Finally, this project proposes a more general
dynamic AI model which can solve the random obstacle
avoidance problem during finding the shortest path. Moreover,
the training and improvisation of this AI agent in a complex
area are challenging. In searching for the shortest path to reach
the target virtual human. This trained model can be used as a
dynamic NPC or Enemy AI which will then be able to
successfully navigate the complex environment making real-
time decisions, acting based on the rewards received and
adapting when needed.

References
[1] Hart, P. E.; Nilsson, N. J.; Raphael, B. “A Formal Basis for the Heuristic

Determination of Minimum Cost Paths”, SIGART Newsletter 37: 28–29.
[2] Alexander Nareyek. AI in Computer Games [OL]. http://www.ai-

center.com/publications/nareyek-acmque ue04.pdf
[3] RemcoStraatman, William van der Sterren, ArjenBeij, Killzone’s AI:

dynamic procedural combat tactics [OL],
http://www.cgf-ai.com/docs/straatman_remco_killzone_ai.pdf

[4] Andrew Lupponw. Hierarchal AI [OL].
http://www-cs-students.stanford.edu/~amitp/Articles/HierarchalAI.html

[5] Sun Shudong, Lin Mao, “The coordination path planning of multiple
moving robots based on GA”, Automation Journal, 2000, 26(5):672-676.

http://www.ai-center.com/publications/nareyek-acmque%20ue04.pdf
http://www.ai-center.com/publications/nareyek-acmque%20ue04.pdf
http://www.cgf-ai.com/docs/straatman_remco_killzone_ai.pdf
http://www-cs-students.stanford.edu/%7Eamitp/Articles/HierarchalAI.html

Teja et al. International Journal of Research in Engineering, Science and Management, VOL. 6, NO. 6, JUNE 2023 73

[6] Mahmoud Tarokh, “Hybrid Intelligent Path Planning for Articulated
Rovers in Rough Terrain”, Fuzzy Sets and Systems, 2008,159(21):2927-
2937.

[7] Ye Tao, Chen Haikui, Yang Guosheng, “A new method of Global robot
navigation and obstacle avoidance in Unknown Environment”, Robo,
2003,25(6):516-520.

[8] GAO Qingji, YU Yongsheng, HU Dandan, “Feasible path search and
optimization Based on an improved A * algorithm”, China Civil Aviation
College Journal, 2005,23 (4): 42-44.

[9] L. delaOssa, J. A. Gamez, and V. Lopez, “Improvement of a car racing
controller by means of Ant Colony Optimization algorithms,” in IEEE
International Journal of Machine Learning and Computing, vol. 2, no. 1,
February 2012 17 Symposium on Computational Intelligence and Games,
2008, pp. 365-371.

[10] S. Fujii, T. Nakashima, and H. Ishibuchi, “A study on constructing fuzzy
systems for high-level decision making in a car racing game,” in IEEE
Congress on Evolutionary Computation, 2008, pp. 3626-3633.

[11] T. Nakashima, and S. Fujii, “Designing high-level decision-making
systems based on fuzzy if-then rules for a point-to-point car racing game,”
Soft Computing, vol. 14, no. 5, pp. 529-536, March 2010.

[12] J. Togelius, P. Burrow, and S. M. Lucas, “Multi-population competitive
co-evolution of car racing controllers,” in IEEE Congress on Evolutionary
Computation, 2007, pp. 4043-4050.

[13] J. Togelius, and S. M. Lucas, “Evolving controllers for simulated car
racing,” in Proceedings of the Congress on Evolutionary Computation,
2005, pp. 1906-1913.

[14] J. Togelius, and S. M. Lucas, “Evolving robust and specialized car racing
skills,” in Proceedings of the IEEE Congress on Evolutionary
Computation, 2006, pp. 1187-1194.

[15] A. Agapitos, J. Togelius, and S. M. Lucas, “Evolving controllers for
simulated car racing using object oriented genetic programming,” in
GECCO ’07: Proceedings of the 9th annual conference on Genetic and
evolutionary computation. New York, NY, USA: ACM, 2007, pp. 1543–
1550.

[16] Y. C. Hui, E. C. Prakash, and N. S. Chaudhari, "Game AI: artificial
intelligence for 3D path finding," in TENCON 2004. 2004 IEEE Region
10 Conference, 2004, vol. 2, pp. 306-309.

[17] J. -Y Wang, and Y. -B Lin, "An Effective Method of Pathfinding in a Car
Racing Game,” in the 2nd International Conference on Computer and
Automation Engineering, 2010, pp. 26-28.

[18] D. M. Bourg, and G. Seemann, AI for Game Developers, O’REILLY,
2004, ch. 7.

[19] S. Rabin, AI Game Programming Wisdom 4, Charles River Media, 2008,
ch. 2.

[20] N. J. Nilsson, Principles of Artificial Intelligence, Tioga Publishing
Company, Wellsboro, PA, 1980, pp. 366-381.

[21] B. Hamboeck, “XNA or game development for everyone – restructuring
the game part2,” .Net Developer’s Journal, vol. 6, pp. 14- 29, 2008.

	1. Introduction
	2. Literature Review
	3. Components
	A. Unity’s ML Agent Tool Kit
	B. Project’s Game Environment
	C. Player
	D. Agent
	E. Gameplay
	F. Unity 3D Game Engine
	G. Materials
	H. Prefabs
	I. Python
	J. PyTorch
	K. TensorBoard

	4. Implementation
	A. Base Methodology
	B. Hybridization

	5. Graphical Results
	6. Conclusion
	References

