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Abstract: The shotcrete lining exhibits significant resistance but 

minimal malleability. To combat tunnel squeezing deformations, 
ductile lining, which employs yielding components, offers a viable 
solution. This review article aims to outline the development of this 
concept and evaluate the research conducted in this domain. The 
paper commences with a brief introduction to tunnel squeezing 
deformations. It then summarizes the supportive mechanism and 
advantages of ductile lining in tunnels excavated in squeezing 
ground conditions. The succeeding section outlines the four 
primary categories of yielding elements employed in shotcrete 
lining and presents their fundamental structures and mechanical 
properties. The impact of yielding element parameters on 
supportive effects is discussed and then applications of the various 
yielding element in different places with slight modification as per 
the demand of the work has been reviewed.  
 

Keywords: squeezing, yielding element, shotcrete lining, stress 
controller element, splinters, rock deformation. 

1. Introduction 
Squeeze is characterized by long-lasting large displacements, 

but does not provide a threshold for displacement size or 
displacement duration. Excessive tunnel convergence is often 
the case when tunnel engineers perform deep excavations in 
confined ground [1-7]. Rock deformation occurs slowly and can 
persist for varying periods of time, from weeks to months and 
even he years after drilling is complete [8-15]. A rigid tunnel 
shotcrete lining that strictly limits rock deformation cannot 
withstand the large overburden pressures caused by large rock 
deformations [16,17]. As a result, splinters and cracks in the 
shotcrete and even severe tunnel collapses are often observed 
[18,19]. It is almost impossible to contain the strain energy 
involved by using heavier liners under such conditions [20–22]. 
More attention is being paid to the use of compliant his 
elements in shotcrete linings resulting in so-called "ductile 
linings" to avoid failure of shotcrete linings in deep excavations 
by compressing the ground. First, tunnel engineers split the 
shotcrete shell into several segments, leaving longitudinal gaps 
beforehand to accommodate large rock deformations without 
damaging the shotcrete. However, with this method, the internal 
forces around the formwork segments were not significantly 
transferred across these reserved gaps, resulting in a 
significantly reduced resistance of the shotcrete shell [23]. A  

 
proposal to address the problem of considerable rock 
deformation and transmission of internal forces from the 
shotcrete lining was to replace the open gap with a flexible 
element of ductile lining. Because compliant elements have 
greater deformability than shotcrete, shotcrete linings are more 
resistant and can accommodate rock deformation controlled by 
compressive deformation [24–29]. The first application of 
ductile lining was in 1994 at the Gargenberg Tunnel in Austria. 
There, groups of axially loaded steel pipes with manufactured 
localized weakness were used as compliance elements to 
successfully overcome large crushing deformations of shotcrete 
linings [30]. Over the last two decades, fiberglass reinforced 
plastic (FFU) elements [16], telescopic compliance elements 
[36], and liner tension control elements [37]. These compliant 
elements are the Tauern Tunnel in Austria [38], the Lyon-Turin 
Base Tunnel connecting France and Italy [31,39], and the 
Yangshan Tunnel in China [32, 33, 40]. Table 1 gives an 
overview of famous tunnels around the world where large 
fracture deformations are well controlled by the application of 
ductile linings [18, 25, 30-33, 37-43]. Many international 
conferences, including the World Tunnel Congress [18,27,44-
46] and the International Rock Mechanics Congress [16,36,47-
51], have paid much attention to the design and use of ductile 
linings in squeeze rock tunnels. It's been broken and many other 
conferences [42, 52-55]. In addition, many researchers have 
studied the effects of a limited set of design parameters on the 
performance of ductile linings or the interaction between rock 
and linings, and their results have been published in research 
papers [19, 23, 25, 56-65]. announced in the form of. The use 
of compliance elements in shotcrete linings to control the 
compression set in tunnels may seem straightforward, but in 
practice the time-dependent curing of the shotcrete, the 
nonlinear mechanics of compliance elements response, and face 
working with time. Development of rock deformation 
dependent on propulsion force. Incorrect use of these elements 
can lead to serious errors [66, 67]. 

2. Primary Categories of Yielding Elements 
“Over the past two decades, a series of yielding elements 

have been developed and improved, for instance, the FFU 
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element [16], Meypo, De Co-grout, Complex [25], and 
Telescope yielding element [36], in order to make their 
mechanical performances more suitable for the deformation 
behaviors of shotcrete and squeezing grounds. Broadly, 
according to their manufacturing materials, all yielding 
elements available can be divided into two groups: Porous 
concrete-based element and steel-based element [37]. A further 
subclassification of steel-based element is also possible, which 
includes steel pipe-based element and steel plate-based 
element. The applications of both two types of yielding 
elements are shown in Figure 1, where the use of porous 
concrete-based elements can be seen in Figure 1a, b, steel pipe-
based elements can be seen in Figure 1c–e, and steel plate-based 
elements can be seen in Figure 1f. In this section, the structures 
and mechanical properties of four yielding elements mostly 
used in squeezing rock tunnels are discussed in detail, including 
one porous concrete-based element, two steel pipe-based 
elements, and one steel plate-based element.” 

 

 
Fig. 1.  Illustration for applications of yielding elements in tunnels; (a) and 

(b) porous concrete based element; (c–e) steel pipe-based element; and (f) 
steel plate-based element. Reproduced with permission from [37] 

 

3. Highly Deformable Concrete (Hidcon) Element 

 
Fig. 2.  Stress-strain curves for Hidcon elements applied in the Saint 

Martin La Porte access adit [69]. Reproduced with permission from [69] 
 
“As shown in Figures 2a and 2b, Hidcon elements typically 

consist of a porous concrete matrix [24]. Tunnel engineers 
sometimes call this a "porous concrete element". When HICON 
elements are selected as the compliant element for shotcrete 
linings, other additives are often added to improve the 
compressive strength and deformability of HICON elements 

[68].  Saint-Martin Access Tunnel La Porte of the Lyon-Turin 
Base Tunnel [69]. Steel fibers have been added to greatly 
increase the strength of the elements. Additionally, hollow glass 
particles increased the controlled compression value of the 
element 

4. Lining Stress Controller Element  
“As already mentioned, the Gargenberg Tunnel in Austria 

was the first place where groups of axially loaded steel pipes 
were used as compliant elements in shotcrete linings [30]. had 
a series of drillings to reduce the initial stiffness due to the low 
strength of the new shotcrete. Buckling of the steel pipes caused 
such flexible elements to exhibit rather unstable load-
displacement behavior. The lab's tunnel engineers are working 
to resolve this issue. In a tunnel construction project at the Graz 
University of Technology in Austria, an attempt was made to 
shorten the guide pipe and move it inside the steel pipe to 
improve the buckling path of the pipe parts [37], or “lining 
stress controller (LSC). Up to this point, a reliable liner load 
controller was axially loaded, with additional tubes 
simultaneously inserted at both ends of the element and 
concentrically aligned with the load-bearing tubes, as shown in 
Fig. 2d. It consisted of steel pipes [24]. These concentrically 
inserted additional guide tubes greatly limit the folds of the 
load-bearing tubes from growing inwards or outwards. As a 
result, the pad tension controller can better match the force and 
displacement behavior to the buckling strength development of 
a logically symmetric cylinder.  

 

 
Fig. 3.  Load-displacement curve for a LSC element [37]. Reproduced with 

permission from [37] 

5. Wabe Element 
“Comparing with the LSC element, the honeycomb element 

is an assembly of laterally loaded steel tubes connected by steel 
plates and finally by plates at the top and bottom, as seen in 
Figure 2e.  Honeycomb elements were first introduced and used 
in the second tube of the Tauern Tunnel [38]. The load-
displacement curves in Fig. 5 consist of three rows of five steel 
tubes each. It can be seen that the preload strength of the 
honeycomb element increases significantly even with a very 
small shortening of about 8 mm, whereas for the LSC element 
this value is about 80 mm.  According to a, a load-bearing 
capacity of about 500 kN can be achieved. 30mm shorter, 
increased by about 200kN, final load is approx. 1400 kN 
thereby. The results in Figures 4 and 5 show that the constrained 
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orientation of the steel has a significant effect on the strength of 
tubular steel-based members.”.  

 

 
Fig. 4.  Load-displacement curve for a Wabe element [37]. Reproduced 

with permission from [37] 
 

One type of steel is called a Support Resistance Limiting 
Damper (SRLD) as shown in Figure 2f. Compliant panel 
elements. This component consists of a number of vertical 
forces limiting plates, upper and lower connecting steel plates, 
etc. [32, 33, 40]. The lower and upper vertical resistance 
limiting plates are welded to parallel connecting plates made of 
steel. Low carbon steel is used for the production of the vertical 
steel plates to ensure yield formability and Good residual 
intensity after peak. By utilizing the bending plastic 
deformation of these vertical steel plates, the drag limiting 
element can achieve the goal of releasing the rock deformation 
energy and relieving the residual stress of the shotcrete shell. A 
major advantage of drag-limiting materials is reportedly that 
they can be used in practical engineering. 

 

 
Fig. 5.  Displacement-load curve for the resistance limiting element [32]. 

Reproduced with permission from [37] 
 

Table 1 

 
Use of yielding support is advised when tunneling through 

squeezing rock. The shotcrete liner is frequently divided into 
several segments and installed in the yielding supports with the 

yielding elements in between. Compared to shotcrete, the 
yielding element has a much greater capacity for deformation, 
and its yield stress can be altered to meet the demands of the 
supporting structure. Based on numerical analyses were carried 
out to examine the impact of the yield stress of the yielding 
element on the behaviors of the shotcrete liner. A connector 
element that can simulate the large deformation capability of 
the yielding element was used in each of these numerical 
analyses. The numerical findings show that the yield stress of 
the yielding element has a substantial demand. The review 
starts out by briefly introducing the background of supporting 
evidence and prior research work and outlining the significance 
of looking into this matter.  Saki Kurokawa [16] concentrated 
on a new glass fiber reinforced plastic substance that is 
currently used to replace actual wood. Furthermore, uniaxial 
compression tests were used to assess its mechanical 
characteristics and deformability. The test's outcome 
demonstrates proper deformability and the absence of brittle 
failure. As a next step, the numerical analysis of the shotcrete 
lining model with the new deformable elements was carried out 
to further investigate its applicability to the yielding support 
element. Due to the benefit of using numerical simulation, we 
discovered that the stress generated in the shotcrete lining was 
reduced. 

6. Conclusion 
“Significant distortions are common during the construction 

of tunnels in fragile rock formations and when there is a large 
amount of overlying material. To prevent the support from 
being overloaded, multiple supple support systems have been 
created over the past 15 years to enable the gradual 
accumulation of pressure in the lining. Developing a supple 
support system necessitates analyzing the progression of shifts 
over time and space, the time-sensitive qualities of the 
shotcrete, and the properties of the pliable components. The 
characteristics of a system that can yield are outlined. The most 
recent advancements in pliable components that are compatible 
with shotcrete support are examined, and their overall 
effectiveness and success are clarified". 
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