

Structural Design Report of a Typical Jackwell Cum Pump House

V. Laxmi Hari Naidu^{*}

Environment Expert, M/s Shah Technical Consultants, Bangalore, India

Abstract: Drought prone districts in the eastern part of Karnataka are frequently affected due to erratic rainfall. It is a long-standing demand of the people in the region that a permanent and dependable source need to be identified and these areas are supplied with drinking water. Government of Karnataka initiated Yettinahole Project for mitigating the problem faced by the people by harnessing Yettinahole and other streams originating in the upper reaches of Western Ghats near Sakleshpura and has directed Visvesvaraya Jala Nigam Limited for implementation of the project.

Keywords: Structural design, Jackwell.

1. Introduction

The jack well cum pump house under the scheme proposes accommodate 3 VT Pumps. The Dimensional details of Jackwell are as shown below. The Jack Well is proposed with Reinforced Concrete - cast insitu construction. The Super Structure for pump room is RC Framed Structure and Brick wall Masonry .The roof of the pump room is Structural Steel Structure with appropriate Roof Covering.

Aims and Objectives of Project:

It is proposed to take up the work of "survey, investigation, design and construction of diversion weir-2 across yettinahole tributary-1, weir-6 across kerihole stream, and weir-7 across hongadahalla stream & weir-8 across yettinahole river with one no. of river sluice for each weir including protection works and energy dissipating arrangements, and necessary allied works including construction of approach road and construction of lift scheme comprising of intake fore bay, jack well cum pump house on u/s of respective weirs for housing vertical turbine pumps, pumping machinery, pump house electrical works, electrical substation, raising main from weir-2 and delivering the water to dc-5 for discharging the water to natural nala feeding to weir-8, independent rising mains from weir-6,7,8 upto receiving chamber for discharging the water to intermediate pumping station near weir-1, in a common corridor for pumping 44.0 cumecs of water up to dc 1".

2. Jackwell Cum Pump House

It is a type of intake Structure within which the water level is practically similar to the level of the sources of supply. It is known as Jackwell and is most commonly used. Jackwell structures are used for accumulating water from the surface

*Corresponding author: laxmihari.venkatesh@gmail.com

sources like a river, lake, and reservoir. It is then further transferred to the water treatment plant. These Jackwell Designs and Constructions are masonry or concrete structures. Its function is to provide clean water. The of the Weir 6 for the Yettinahole project is given below.

A. Yettinahole Project

Name of the project: Yettinahole Project-Package IV Type of project: Drinking Water Location: Jackwell near Kadagarahalli Village, Longitude: 75°43'04"E Latitude: 12°50'00"N River Basin: Yettinahole a) Name: Yettinahole b) Located in i) State (s) Karnataka State State(s)/District(s) or Taluk: Karnataka/Hassan/Akalaeshapura

	Jackwell and Pump house-levels						
S. No.	Particulars	Jackwell and Pump house					
1	Shape	Rectangular					
2	Ground level at site	RL 784.032 m					
3	Sump Bed Level	RL 772.117 m					
4	Minimum water level/Intake level	RL 779.500 m					
5	Delivery floor level	RL 784.200 m					
6	Motor floor level	RL 788.050 m					
7	Gantry level	EL. 794.300 m					
8	Roof level	EL. 797.450 m					
9	Number of Pump Chambers	3					
10	Dimension of Each chamber	3.00 m x 8.50 m					
11	Overall size	17.25 m x 20.00 m					

Table 1

Method of Analysis:

3D Analysis is carried out using Staad pro software. The R.C. walls and Raft is idealized as plate elements with aspect ratio<
2. The plate elements are given appropriate physical member thickness. Columns, tie beams are idealized as beam elements. Supports are assigned as Elastic mat with appropriate subgrade modulus. The detail of Analysis is elaborated in the following pages.

Soil Parameters:

$$\emptyset = 30^{\circ}$$

 $\delta = (2/3) \ge 30^{\circ} = 20^{\circ}$
 $\alpha = 90^{\circ}$
 $\beta = 0^{\circ}$

 Υ = Density of soil = 20kN/m³ Density of water = 10kN/m^3

Materials:

- a) Grade of concrete M = 30
- b) Grade of steel = Fe 500
- Clear Cover:
 - i. Raft: 75mm
 - ii. Wall (Earth Face): 50mm
 - iii. Wall (Water Face): 40mm
 - iv. Columns: 40mm

Fig. 1.

Permissible Stresses and Design Constants (Working Stress Method):

(Ref. Table 2, Page No. 8, IS 3370-1965, (Part-2 Reinforced concrete structure) code for practice for concrete structure for the storage of liquids

- Water face: 130 N/mm² a)
- Away from water face: 130 N/mm² b)

 $\sigma cbc = 10.0$ $m = 280 / (3\sigma cbc) = 280/(3*10) = 9.333$ $k = (m^* \sigma c b c) / ((m^* \sigma c b c) + \sigma s t) =$ (9.333*10.0)/((9.333*10.00)+130) = 0.418j = 1 - (k/3) = 0.861 $Q = 0.5 * i * k * \sigma cbc = 0.5 * 0.861 * 0.418 * 10.0 = 1.798$

Check for Minimum Ast required:

Refer Cl. 7. 1.1, page no. 13 IS 3370 - (Part-2 Reinforced concrete structure) code for practice for concrete structure for the storage of liquids. 0.24 % Steel is provided by taking the Zone into consideration.

Loads:

Following loads are considered for design of raft, walls, columns and beams.

- 1. LOAD 1 LOADTYPE None TITLE SES +X
- 2. LOAD 2 LOADTYPE None TITLE SES -X
- LOAD 3 LOADTYPE None TITLE SES +Z
- 4. LOAD 4 LOADTYPE None TITLE SES -Z
- 5. LOAD 5 LOADTYPE None TITLE DL
- 6. LOAD 6 LOADTYPE None TITLE LL

- 7. LOAD 7 LOADTYPE None TITLE AEP DRY
- LOAD 8 LOADTYPE None TITLE AEP SUB 8.
- 9. LOAD 9 LOADTYPE None TITLE WATER FULL SUMP1
- 10. LOAD 10 LOADTYPE None TITLE WATER FULL SUMP2
- 11. LOAD 11 LOADTYPE None TITLE WATER FULL SUMP3
- 12. LOAD 12 LOADTYPE None TITLE WATER PRESSURE ON BREAST WALL
- 13. LOAD 13 LOADTYPE None TITLE PUMP-MOTOR-VER-S1
- 14. LOAD 14 LOADTYPE None TITLE PUMP-MOTOR-VER-S2
- 15. LOAD 15 LOADTYPE None TITLE PUMP-MOTOR-VER-S3
- TITLE PUMP 16. LOAD 16 LOADTYPE None RUNNING (VER) SUMP-1 (DAF 25%CONSIDERED)
- 17. LOAD 17 LOADTYPE None TITLE PUMP RUNNING (VER) SUMP-2 (DAF 25% CONSIDERED)
- 18. LOAD 18 LOADTYPE None TITLE PUMP RUNNING (VER) SUMP-3 (DAF 25% CONSIDERED)
- 19. LOAD 19 LOADTYPE None TITLE PUMP RUNNING (HOR) SUMP-1 (DAF 25% CONSIDERED)
- 20. LOAD 20 LOADTYPE None TITLE PUMP RUNNING SUMP-2 (HOR) (DAF 25% CONSIDERED)
- 21. LOAD 21 LOADTYPE None TITLE PUMP RUNNING (HOR) SUMP-3 (DAF 25%CONSIDERED)
- 22. LOAD 22 LOADTYPE None TITLE PUMP (VER) SHUTDOWN SUMP-1 (DAF 25% CONSIDERED)
- 23. LOAD 23 LOADTYPE None TITLE PUMP SHUTDOWN (VER) SUMP-2 (DAF 25% CONSIDERED)
- 24. LOAD 24 LOADTYPE None TITLE PUMP (VER) SHUTDOWN SUMP-3 (DAF 25% CONSIDERED)
- 25. LOAD 25 LOADTYPE None TITLE PUMP SHUTDOWN (HOR) SUMP-1 (DAF 25% CONSIDERED)
- 26. LOAD 26 LOADTYPE None TITLE PUMP SHUTDOWN (HOR) SUMP-2 (DAF 25% CONSIDERED)
- 27. LOAD 27 LOADTYPE None TITLE PUMP SHUTDOWN (HOR) SUMP-3 (DAF 25% CONSIDERED)
- 28. LOAD 28 LOADTYPE None TITLE CRANE LOAD 5.5 MTR BAY
- 29. LOAD 29 LOADTYPE None TITLE CRANE LOAD 5.5 MTR BAY NODE
- 30. LOAD 30 LOADTYPE None TITLE CRANE LOAD

3.5 MTR BAY 31. LOAD 31 LOADTYPE None TITLE CRANE LOAD 3.5 MTR BAYNODE 32. LOAD 32 LOADTYPE None TITLE WIND +X 33. LOAD 33 LOADTYPE None TITLE WIND -X 34. LOAD 34 LOADTYPE None TITLE WIND +Z 35. LOAD 35 LOADTYPE None TITLE WIND -Z Load Calculation: Dead Load: Self-weight Y -1 Self-weight is generated using - self weight command in STAAD Pro. Slab Load: Slab Load: @784.200 LVL, 788.050 LVL791.550 LVL: Slab Thickness = 0.2x25 = 5.00kN/m² Total $= 5.05 \text{kN/m}^2$ Pump and Motor Load: 1) Static Load on foundation due to pump and motor set -27900 Kgs 2) Dynamic Load on foundation due to pump and motor set - 41875 Kgs 3) Horizontal Thrust (H) at duty point -367250 Kgs 4) Horizontal Thrust (H) at Shut off point - 55570 Kgs 5) Crane load considered for design - 30.00 Tonnes. Active Earth Pressure: Calculation of Ka value for Wall: Ka = coefficient of active earth pressure $Ka = \sin^2(\alpha + \Phi) / \{(\sin^2 \alpha^* \sin (\alpha - \delta)^* [1 - \sqrt{(\sin \Phi + \delta)} \sin (\Phi - \delta)^* (1 - \sqrt{(\sin \Phi + \delta)}) \sin (\Phi - \delta)) \sin (\Phi - \delta)) \sin (\Phi - \delta)^* (1 - \sqrt{(\sin \Phi + \delta)}) \sin (\Phi - \delta)) \sin (\Phi - \delta)) \sin (\Phi - \delta) \sin (\Phi - \delta)) \sin (\Phi - \delta)) \sin (\Phi - \delta) \sin (\Phi - \delta)) \sin (\Phi - \delta) \sin (\Phi - \delta)) \sin (\Phi - \delta)) \sin (\Phi - \delta) \sin (\Phi - \delta)) \sin (\Phi - \delta) \sin (\Phi - \delta)) \sin (\Phi - \delta)) \sin (\Phi - \delta)) \sin (\Phi - \delta) \sin (\Phi - \delta)) \sin (\Phi - \delta)) \sin (\Phi - \delta)) \sin (\Phi - \delta)) \sin (\Phi - \delta) \sin (\Phi - \delta)) \sin (\Phi$ β /(sin α - δ) sin (α + β)]} Soil parameters: $\emptyset = 30^{\circ}$ $\delta = (2/3) \times 30^0 = 20^0$ $\alpha = 90^{\circ}$ $\beta = 0^0$ Υ = Density of soil = 20kN/m³ Ka = 0.333 (Refer Foundation analysis & Design - By Joseph E. Bowles, Table 11-1, pg. 597) Raft Bot level = EL: +771.117 mDelivery Floor Level = EL: +784.20 m Thickness of Raft is considered as 1000mm Height = 784.200 - 771.117 = 13.083 m $AEP = Ka \times \Upsilon x h$

Wind Load:

Table 2							
Basic wind speed V _b		39	m/sec				
	K1	1.00					
	K2	1.13					
	K3	1					
Design	Wind Speed	44.07	m/sec				
Design	Wind Pressure	1.165	KN/m ²				

The Wind Load is applied in +X, -X, +Z, -Z direction.

Seismic Load:

The Seismic Load are taken by performing a hinge analysis in Staad Pro. The Weight of each joint in the Y- Direction is the Lumped mass as per IS 1893 Part-1

- 1. WEIGHT 0.199
- 2. WEIGHT 0.289

The Weight is in KN as specified in the above figures.

3. Result Analysis and Design

Fig. 4. Design of Raft-01 bending moment in Mx and My

Fig. 5. Shear Force in SQx and SQy directions

		Table	5			
ack width due to flexure at inner fa	ice in Raft 1					
456-2000 P 95						
inforced Concrete Design -by Pillai ar	nd Menon					
		=	96	mm		
in .		=	75	mm		
		=	1000	mm		
		=	€ ₁ -€ ₂		0	• Q a⊶ @
		=	1000	mm	¥	→ C Cmir
		=	9.3			T
		-	908	mm		
		-	414	mm		
			27386	N/mm	2	
		=	200000	N/mm	2	
		=	3266.00	mm ²	for inner face	
ment of inertia of cracked section		=	310510438	96 mm4		
ment at the section		=	580	kNm		
		=	86.07	N/mm	2	
		=	0.00051		p 401	
		=	1000	mm		
0.2mm orock width JS 456						
0.2mm crack wider = 13 400		an	0 0004			
		ag				
		<u> </u>				
sign crack width for limiting value of (.2mm					
			0.00016			
alaa aasal oolda			0.04			
sign crack width		w	0.04	mm		
					45.31	25
acking moment						
(fcr*lgr)/Yt		(IS:456)	tun of			2 024057
tor=		wodulus of rup	0.7*Sort(fck)			3.83405/9
lar		=	our oqualiony		=	7.07738F+
·			moment of in	ertia of section		
Yt		=			=	4
			Distance of centre	oidal axial of gro	1955	
			unto ext	reme fbre		
	Mor	r =	5581,2796	8 kN m	> Mu	Hence safe
orcbc ost DESIGN METHOD :-WORKIN Q m k j	10.0 130 3 STRESS METH WET PORTION 1.798 9.333 0.418 0.861	N/MM^2 N/MM^2 HOD				
DESIGN OF DASE RAFT • 2 The Maximum moment is (and the raft is designed	Considered Fi In Working S	ROM WORST	COMBINATION IOD : M3	vs K	Му	
THICKNESS OF RAFT =	1.00m	L/C	96	41	205	73
MX, MY>	кN-m/т	PLATE NO.	2268	2334	2//8	2314
1			15.283	414.28	-146.81	139.96
1			TOP	BOTTOM	TOP	BOTTOM
DEPTH & REINFORCEMENT	CLACULATION	N	1x	N	/y	
		TOP	BOTTOM	TOP	BOTTOM	
MAX, BM/ M WIDTH =M1 =		15	414	147	140	kN-m
EFFECTIVE COVER = Cc =		87.5	87.5	85	85	ММ
EFFECTIVE DEPTH = Trieff =		912.5	912.5	915	915	ММ
		450	4050	4404	4007	1412
MOT KEUD. FUK MUMENT =		150	4058	1454	130/	NIN
Pt-MIN =		0.20	0.20	0.20	0.20	%
AST-MIN/FACE =		2000	2000	2000	2000	MM ²
Design AST=		2000	4058	2000	2000	
DIA OF BAR =		25.00	25.00	20.00	20.00	ММ
SPACING (MM) REQ.D FOR 1	MOMENT =	245.44	120.98	157.08	157.08	ММ
	PROVIDE	125 MM	125 MM	125 MM	125 MM	C/C
Pt(%) novidor		0 430	0.430	0 275	0 275	~~~
	-	0.700	0.700	V.21J	V.21 J	
UNLAR GLAGULATION		<u>^</u>	ΩY	<u>^</u>	OV	
		<u>ه</u>	wΛ	s	w(I	
L/C		2	201	4	41	
		2	270	23	330	
PLATE NU.					<u>81</u>	
SHEAR STESS	;		70	1	01	
SHEAR STESS	3		70	1	000	
SHEAR STESS Net Shear Force	8 V	70	70 .000	1 181	.000	
SHEAR STESS Net Shear Force	S V	70	70 .000 .08	1 181 0	.000 .20	N/MM ²
SHEAR STESS Net Shear Force Tv Tc	8 V	70 0 0.	70 .000 .08 238	1 181 0. 0.2	.000 .20 2876	N/MM ² N/MM ²
PLATE NU. SHEAR STESS Net Shear Force Tv Tc	8 V	70 0 0.	70 .000 .08 238 AFE	181 0. 0.2	20 2876 AFE	N/MM ² N/MM ²

Page	Reinforcemen extreme fi	ts upto bre		
Page	Reinforcemen	ts upto		
	-			
	neglectir	ng		
+	gross sec	tion		
-	centroidal a	ur vial of	-	486
_	Section	af.	_	406
=	moment of in	ertia of	=	7.08E+11
=	0.7*Sqrt(fck)			
Modulus	of rupture of co	ncrete	=	3.834058
(IS:456)				
			45.3125	
w	0.05	mm		
	0.00017			
2mm				
=	0.0004			
19	1000			
adı	0.00053		p 401	
=	89.18	N/mm*	- 404	
=	00.40	KINITI		
=	31051043896	mm4		
=	3266.00	mm~	for inner fa	ce
=	200000	N/mm ²		
	2/386	is/mm		
=	414	mm		
=	908	mm		
=	0.2			
=	9.3			↑
=	1000	mm	¥	C Cmin
=	€ ₁ -€ ₂		0.8	$\bigcap a_{m} \bigcap$
=	1000	mm		
=	75	mm		
=	96	mm		
d Menon				
in Nati 2				-
in Raft 2	0			
	1 Menon = = = = = = = = = = = = =	In Raft 2 3 Menon = 96 = 75 = 1000 = 6,-6,2 = 1000 = 9,3 = 0,2 = 908 = 414 27386 = 200000 = 3266,00 = 3266,00 = 3105104386 = 601 = 89,18 3 G C 1000 = 0,0004 = 0,0004 (IS.456) Modulus of rupture of co = 0,75 sqrt(ch) = 0,	In Raft 2 in Raft 2 3 Menon = 96 mm = 75 mm 6;r-6; = 1000 = 9,08 = 908 mm 27386 = 908 = 908 = 905 = 3051043896 = 31051043896 = 31051043896 = 31051043896 = 31051043896 = 30151043896 = 30151043896 = 30151043896 = 0.000017 = 0.00017 w 0.05 mm 0.7%cgrt(fck) = 0.7%sgrt(fck) = 0.7%sgrt(fck) = 0.7%sgrt(fck) = 0.7%sgrt(fck)	In Raft 2 1 Menon = 96 mm = 75 mm = 1000 mm = 6;-€2 = 908 mm = 9;3 = 0.2 = 908 mm = 220800 N/mm ² for inner fa = 3266.00 mm ² = 0.0004 = 0.0004 = 0.0004 = 0.00017 w 0.05 mm 0.00017 w 0.05 mm 45.3125 (IS:456) Modulus of rupture of concrete = 0.7*Sqtf(kt) = 0.5% mm 45.3125 Modulus of state of section = 0.0004 mm 0.00017

Table 7

MATERIAL DATA							
DENSITY OF CONCRETE	= Dc =	25	KN/M^3				
DENSITY OF WATER = D	v =	10	KN/M^3				
DENSITY OF BBM = Dbbn	n	20	KN/M^3				
GRADE OF CONCRETE =	fck	30	N/MM^2				
GRADE OF STEEL =	fy	500	N/MM^2				
DESIGN OF END PIER							
THE MAXIMUM MOMEN	IS CONSIDERED	FROM WO	RST COMBI	NATIONS			
AND THE PIER IS DESIG	NED IN LIMIT STA	TE METHOI	D:				
			M	x		My	
THICKNESS =	1.00m	L/C	137		160		
MX, MY>	kN-m/m	PLATE NO.	2157		389		
			330.000		-180.98		
DEPTH & REINFORCEME	ENT CALCULATIO	М	x	N	ly		
MAX. BM/ M WID I H = M1 =	=	495		2/1		kN-m	
Viu limit=		3990	3990	3990	3990	kN-m	
		Mu <mu< td=""><td>limit hence</td><td>e under rei</td><td>nforced</td><td></td><td></td></mu<>	limit hence	e under rei	nforced		
EFFECTIVE COVER = Cc	=	62.5		62.5		MM	
EFFECTIVE DEPTH = Trie	e# =	937.5		937.5		MM	
AST REQD. FOR MOMEN	IT =	1277		693		MM ²	
Pt-MIN =		0.20		0.20		%	
AST-MIN/FACE =		2000		2000		MM ²	
Design AST =		2000		2000			
DIA OF BAR =		25.00		25.00		MM	
SPACING (MM) REQ.D FO	DR MOMENT =	245.44		245.44		MM	
	PROVIDE	150 MM		150 MM		C/C	
Pt(%) pro	vided =	0.349		0.349		%	
SHEAR CALCULATION				-			
		SC	2X	S	QY		
L/C	•	13	37	1	58		
PLATE N	0.	21	63	3	89		
SHEAR STESS(At'd' Aw	ay from Support)	0.3	507 17	0	0.3	IN/MM ⁻	
		30		3	20	N/N	
IV		0.	33	0.	32		
I c, (Enhanced by 33% fo	or transient loads)	0.4	197	0.4	197	N/MM *	
		SA SA	FE	I SA	1FE	1	

	Table 6			
Crack width due to flexure at inner face ir	n piers			
References:				
IS 456-2000 P 95				
Reinforced Concrete Design -by Pillai and	Menon			
a _{cr}	=	63	mm	
C _{min}	=	50	mm	
D	=	1000	mm	
€ _m	=	€ ₁ -€ ₂		
b _t	=	1000	mm	
m	=	9.3		\uparrow
k	=	0.2		
d	=	938	mm	
x	=	428	mm	
Ec		27386	N/mm ²	
Es De		200000	N/mm ²	
A _s	llt	3266.00	mm ²	for inner face
moment of inertia of cracked section	9	33971307225	mm4	
moment at the section	=	618	kNm	
fst	=	86.59	N/mm ²	
6 ₁	=	0.00049		p 401
a'	=	1000	mm	
for 0.2mm crack width - IS 456				
€ ₂	=	0.0003		
Design crack width for limiting value of 0.2r	nm			
6 _m		0.00016		
Design crack width	W	0.03	mm	

Table 7

		14010 /				
MATERIAL DATA						
DENSITY OF CONCRETE = D	c =	25	KN/M^3			
DENSITY OF WATER = Dw =		10	KN/M^3			
DENSITY OF BBM = Dbbm		20	KN/M^3			
GRADE OF CONCRETE =	fck	30	N/MM^2			
GRADE OF STEEL =	fy	500	N/MM^2			
ocbc ost DESIGN METHOD :-WORKIN Q m k <u>DESIGN OF INTERMEDIATE I</u> THE MAXIMUM MOMENT IS AND THE RAFT IS DESIGNED	WET PORTION 10.0 130 3 STRESS METHOD 1.798 9.333 0.418 0.861 PIER CONSIDERED FROM DI WORKING STRE	N/MM^2 N/MM^2 WORST COME SS METHOD :	BINATIONS			
			М	X		Wy
THICKNESS OF PIER =	1.00m	L/C	231		209	Í
MX. MY>	kN-m/m	PLATE NO.	2159		367	
'			423.907		168.78	
			.20.001			
		ļ				
DEPTH & REINFORCEMENT	CLACULATION	M	r	М	v	1
	OLAGOLATION		`		y	-
MAX_BM/ M WIDTH =M1 =		121		160		kN-m
		62.5		62.5		MM
EFFECTIVE DEPTH = Trioff =		02.5		02.5		MM
ACT DEOD, FOD MOMENT -		4044		1600		1414 ²
AST REQU. FUR MUMENT =		4041		1009		MM
PL-MIN =		0.20		0.20		70
AST-MIN/FACE =		2000		2000		MM -
Design AS1=		4041		2000		
DIA OF BAR =		25.00		25.00		MM
SPACING (MM) REQ.D FOR 1	MOMENT =	121.47		245.44		MM
	PROVIDE	150 MM		150 MM		C/C
Pt(%) pro	ovided =	0.349		0.349		
SHEAR CLACULATION			v		v	1
		56	in .	56	-	4
	2	12	3	15	-/ 	
	J.	210	00	30	0	+
SHEAR STESS(At 'C AW		U.3 20	0	U.: 20	02	kN
		0.0	22 V	JZ 0 1	.u 2/	N/MM ²
Te (Enhanced by 200) (as		• 11.7	1.1	0.3	74	I W IVIIVI
	r transient leade)	0.2/	107	0.2/	107	N/M/M ²
TC, (Ennanced by 33% for	r transient loads)	0.34	187 FF	0.34 SA	187 FF	N/MM ²

	Table	8			
Crack width due to flexure at inner face i	n piers				
References:					
IS 456-2000 P 95					
Reinforced Concrete Design -by Pillai and	Menon				
a _{cr}	=	63	mm		
C _{min}	=	50	mm		
D	=	1000	mm		
€ _m	=	€ ₁ -€ ₂		∩ s _v (
b _t	=	1000	mm	¥	K. aci K
m	=	9.3		-	\uparrow
k	=	0.2			
d	=	938	mm		
x	=	428	mm		
Ec		27386	N/mm ²		
Es Da		200000	N/mm ²		
As C](⊒)(3266.00	mm ²	for inner fa	ce
moment of inertia of cracked section	$\mathbf{\nabla}$	33971307225	mm4		
moment at the section	=	465	kNm		
fst	=	65.15	N/mm ²		
6 ₁	=	0.00037		p 401	
a'	=	1000	mm		
for 0.2mm crack width - IS 456					
€ ₂	=	0.0003			
Design crack width for limiting value of 0.2	?mm				
6 _m		0.00004			
Design grock width		0.04			

		Table 9				
ATERIAL DATA						
DENSITY OF CONCRETE = D	IC =	25	KN/M^3			
DENSITY OF WATER = Dw =		10	KN/M^3			
DENSITY OF BBM = Dbbm		20	KN/M^3			
GRADE OF CONCRETE =	fck	30	N/MM^2			
GRADE OF STEEL =	fy	500	N/MM^2			
	WET PORTION	I				
σcbo	: 10.0	N/MM^2				
σs	t 130	N/MM^2				
ESIGN METHOD :-WORKIN	G STRESS METHOD					
	WET PORTION					
C	1.798					
m	9.333					
k	0.418					
i	0.861	l				
DESIGN OF BACKWALL						
THE MAXIMUM MOMENT IS	CONSIDERED FROM	WORST COME	BINATIONS			
AND THE RAFT IS DESIGNED	D IN WORKING STRES	SS METHOD :			-	
			N	X	N	ly
HICKNESS OF RAFT =	0.50m	L/C	44	137	137	137
MX, MY>	kN-m/m	PLATE NO.	679	2239	1790	661
			-229.544	66.74	-57.21	130.30
			TOP	BOTTOM	TOP	BOTTOM
DEPTH & REINFORCEMENT	CLACULATION	M	x	N	y	
	-	TOP	BOTTOM	TOP	BOTTOM	
/AX. BM/ M WIDTH =M1 =		230	67	57	130	kN-m
FFECTIVE COVER = Cc =		87.5	87.5	87.5	87.5	MM
EFFECTIVE DEPTH = Trieff =		412.5	412.5	412.5	412.5	MM
AST REQD. FOR MOMENT =		4973	1446	932	2123	MM ²
Pt-MIN =		0.20	0.20	0.20	0.20	%
AST-MIN/FACE =		1000	1000	1000	1000	MM ²
Design AST=		4973	1446	1000	2123	
DIA OF BAR =		25.00	25.00	25.00	25.00	MM
Additional Bar at High Moment	s	20.00				
SPACING (MM) REQ.D FOR	MOMENT =	161.87	339.50	490.87	231.26	MM
	PROVIDE	150 MM	150 MM	150 MM	150 MM	C/C
Pt(%) pr	ovided =	0.793	0.793	0.793	0.793	
HEAR CLACULATION						-
		SC	X	SC	γ	l
L/C		4	4	23	31	
PLATE N	0.	18	20	6	58	1
SHEAD STI	ESS	06 AQ	4	3.	70	1
		20	100	16	150	1
Haunch B	ar	20	100	10	150	ł
Shear Capacity of I	Haunch Bar	285.	/40	121	.916	Į
Net Shear Fo	rce V	196.	260	63.	084	l
Tv		0.4	18	0.	15	N/MM ²
Tc. (Enhanced by 33% fo	r transient loads)	0.50)13	0.5	013	N/MM ²
, (2.110.1000.0) 00/010		SA	FE	SA SA	FE	
		VA	-	•		

Table 10

Crack width due to flexure at inner face in	Back wal	9			
References:					
IS 456-2000 P 95					
Reinforced Concrete Design -by Pillai and	Menon				_
a _{cr}	=	63	mm		
C _{min}	=	50	mm		
D	=	1000	mm		
€ _m	=	€ ₁ -€ ₂		O ^s v Oar⊕	
bt	=	1000	mm	←→ ^C Emin	
m	=	9.3		↑	
k	=	0.2			
d	=	938	mm		
x	=	428	mm		
Ec		27386	N/mm ²		
Es	=	200000	N/mm ²		
A, Pa	201	3266.00	mm ²	for inner face	
moment of inertia of cracked section	191	33971307225	mm4		
moment at the section	=	438	kNm		
fst	=	61.37	N/mm ²		
€₁	=	0.00034		p 401	
a'	=	1000	mm		_
for 0. Open and with 10.450					
IOF 0.2mm crack width - 15 456					
6 ₂	=	0.0003			-
Design crack width for limiting value of 0.2n	nm				
€ _m		0.00002			
Design crack width	w	0.00	mm		
					-

Table 11

		I doite I	1			
MATERIAL DATA						
DENSITY OF CONCRETE = D	Ic =	2	5 KN/M^3			
DENSITY OF WATER = Dw =		1	0 KN/M^3			
DENSITY OF BBM = Dbbm		2	0 KN/M^3			
GRADE OF CONCRETE =	fck	3	0 N/MM^2			
GRADE OF STEEL =	fy	50	0 N/MM^2			
σcbo σs	WET PORTION 10.0 t 130	N/MM^2 N/MM^2				
DESIGN WETHOD :-WORKIN		1				
C n I <u>DESIGN OF ENDWALL</u> THE MAYIMIM MOMENT IS	1.798 9.333 0.418 0.861	WORST COM				
THE MAXIMUM MOMENT IS			IBINATIONS			
AND THE KAPT IS DESIGNED	JIN WORKING STRE	SS WEITOD		lv.	N	lv.
THICKNESS OF RAFT =	0.50m	1/0	137	137	137	167
MX MY>	kN-m/m	PLATE NO	2217	2199	422	550
		- Brieno.	-171.100	177.62	-150.59	150.31
			TOP	BOTTOM	TOP	BOTTOM
DEPTH & REINFORCEMENT	CLACULATION	1	/x	N	ly	I
		TOP	BOTTOM	TOP	BOTTOM	1
MAX. BM/ M WIDTH =M1 =		171	178	151	150	kN-m
EFFECTIVE COVER = Cc =		87.5	87.5	87.5	87.5	MM
EFFECTIVE DEPTH = Trieff =		412.5	412.5	412.5	412.5	MM
AST REQD. FOR MOMENT =		3707	3848	3263	3257	MM ²
Pt -MIN =		0.20	0.20	0.20	0.20	%
AST-MIN/FACE =		1000	1000	1000	1000	MM ²
Design AST=		3707	3848	3263	3257	1
DIA OF BAR =		25.00	25.00	25.00	25.00	ММ
SPACING (MM) REQ.D FOR	MOMENT =	132.42	127.56	150.45	150.73	ММ
	PROVIDE	125 MM	125 MM	125 MM	125 MM	C/C
Pt(%) pr	ovided =	0.952	0.952	0.952	0.952]
SHEAR CLACULATION						7
		S	QX	S	QY	
L/C		1	137	1	37	l
PLATE N	0.	2	217	4	20	l.
SHEAR ST	ESS	6	607	5	18	
Haunch B	ar	16	150	16	150	
Shear Capacity of	Haunch Bar	12	1.916	121	.916]
Net Shear Fo	orce V	18	1.584	137	.084	Ī
Tv		0	.44	0	33	N/MM ²
Tc. (Enhanced by 33% fo	r transient loads)	0.	5363	0.5	363	N/MM ²
		S	AFE	SA	FE	1

	Table 1	2			
Crack width due to flexure at inner face in	n end walls	3			1
References:					
IS 456-2000 P 95					
Reinforced Concrete Design -by Pillai and	Menon				
a _{cr}	=	63	mm		
C _{min}	=	50	mm		
D	=	750	mm		
€ _m	=	€1-€2		O Sv	$ \square \square \square $
bt	=	1000	mm	¥	K or Emin
m	=	9.3			1
k	=	0.2			
d	=	688	mm		
x	=	314	mm		
Ec		27386	N/mm ²		
Es 🖸		200000	N/mm ²		
As C	9.01	3266.00	mm ²	for inner fa	ce
moment of inertia of cracked section	$\mathbf{\nabla}$	14534288608	mm4		
moment at the section	=	496	kNm		
fst	=	119.12	N/mm ²		
€ ₁	=	0.00070		p 401	
a'	=	750	mm		
for 0.2mm crack width IS 456					
En	=	0.0003			
5 <u>7</u>		0.0000			
Design crack width for limiting value of 0.2	mm				
€ _m		0.00044			
Design crack width	W	0.08	mm		

_			
Ta	hle	14	

Crack width due to flexure at inner face in	intermed	iate walls			
References:					
IS 456-2000 P 95					
Reinforced Concrete Design -by Pillai and	Menon				
a _{cr}	=	63	mm		
C _{min}	=	50	mm		
D	=	1000	mm		
€ _m	=	€ ₁ -€ ₂		0 s, (
bt	=	1000	mm	\leftarrow	K Cmin
m	=	9.3			
k	=	0.2			
d	=	938	mm		
x	=	428	mm		
Ec		27386	N/mm ²		
Es	=	200000	N/mm ²		
A, Pa		3266.00	mm ²	for inner fac	e
moment of inertia of cracked section 🛛 🛀	1 3 1	33971307225	mm4		
moment at the section	-	397	kNm		
fst	=	55.63	N/mm ²		
€₁	=	0.00031		p 401	
a'	=	1000	mm		
for 0 2mm crack width - IS 456					
Ea	=	0.0003			
Design crack width for limiting value of 0.2n	nm				
€ _m		-0.00002			
Design crack width	w	0.00	mm		

Table 15 1.

			Typic	al colu	mn de	sign			
Desian of	Column C	-1	21						
Data:									
Pu=	919.717	kN							
Mu=	182.284	Knm							
Fck	30								
Fy	500								
Column D	imesion								
В	500	mm							
D	1000	mm							
d=	950	mm							
Nominal C	over=	40							
Pu/(Fck*B*D)=	0.0613							
Mu/(F	- ck*b*d2)=	0.01347							
	d'/D=	0.05							
Ast as per	Chart-47 o	f SP-16, Min Re	inforcment	governs					
P/fck=	0.02			ľ.					
P=	0.6								
As=pbD/1	00=	3000	mm2						
Min Ast=	0.8% of A	rea							
=	4000	mm2							
using	20	mm bars							
Area of		3.14xdia ²							
one Bar	=	4							
		3.14 x 20 X 20			2		-		
	=	4	=	314	mm²				
Number		Ant		4000.00					
of Bars	=	Δ	- =	314.00		12.74			
			sav	=	14	No			
Hence	Provided	14	bars of	20	mm Φ h	ar			
		having, Ast	=	14	X	314	=	4396.00	mm ²
		Keeping	=	40	mm nom	inal side co	ver		
Desian of	ties:-								
Diameter of	of ties shou	ld be 1/4 of the	diameter o	of longitudi	nal reinfor	cement sub	ject to mir	imum 6 mm	1.
Howeveru	lse	8	mm ø bar	s of ties.					
The spacir	ng of the tie	es should not ex	ceed leas	t of the foll	owing.				
(I)	Least later	ral diamension.			, in the second		=	500	mm
(11)	16 x Diam	eter of main bar	S	16	x	20	=	320	mm
(11)	48 x dia o	fties		48	Х	8	=	384	mm
		Hence pro	vided the	ties @		=	250	mm c/c.	

														Fable 1	.7											
											WEI	R 6 JAC	KWEL	LBEAMD	ESIGN											
		Pro	biect	Title :									BE	AM DESI	GN											
													2		•••	100.52	21	10	157.09							
	Crada	of conv	roto E	ok =		20		d/d1=	0.5				2L 41		0	201.04	2L	10	214 15							
	Giaue	UI CUII	Jiele, P	- n		30		Ev =	500				4L 6I		8	201.04	4L	10	/71							
								- i y -	500				UL		0	301.02	UL	10	471							
									000									3.5								
BEAM AT 78	4.2																									
														Ast												
	b	D	d	FM	Т	Eq BM	Mu	Mu/(b*d*d)	Pt	Pt Min	Pt Doubly	Pc	Ast	provided	Asc	wv	Eq Shear	tv=Vu/(b*d	tc	Vus	Vus/d	Spacing	Spacing	Spacing	Spacing	Spacing
Beam No	mm	mm	mm	kN-m	kN	kN-m	kN-m						mm^2	mm^2	mm^2	kN	kN	N/mm^2	N/mm ²	kN	KN/cm	mm	mm	mm	mm	mm
			750							1.000	1.000			1800							1 1800		2LY8	2LY10	6Ly8	6Ly10
B1	350	650	615	451.63	32.89	55.28	506.91	3.82922	1.072	1.0/2	1.0/2	0.000	2308.3	4780	0	269.54	150.3542857	1.9507052	0.6735	2/4914.38	4.4702	97.8181	98	153	294	458
B2	350	600	565	376.44	27.53	43.95	420.38	3.762527	1.049	1.049	1.049	0.000	2073.7	4/80	0	2/8.93	125.8285/14	2.0468196	0.6678	2/2698.45	4.8265	90.5957	91	142	2/2	424
B3	350	400	200	212.30	24.38	38.93	251.22	2.248491	0.5/2	0.572	0.572	0.000	1130.4	43/8	0	219.92	111.4514286	1.6/56937	0.525	22/549.98	4.0274	108.5/1	109	1/0	320	509
B4	400	400	305	49.93	9.496	11.17	01.100	1.140005	0.276	0.276	0.276	0.000	403.05	1608	0	53.71	37.984	0.6280685	0.3856	35403.379	0.97	450.800	250	704	1353	2112
DD DC	350	400	265	70.06	14.09	23.77	393.22	3.51945	0.965	0.905	0.402	0.000	1907.3	4/00	0	299.02	60.0394203/	0.7520411	0.0400	239903.33	4.2475	264.05	250	570	1005	402
B0 P7	400	400	505	226.20	24.2	54 76	291.05	2.515425	0.403	0.403	0.403	0.000	1202.0	2266	0	220.04	156 7917142	2.001106	0.4333	206400.00	5.060	96 2612	200	125	250	404
B8	350	600	565	14 54	7 303	11.66	56 100	0.502007	0.045	2	0.049	0.000	305.5	2060	0	37.45	33 3851/286	0.3582258	0.3320	18811 064	0.333	1313 28	250	2052	30/1	615/
B9	350	600	565	45.95	8 593	13.72	59.67	0.534061	0.125	2	0.125	0.000	395.5	2000	0	46.52	39 28228571	0.4338725	0.2001	32291 236	0.5715	765.078	250	1196	2296	3585
B10	350	600	565	366.74	14.38	22.97	389.71	3 487966	0.954	0.954	0.954	0.000	1886.3	4378	0	273.07	65 75542857	1 713413	0.644	211478 69	3,743	116.822	117	183	351	547
B11.11a.11b	350	600	565	180.87	21.35	34.09	214.96	1.923969	0.481	0.481	0.481	0.000	951.35	2964	0	143.56	97.61828571	1.2196121	0.4888	144520	2.5579	170.947	171	267	513	801
B12	350	900	865	782.85	110.5	232.1	1015	3.875812	1.089	1.089	1.089	0.000	3297.4	6568	0	457.20	505.1428571	3.1786717	0.6775	757233.28	8.7541	49.9492	50	78	150	234
B13,13a	350	600	565	41.07	111.3	177.7	218.77	1.958063	0.490	0.490	0.490	0.000	969.85	2964	0	111.30	508.8	3.1357775	0.4927	522661	9.2506	47.2683	47	74	142	221
B14,14a,14b 14c	350	1000	965	1134.24	56.34	127.8	1262.1	3.872207	1.088	1.088	1.088	0.000	3674.2	6793	0	680.72	257.5405714	2.7779736	0.6772	709542.51	7.3528	59.469	59	93	178	279
B15	400	400	365	21.86	8.011	9.425	31.281	0.58699	0.138	.2	0.138	0.000	292	1608	0	67.12	32.044	0.6792055	0.6535	3748.8861	0.1027	4257.28	250	6653	12774	19948
B16	350	950	915	1036.00	8.261	18.05	1054	3.597085	0.991	0.991	0.991	0.000	3173.7	6568	0	417.12	37.76457143	1.4204046	0.6535	245592.17	2.6841	162.91	163	255	489	763
						TOP		25.000	6.000		2945.243															
								20.000	4.000		1256.637															
								20.000	4.000		1963.495															
								32.000	4.000		3210.991															
	-					BOT	1	25.000	6.000		2945.243	1														
							1	20.000	4.000		1256.637	í														
								25.000	4.000		1963.495	1														

4. Conclusion

The structural design and drawings for Jack well cum pump house, based on approved General Arrangement Drawing is based on the detailed structural analysis. The Structure is now fit for Construction.

Abbreviations

VJNL	Visvesvaraya Jala Nigam Ltd
DGPS	Dual frequency Global Positioning System
GoK	Government of Karnataka
DC	Delivery Chamber
TBM	Temporary Bench Mark
ft	Feet
mts	Meters
mm	Millimeters
kms	Kilometers
sq.kms.	Square Kilometers
MCum	Million Cubic Meters
TM Cft	Thousand Million Cubic Feet
На	Hectares
Cm/hr	Centimeter per hour

MSL	Mean Sea Level
AMSL	Above Mean Sea Level
TMC	Thousand Million Cubic Feet
MS	Mild Steel
CD	Cross Drainage
m/s	meters per second
SR	Schedule of Rates
WRD	Water Resources Department
MW	Megawatt
GPS	Global Positioning System

References

- IS 3370–1965, (Part-1 General requirements) code for practice for concrete structure for the storage of liquids.
- [2] IS 3370–1965, (Part-2 Reinforced concrete structure) code for practice for concrete structure for the storage of liquids.
- [3] IS 3370–1965, (Part-4 Design tables) code for practice for concrete structure for the storage of liquids.
- [4] Design Aid to water retaining structure by M/s Tor Steel Research Foundation.
- [5] IS 456: 2000, Plain and reinforced concrete code practice.
- [6] Joseph E. Bowles, "Foundation analysis and design."